Improvement of Ant Colony Algorithm Performance for the Job-Shop Scheduling Problem Using Evolutionary Adaptation and Software Realization Heuristics
Abstract
:1. Introduction
1.1. Job-Shop Scheduling Problem
- Discreteness;
- Multivariance;
- Multifactorialism;
- The inability to construct an objective function in the form of an algebraic expression, since the objective function is calculated only algorithmically.
1.2. Ant Colony Optimization Algorithm
1.3. Meta-Optimization Approach
2. Materials and Methods
2.1. Proposed Application of the ACO Algorithm for the JSS Problem
- Present the problem as a directed graph;
- Determine the heuristics of the behavior of ants when constructing a solution;
- Adjust the algorithm parameters.
Algorithm 1. Pseudocode for the ACO Algorithm Application for JSS Problem | |
Input: N, M, Iaco, Cant, fmin, fmax, α, β, γ, ρ, λ Output:T, makespan Auxiliary Variables: f, Cs, routes, makespans, best_route, best_makespan Initialization:Cs = Count_stages(N), f = I[n × Cs] ∙ fmin, best_makespan = ∞ Begin ACO-JSS Algorithm | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 | for (i = 1, …, Iaco) do for (a = 1, …, Cant) do makespanesa, routesa = Ant_route(N, M, Cs, f, α, β) end for for (a = 1, …, Cant) do for (s = 1, …, Cs) do j = routesa,s fs, j = fs,j + (γ/makespanesa)β end for end for a = argmina(makespanesa) if (makespanesa < best_makespan) then best_makespan = makespanesa best_route = routesa end if for (s = 1, …, Cs) do j = best_routes fs,j = λ∙fs,j end for for (φ ∈ f) do φ = max(min(φ∙(1 − ρ), fmax), fmin) end for end for T = JSS(best_route) makespan = best_makespan return T, makespan |
End ACO-JSS Algorithm |
Algorithm 2. Pseudo Code for the Ant_route | |
Input: N, M, Cs, α, f Output:makespan, route Auxiliary Variables:p, sp, tabu_list, stage_counters, stages Initialization:route = 0[Cs], tabu_list = {}, stage_counters = 0[n] stagesi = Count_stages(Ni), i = 1, …, n Begin Ant_route Algorithm | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 | for (s = 1, …, Cs) do sp = 0 for (j = 1, …, n) do if (j ∉ tabu_list) then pj = (fs,j)α sp = sp + pj else pj = 0 end if end for for (j = 1, …, n) do if (j ∉ tabu_list) then pj = pj/sp end if end for j = Roulette_Selection(p) routes = j stage_countersj + = 1 if (stage_countersj = stagesj) then tabu_list = tabu_list ∪ j end if end for T = JSS(route) makespan = max(T) return makespan, route |
End Ant_route Algorithm |
2.2. Adaptive Selection of Algorithm Parameters
Algorithm 3. Pseudo Code for the ACO Algorithm with GA Adaptation | |
Input: N, M, Ig, Cg, Iaco, Cant, fmin, fmax Output:T, makespan, α, β, γ, ρ, λ Auxiliary Variables: population, prob, fitnesses, best_parameters, best_fitness, Pm Initialization:population = I[Cg × 5] ∙ Random[Cg × 5], fitnesses = [], prob = 0[Cg] best_fitness = ∞, Pm = 0.05 Begin ACO-GA Algorithm | |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 | for (i = 1, …, Ig) do for (g = 1, …, Cg) do α, β, γ, ρ, λ = Scale(populationg) T, makespane = ACO_JSS(N, M, Iaco, Cant, fmin, fmax, α, β, γ, ρ, λ) fitnessesg = makespane end for for (g = 1, …, Cg) do if (fitnessesg < best_fitness) do best_fitness = fitnessesg best_parameters = populationg end if end for next_population = population for (j = 1, …, Cg/2) do prob = 1/fitnesses a = Roulette_Selection(prob) |
17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 | b = Roulette_Selection(prob) x = round(Random()∙4) next_ population2j–1 = populationa,1 … x ∥ populationb, x+1 … 5 next_ population2j = populationb, 1 … x ∥ populationa,x+1 … 5 end for for (j = 1, …, Cg) do if (Random() < Pm)do next_ populationj = Random [5] end if end for population = next_population end for α, β, γ, ρ, λ = Scale(best_parameters) T, makespane = ACO_JSS(N, M, Iaco, Cant, fmin, fmax, α, β, γ, ρ, λ) return T, makespan, α, β, γ, ρ, λ |
End ACO-GA Algorithm |
- Generation of a random initial state. The first generation is created from randomly selected solutions (chromosomes), where the parameters α, β, γ, ρ, λ are used as genes (initialization in Algorithm 3).
