Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling
Abstract
:1. Introduction
2. Modeling Methods
2.1. Layer Sweep Method
2.2. Transfer Matrix Method
3. Results and Discussion
3.1. Modeling Parameters of Homogeneous FBG
3.2. Results of Homogeneous FBG Modeling
3.3. Results of a π-Phase-Shifted FBG Modeling
3.4. Amendment to Layer Sweep Method for Phase-Shifted FBG Modeling
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tseng, S.-M.; Chen, C.-L. Optical Fiber Fabry-Perot Sensors. Appl. Opt. 1988, 27, 547–551. [Google Scholar] [CrossRef] [PubMed]
- Hegde, G.; Asokan, S.; Hegde, G. Fiber Bragg Grating Sensors for Aerospace Applications: A Review. ISSS J. Micro Smart Syst. 2022, 11, 257–275. [Google Scholar] [CrossRef]
- Legoubin, S.; Fertein, E.; Douay, M.; Bernage, P.; Niay, P.; Bayon, F.; Georges, T. Formation of Moiré Grating in Core of Germanosilicate Fibre by Transverse Holographic Double Exposure Method. Electron. Lett. 1991, 27, 1945–1947. [Google Scholar] [CrossRef]
- Gillooly, A.M.; Dobb, H.; Zhang, L.; Bennion, I. Distributed Load Sensor by Use of a Chirped Moiré Fiber Bragg Grating. Appl. Opt. 2004, 43, 6454–6457. [Google Scholar] [CrossRef] [PubMed]
- Morozov, O.G.; Sakhabutdinov, A.J. Addressed fiber bragg structures in quasi-distributed microwave-photonic sensor systems. Comput. Opt. 2019, 43, 535–543. [Google Scholar] [CrossRef]
- Deepa, S.; Das, B. Interrogation Techniques for π-Phase-Shifted Fiber Bragg Grating Sensor: A Review. Sens. Actuators A Phys. 2020, 315, 112215. [Google Scholar] [CrossRef]
- Morozov, O.; Sakhabutdinov, A.; Anfinogentov, V.; Misbakhov, R.; Kuznetsov, A.; Agliullin, T. Multi-Addressed Fiber Bragg Structures for Microwave-Photonic Sensor Systems. Sensors 2020, 20, 2693. [Google Scholar] [CrossRef] [PubMed]
- Ma, W.; Wang, R.; Rong, Q.; Shao, Z.; Zhang, W.; Guo, T.; Wang, J.; Qiao, X. CO2 Gas Sensing Using Optical Fiber Fabry–Perot Interferometer Based on Polyethyleneimine/Poly(Vinyl Alcohol) Coating. IEEE Photonics J. 2017, 9, 2700053. [Google Scholar] [CrossRef]
- Bremer, K.; Lewis, E.; Leen, G.; Moss, B.; Lochmann, S.; Mueller, I.A.R. Feedback Stabilized Interrogation Technique for EFPI/FBG Hybrid Fiber-Optic Pressure and Temperature Sensors. IEEE Sens. J. 2012, 12, 133–138. [Google Scholar] [CrossRef]
- Tosi, D.; Poeggel, S.; Iordachita, I.; Schena, E. Fiber Optic Sensors for Biomedical Applications. In Opto-Mechanical Fiber Optic Sensors; Alemohammad, H., Ed.; Butterworth-Heinemann: Oxford, UK, 2018; pp. 301–333. ISBN 978-0-12-803131-5. [Google Scholar]
- Skaar, J.; Wang, L.; Erdogan, T. On the Synthesis of Fiber Bragg Gratings by Layer Peeling. IEEE J. Quantum Electron. 2001, 37, 165–173. [Google Scholar] [CrossRef]
- Erdogan, T. Fiber Grating Spectra. J. Light. Technol. 1997, 15, 1277–1294. [Google Scholar] [CrossRef]
- Ikhlef, A.; Hedara, R.; Chikh-Bled, M. Uniform Fiber Bragg Grating Modeling and Simulation Used Matrix Transfer Method. Int. J. Comput. Sci. Issues (IJCSI) 2012, 9, 7. [Google Scholar]
- Tai, H. Theory of Fiber Optical Bragg Grating: Revisited. In Proceedings of the Optical Modeling and Performance Predictions, San Diego, CA, USA, 22 January 2004; SPIE: Bellingham, WA, USA, 2004; Volume 5178, pp. 131–138. [Google Scholar]
- Khalid, K.S.; Zafrullah, M.; Bilal, S.M.; Mirza, M.A. Simulation and Analysis of Gaussian Apodized Fiber Bragg Grating Strain Sensor. J. Opt. Technol. 2012, 79, 667–673. [Google Scholar] [CrossRef]