- Calculation of the coefficient of survival (fitness). Each solution (chromosome) is assigned a certain numerical value, depending on its proximity to the value of the fitness function (rows 2–12).
- Reproduction. Chromosomes with greater fitness are more likely to pass to offspring, roulette selection, and a single-point crossover operation is performed (rows 13–25).
- Mutation. If it is randomly determined that it is necessary to carry out a mutation, then the chromosome is changed to a new random chromosome (rows 21–31).
- If the specified number of iterations is completed, then the problem is solved. Otherwise, steps 2–4 are repeated.
2.3. Improving the Performance of the Software Implementation of the Algorithm
3. Results and Discussion
- Iz is the number of runs over which averaging was carried out (with the same coefficients);
- Lmin is the best-obtained solution;
- Lavg is the solution averaged over Iz launches;
- Iaco is the number of ACO iterations;
- Cant is the number of ants;
- α is the degree of significance of the pheromone when choosing the graph edge (Equation (6));
- β is the non-linear pheromone deposition coefficient (Equation (7));
- ρ is the pheromone evaporation coefficient (Equation (8));
- γ is the linear coefficient of pheromone application (Equation (7));
- λ is the accounting factor for the best current solution (Equation (9)).
- Lm1 is the best solution that was recorded before using the GA (the coefficients were selected manually);
- La1 is the average value of the solutions that were recorded before using the GA;
- Lg is the best solution that was obtained using the GA;
- Lga is the average value of the solutions that were obtained using the coefficients found by the GA;
- Lm2 is the best solution that was obtained using the coefficients found by averaging over other solved problems;
- La2 is the average value of the solutions that were obtained using the coefficients found by averaging over other solved problems (except for the coefficient γ).
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Johnson, S.M. Optimal two- and three-stage production schedules with setup times included. Nav. Res. Logist. Q. 1954, 1, 61–68. [Google Scholar] [CrossRef]
- Lawler, E.L.; Lenstra, J.K.; Rinnooy Kan, A.H.G.; Shmoys, D.B. Sequencing and Scheduling: Algorithms and Complexity; Technische Universiteit Eindhoven: Eindhoven, The Netherlands, 1989. [Google Scholar]
- Brucker, P.; Knust, S. Complex Scheduling; Springer: Berlin, Germany, 2012. [Google Scholar]
- Xie, J.; Gao, L.; Peng, K.; Li, X.; Li, H. Review on flexible job shop scheduling. IET Collab. Intell. Manuf. 2019, 1, 67–77. [Google Scholar] [CrossRef]
- Leusin, M.E.; Frazzon, E.M.; Uriona Maldonado, M.; Kück, M.; Freitag, M. Solving the Job-Shop Scheduling Problem in the Industry 4.0 Era. Technologies 2018, 6, 107. [Google Scholar] [CrossRef] [Green Version]
- Xiong, H.; Danni, S.S.; Hu, R.J. A survey of job shop scheduling problem: The types and models. Comput. Oper. Res. 2022, 142, 105731. [Google Scholar] [CrossRef]
- Gonçalves, J.F.; de Magalhães Mendes, J.J.; Resende, M.G. A hybrid genetic algorithm for the job shop scheduling problem. Eur. J. Oper. Res. 2005, 167, 77–95. [Google Scholar] [CrossRef] [Green Version]
- Gromicho, J.A.S.; Hoorn, J.J.; Timmer, G.T. Exponentially better than brute force: Solving the job-shop scheduling problem optimally by dynamic programming. Comput. Oper. Res. Arch. 2012, 39, 2968–2977. [Google Scholar] [CrossRef]