- Hamarsheh, M.N.; Abdullah, M.K. Analysis of Fiber Bragg Gratings Apodized with Linearly Approximated Segmented Gaussian Function. In Proceedings of the 9th Asia-Pacific Conference on Communications (IEEE Cat. No.03EX732), Penang, Malaysia, 21–24 September 2003; Volume 1, pp. 163–167. [Google Scholar]
- Halder, P.; Deyasi, A. Calculating Reflectivity of Fiber Bragg Grating for Different Apodization Techniques. MMC_A 2017, 90, 116–124. [Google Scholar] [CrossRef]
- Capmany, J.; Sales, S.; Muriel, M.A.; Rubio, J.J. Novel Layer Peeling Algorithm for the Synthesis of Fiber Bragg Gratings Yielding Smoother Fabrication Profiles. In Proceedings of the Optical Fiber Communication Conference, 2004, OFC 2004, Los Angeles, CA, USA, 22 February 2004; Volume 1, p. 77. [Google Scholar]
- Fazzi, L.; Klyukin, D.; Groves, R.M. Transfer Matrix Method for Fundamental LP01 Core Mode Coupling in a Tilted FBG Sensor. AIP Conf. Proc. 2020, 2293, 200010. [Google Scholar] [CrossRef]
- Tosi, D. Review and Analysis of Peak Tracking Techniques for Fiber Bragg Grating Sensors. Sensors 2017, 17, 2368. [Google Scholar] [CrossRef] [PubMed]
- SMF-28® Ultra Optical Fibers|Single Mode Optical Fiber|Corning. Available online: https://www.corning.com/optical-communications/worldwide/en/home/products/fiber/optical-fiber-products/smf-28-ultra.html (accessed on 30 January 2023).
- Ashry, I.; Elrashidi, A.; Mahros, A.; Alhaddad, M.; Elleithy, K. Investigating the Performance of Apodized Fiber Bragg Gratings for Sensing Applications. In Proceedings of the 2014 Zone 1 Conference of the American Society for Engineering Education, Bridgeport, CT, USA, 3–5 April 2014; pp. 1–5. [Google Scholar]
- Prashar, S.; Engles, D.; Malik, S.S.; Vohra, R. Investigative Study of Transmission Spectra of FBG at Varying Induced Index & Grating Length. Procedia Eng. 2012, 38, 3031–3036. [Google Scholar] [CrossRef]
- Pustakhod, D.; Kleijn, E.; Williams, K.; Leijtens, X. High-Resolution AWG-Based Fiber Bragg Grating Interrogator. IEEE Photonics Technol. Lett. 2016, 28, 2203–2206. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value |
---|---|
Grating length H, m | 6 × 10−3 |
Refractive index of the fiber n0, RIU | 1.4682 |
Induced refractive index Δn, RIU | 2 × 10−4 |
Grating period Λ, m | 5.278213 × 10−7 |
Parameter | Value |
---|---|
Sub-grating length H, m | 5 × 10−3 |
Refractive index of the fiber n0, RIU | 1.4682 |
Induced refractive index Δn, RIU | 2 × 10−4 |
Sub-grating period Λ, m | 5.278213 × 10−7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agliullin, T.; Anfinogentov, V.; Morozov, O.; Sakhabutdinov, A.; Valeev, B.; Niyazgulyeva, A.; Garovov, Y. Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling. Algorithms 2023, 16, 101. https://doi.org/10.3390/a16020101
Agliullin T, Anfinogentov V, Morozov O, Sakhabutdinov A, Valeev B, Niyazgulyeva A, Garovov Y. Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling. Algorithms. 2023; 16(2):101. https://doi.org/10.3390/a16020101
Chicago/Turabian StyleAgliullin, Timur, Vladimir Anfinogentov, Oleg Morozov, Airat Sakhabutdinov, Bulat Valeev, Ayna Niyazgulyeva, and Yagmyrguly Garovov. 2023. "Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling" Algorithms 16, no. 2: 101. https://doi.org/10.3390/a16020101
APA StyleAgliullin, T., Anfinogentov, V., Morozov, O., Sakhabutdinov, A., Valeev, B., Niyazgulyeva, A., & Garovov, Y. (2023). Comparative Analysis of the Methods for Fiber Bragg Structures Spectrum Modeling. Algorithms, 16(2), 101. https://doi.org/10.3390/a16020101