- Çaliş, B.; Bulkan, S. A research survey: Review of AI solution strategies of job shop scheduling problem. J. Intell. Manuf. 2015, 26, 961–973. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Manusov, V.Z. The cyclic job-shop scheduling problem: The new subclass of the job-shop problem and applying the simulated annealing to solve it. In Proceedings of the IEEE 2nd International Conference on Industrial Engineering, Applications and Manufacturing (ICIEAM), Chelyabinsk, Russia, 19–20 May 2022. [Google Scholar]
- Brucker, P.; Jurisch, B.; Sievers, B. A branch and bound algorithm for job shop scheduling problem. Discret. Appl. Math. 1994, 49, 107–127. [Google Scholar] [CrossRef] [Green Version]
- Baptiste, P.; Flamini, M.; Sourd, F. Lagrangian bounds for just-in-time job shop scheduling. Comput. Oper. Res. 2008, 35, 906–915. [Google Scholar] [CrossRef] [Green Version]
- Canbolat, Y.B.; Gundogar, E. Fuzzy priority rule for job shop scheduling. J. Intell. Manuf. 2004, 15, 527–533. [Google Scholar] [CrossRef]
- Klein, R. Bidirectional planning: Improving priority rule-based heuristic for scheduling resource-constrained projects. Eur. J. Oper. Res. 2000, 127, 619–638. [Google Scholar] [CrossRef]
- Stastny, J.; Skorpil, V.; Balogh, Z.; Klein, R. Job Shop Scheduling Problem Optimization by Means of Graph-Based Algorithm. Appl. Sci. 2021, 11, 1921. [Google Scholar] [CrossRef]
- Ziaee, M.; Mortazavi, J.; Amra, M. Flexible job shop scheduling problem considering machine and order acceptance, transportation costs, and setup times. Soft Comput. 2022, 26, 3527–3543. [Google Scholar] [CrossRef]
- Asadzadeh, L. A local search genetic algorithm for the job shop scheduling problem with intelligent agents. Comput. Ind. Eng. 2015, 85, 376–383. [Google Scholar] [CrossRef]
- Kundakcı, N.; Kulak, O. Hybrid genetic algorithms for minimizing makespan in dynamic job shop scheduling problem. Comput. Ind. Eng. 2016, 96, 31–51. [Google Scholar] [CrossRef]
- Gao, J.; Gen, M.; Sun, L.Y. A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput. Ind. Eng. 2007, 53, 149–162. [Google Scholar] [CrossRef]
- Matrenin, P.V.; Sekaev, V.G. Particle Swarm optimization with velocity restriction and evolutionary parameters selection for scheduling problem. In Proceedings of the IEEE International Siberian Conference on Control and Communications (SIBCON), Omsk, Russia, 21–23 May 2015. [Google Scholar]
- Liu, B.; Wang, L.; Jin, Y.H. An effective hybrid PSO-based algorithm for flow shop scheduling with limited buffers. Comput. Oper. Res. 2008, 35, 2791–2806. [Google Scholar] [CrossRef] [Green Version]
- Xiang, W.; Lee, H.P. Ant colony intelligence in multi-agent dynamic manufacturing scheduling. Eng. Appl. Artif. Intell. 2008, 21, 73–85. [Google Scholar] [CrossRef]
- Matrenin, P.; Myasnichenko, V.; Sdobnyakov, N.; Sokolov, S.; Fidanova, S.; Kirillov, L.; Mikhov, R. Generalized swarm intelligence algorithms with domain-specific heuristics. IAES Int. J. Artif. Intell. 2021, 10, 157–165. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Li, P.G.; Rao, Y.Q. A very fast TS/SA algorithm for the job shop scheduling problem. Comput. Oper. Res. 2008, 35, 82–294. [Google Scholar] [CrossRef]
- Wolpert, D.H.; Macready, W.G. No free lunch theorems for optimization. IEEE Trans. Evol. Comput. 1997, 1, 67–82. [Google Scholar] [CrossRef] [Green Version]
- Dorigo, M.; Blum, C. Ant colony optimization theory: A survey. Theor. Comput. Sci. 2005, 344, 243–278. [Google Scholar] [CrossRef]
- Dorigo, M.; Stützle, T. Ant colony optimization: Overview and recent advances. In Handbook of Metaheuristics; Springer: Cham, Switzerland, 2019; pp. 311–351. [Google Scholar]
- Neroni, M. Ant Colony Optimization with Warm-Up. Algorithms 2021, 14, 295. [Google Scholar] [CrossRef]
- Xu, Q.; Zhang, L.; Yu, W. A Localization Method of Ant Colony Optimization in Nonuniform Space. Sensors 2022, 22, 7389. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Gong, M.; Ma, W.; Wang, S. High-order graph matching based on ant colony optimization. Neurocomputing 2019, 328, 97–104. [Google Scholar] [CrossRef]
- Al-Shourbaji, I.; Helian, N.; Sun, Y.; Alshathri, S.; Abd Elaziz, M. Boosting Ant Colony Optimization with Reptile Search Algorithm for Churn Prediction. Mathematics 2022, 10, 1031. [Google Scholar] [CrossRef]
- D’andreagiovanni, F.; Krolikowski, J.; Pulaj, J. A fast hybrid primal heuristic for multiband robust capacitated network design with multiple time periods. Appl. Soft Comput. 2015, 26, 497–507. [Google Scholar] [CrossRef] [Green Version]
- Li, S.; Wei, Y.; Liu, X.; Zhu, H.; Yu, Z. A New Fast Ant Colony Optimization Algorithm: The Saltatory Evolution Ant Colony Optimization Algorithm. Mathematics 2022, 10, 925. [Google Scholar] [CrossRef]
- Chen, X.; Dai, Y. Research on an Improved Ant Colony Algorithm Fusion with Genetic Algorithm for Route Planning. In Proceedings of the 4th IEEE Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), Electr Network, Chongqing, China, 12–14 June 2020; pp. 1273–1278. [Google Scholar]
- Bauer, A.; Bullnheimer, B.; Richard, F.H.; Strauss, C. An Ant Colony Optimization Approach for the Single Machine Total Tardiness Problem. In Proceedings of the Congress on Evolutionary Computation-CEC99, Washington, DC, USA, 6–9 July 1999; pp. 1445–1450. [Google Scholar]
- M’Hallah, R.; Alhajraf, A. Ant colony systems for the single-machine total weighted earliness tardiness scheduling problem. J. Sched. 2016, 19, 191–205. [Google Scholar] [CrossRef]
- Purism, A.; Bello, R.; Trujillo, Y.; Nowe, A.Y.; Martínez, Y. Two-Stage ACO to Solve the Job Shop Scheduling Problem. In Proceedings of the 12th Iberoamericann Congress on Pattern Recognition (CIARP), Valparaiso, Chile, 13–16 November 2007; pp. 447–456. [Google Scholar]
- Chaouch, I.L.; Driss, O.B.; Ghedira, K. A Modified Ant Colony Optimization algorithm for the Distributed Job shop Scheduling Problem. Procedia Comput. Sci. 2017, 112, 296–305. [Google Scholar] [CrossRef]
- Eswaramurthy, V.; Tamilarasi, A. Hybridizing tabu search with ant colony optimization for solving job shop scheduling problems. Int. J. Adv. Manuf. Technol. 2009, 40, 1004–1015. [Google Scholar] [CrossRef]
- Tran, L.V.; Huynh, B.H.; Akhtar, H. Ant Colony Optimization Algorithm for Maintenance, Repair and Overhaul Scheduling Optimization in the Context of Industrie 4.0. Appl. Sci. 2019, 9, 4815. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Cai, J.; Li, M.; Liu, Z. Flexible Job Shop Scheduling Problem Using an Improved Ant Colony Optimization. Sci. Program. 2017, 9016303. [Google Scholar] [CrossRef] [Green Version]
- Blum, C.; Sampels, M. An Ant Colony Optimization Algorithm for Shop Scheduling Problems. J. Math. Model. Algorithms 2004, 3, 285–308. [Google Scholar] [CrossRef]
- Da Silva, A.R. Solving the Job Shop Scheduling Problem with Ant Colony Optimization. Available online: https://arxiv.org/abs/2209.05284 (accessed on 20 November 2022).
- Blum, C.; Ermeev, A.; Zakharova, Y. Hybridizations of evolutionary algorithms with Large Neighborhood Search. Comput. Sci. Rev. 2022, 46, 100512. [Google Scholar] [CrossRef]
- Grosan, C.; Abraham, A. Hybrid Evolutionary Algorithms: Methodologies, Architectures, and Reviews. Stud. Comput. Intell. 2007, 75, 1–7. [Google Scholar]
- Bramm, A.M.; Khalyasmaa, A.I.; Eroshenko, S.A.; Matrenin, P.V.; Papkova, N.A.; Sekatski, D.A. Topology Optimization of the Network with Renewable Energy Sources Generation Based on a Modified Adapted Genetic Algorithm. Energ. Proc. CIS High. Educ. Inst. Power Eng. Assoc. 2022, 65, 341–354. [Google Scholar] [CrossRef]
- Sipper, M.; Fu, W.; Ahuja, K.; Moore, J. Investigating the parameter space of evolutionary algorithms. BioData Min. 2018, 11, 2. [Google Scholar] [CrossRef] [Green Version]
- Adams, J.; Balas, E.; Zawack, D. The shifting bottleneck procedure for job shop scheduling. Manag. Sci. 1991, 34, 391–401. [Google Scholar] [CrossRef]
- Fisher, H.; Thompson, G. Probabilistic Learning Combination of Local Job-Shop Scheduling Rules in Industrial Scheduling; Prentice-Hall: Englewood Cliffs, NJ, USA, 1963. [Google Scholar]
- Lawrence, S. Supplement to Resource Constrained Project Scheduling: An Experimental Investigation of Heuristic Scheduling Techniques; Tech. rep., GSIA; Carnegie Mellon University: Pittsburgh, PA, USA, 1984. [Google Scholar]
- Sekaev, V.G. Using algorithms for combining heuristics in constructing optimal schedules. Inf. Technol. 2009, 10, 61–64. [Google Scholar]
- Beasley, J.E. OR-Library: Distributing test problems by electronic mail. J. Oper. Res. Soc. 1990, 41, 1069–1072. [Google Scholar] [CrossRef]
- Ahmadian, M.M.; Khatami, M.; Salehipour, A.; Cheng, T.C.E. Four decades of research on the open-shop scheduling problem to minimize the makespan. Eur. J. Oper. Res. 2021, 295, 399–426. [Google Scholar] [CrossRef]
- Luo, S.; Zhang, L.; Fan, Y. Real-Time Scheduling for Dynamic Partial-No-Wait Multiobjective Flexible Job Shop by Deep Reinforcement Learning. IEEE Trans. Autom. Sci. Eng. 2022, 19, 3020–3038. [Google Scholar] [CrossRef]
- Romanov, A.M.; Romanov, M.P.; Manko, S.V.; Volkova, M.A.; Chiu, W.-Y.; Ma, H.-P.; Chiu, K.-Y. Modular Reconfigurable Robot Distributed Computing System for Tracking Multiple Objects. IEEE Syst. J. 2021, 15, 802–813. [Google Scholar] [CrossRef]
- Wan, Y.; Zuo, T.-Y.; Chen, L.; Tang, W.-C.; Chen, J. Efficiency-Oriented Production Scheduling Scheme: An Ant Colony System Method. IEEE Access 2020, 8, 19286–19296. [Google Scholar] [CrossRef]
Problem | Iz | Lmin | Lavg | Iaco | Cant | α | β | ρ | γ | λ |
---|---|---|---|---|---|---|---|---|---|---|
abz6 | 40 | 948 | 977.333 | 1000 | 100 | 0.63 | 2.0 | 0.696 | 28 | 1.3 |
abz6 | 40 | 945 | 982.524 | 1000 | 100 | 1.1 | 1.0 | 0.499 | 900 | 1.3 |
ft10 | 40 | 950 | 995.866 | 1000 | 100 | 0.63 | 1.2 | 0.7 | 1000 | 1.1 |
ft10 | 20 | 951 | 1006.1 | 1000 | 50 | 0.3781 | 1.711 | 0.97 | 1108.7 | 2.277 |
la17 | 20 | 784 | 805.4 | 1000 | 100 | 0.392 | 2.7701 | 0.2998 | 425.5387 | 1.9615 |
la17 | 20 | 785 | 798.25 | 1000 | 100 | 0.0341 | 1.7968 | 0.5461 | 949.1535 | 4.5589 |
la15 | 20 | 1207 | 1215.45 | 1000 | 100 | 0.531 | 1.72 | 0.663 | 1032 | 1.2 |
3_Plates | 10 | 657.55 | 662.075 | 30 | 10 | 0.2782 | 0.4251 | 0.4919 | 296.61 | 2.5373 |
3_Plates | 10 | 657.55 | 662.3275 | 30 | 10 | 0.1754 | 0.5705 | 0.3836 | 326.05 | 2.5083 |
la01 | 10 | 666 | 670.2 | 200 | 20 | 0.2262 | 0.8665 | 0.6883 | 903.3459 | 2.0363 |
la01 | 10 | 666 | 669.4 | 200 | 20 | 0.3542 | 0.6527 | 0.8001 | 120.8012 | 2.1305 |
la21 | 10 | 1107 | 1150.9 | 2000 | 100 | 0.7478 | 1.1134 | 0.3488 | 790.57 | 2.2236 |
6_Plates | 20 | 107 | 111.45 | 30 | 10 | 0.6218 | 2.7953 | 0.6995 | 335.6241 | 1.2376 |
6_Plates | 20 | 107 | 111.5 | 30 | 10 | 0.6204 | 0.2863 | 0.0775 | 137.6017 | 1.479 |
Problem | Lm1 | La1 | Lg | Lga | Lm2 | La2 | Iaco | Cant |
---|---|---|---|---|---|---|---|---|
abz6 | 980 | 1005.3 | 945 | 977.33 | 948 | 985.26 | 1000 | 100 |
ft06 | 55 | 55.16 | 55 | 55 | 55 | 55.16 | 30 | 10 |
ft10 | 1017 | 1038.8 | 950 | 995.87 | 975 | 1013.84 | 1000 | 100 |
la01 | 666 | 673.08 | 666 | 669.4 | 666 | 673.08 | 30 | 10 |
la10 | 958 | 958 | 958 | 958 | 958 | 958 | 1000 | 100 |
la15 | 1211 | 1220.6 | 1207 | 1215.45 | 1207 | 1220.62 | 1000 | 100 |
la17 | 796 | 809.32 | 784 | 798.25 | 787 | 809.32 | 1000 | 100 |
la21 | 1121 | 1168.1 | 1107 | 1150.9 | 1118 | 1154.06 | 1000 | 100 |
3_Plates | 657.55 | 664.782 | 657.55 | 662.08 | 657.55 | 664.782 | 30 | 10 |
6_Plates | 109 | 113.22 | 107 | 111.45 | 108 | 112.12 | 30 | 10 |
Problem | Lm1 | La1 | Lgm | Lga | Iaco | Cant | Best known |
---|---|---|---|---|---|---|---|
abz6 | 980 | 1005.3 | 945 | 977.33 | 1000 | 100 | 943 |
ft06 | 55 | 55.16 | 55 | 55 | 30 | 10 | 55 |
ft10 | 1017 | 1038.8 | 950 | 995.87 | 1000 | 100 | 930 |
la01 | 666 | 673.08 | 666 | 669.4 | 30 | 10 | 666 |
la10 | 958 | 958 | 958 | 958 | 1000 | 100 | 958 |
la15 | 1211 | 1220.6 | 1207 | 1215.45 | 1000 | 100 | 1207 |
la17 | 796 | 809.32 | 784 | 798.25 | 1000 | 100 | 784 |
la21 | 1121 | 1168.1 | 1107 | 1150.9 | 1000 | 100 | 1048 |
3_Plates | 657.55 | 664.782 | 657.55 | 662.08 | 30 | 10 | 657.55 |
6_Plates | 109 | 113.22 | 107 | 111.45 | 30 | 10 | 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Matrenin, P.V. Improvement of Ant Colony Algorithm Performance for the Job-Shop Scheduling Problem Using Evolutionary Adaptation and Software Realization Heuristics. Algorithms 2023, 16, 15. https://doi.org/10.3390/a16010015
Matrenin PV. Improvement of Ant Colony Algorithm Performance for the Job-Shop Scheduling Problem Using Evolutionary Adaptation and Software Realization Heuristics. Algorithms. 2023; 16(1):15. https://doi.org/10.3390/a16010015
Chicago/Turabian StyleMatrenin, Pavel V. 2023. "Improvement of Ant Colony Algorithm Performance for the Job-Shop Scheduling Problem Using Evolutionary Adaptation and Software Realization Heuristics" Algorithms 16, no. 1: 15. https://doi.org/10.3390/a16010015
APA StyleMatrenin, P. V. (2023). Improvement of Ant Colony Algorithm Performance for the Job-Shop Scheduling Problem Using Evolutionary Adaptation and Software Realization Heuristics. Algorithms, 16(1), 15. https://doi.org/10.3390/a16010015