Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times
Abstract
:1. Introduction
- New models for the PCMCA-WT that are polynomial in size and are characterized by a substantially smaller memory footprint compared to the known models are introduced. This result is achieved by exploiting some theoretical properties emerging from the current study and previously unobserved.
- The new models are solved both with MILP and Constraint Programming (CP) solvers. The experimental results substantially improve the state of the art for the instances commonly adopted in the literature. Out of the 88 open instances from the literature, improved lower bounds are provided for 71 instances and improved upper bounds are provided for 80 instances. Finally, seven instances are closed for the first time.
2. Problem Description
3. New Compact Models
3.1. The Complete Model
3.1.1. The New Precedence Constraints
3.2. The Reduced Model
3.2.1. Selecting the Precedence Constraints involving a Zero-Cost Path
Algorithm 1 Retrieve the Relevant Zero-Cost Paths from an Instance |
|
3.3. Solving the New Models via Constraint Programming
4. Computational Experiments
4.1. Experimental Settings
4.2. Results
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Chu, Y.J.; Liu, T. On the shortest arborescence of a directed graph. Sci. Sin. 1965, 14, 1396–1400. [Google Scholar]
- Edmonds, J. Optimum branchings. J. Res. Natl. Bur. Stand. 1967, 71, 233–240. [Google Scholar] [CrossRef]
- Gabow, H.N.; Galil, Z.; Spencer, T.; Tarjan, R.E. Efficient algorithms for finding minimum spanning trees in undirected and directed graphs. Combinatorica 1986, 6, 109–122. [Google Scholar] [CrossRef]
- Chou, X.; Gambardella, L.M.; Montemanni, R. A tabu search algorithm for the probabilistic orienteering problem. Comput. Oper. Res. 2021, 126, 105107. [Google Scholar] [CrossRef]
- Bock, F. An algorithm to construct a minimum directed spanning tree in a directed network. Dev. Oper. Res. 1971, 29–44. [Google Scholar]
- Fischetti, M.; Vigo, D. A branch-and-cut algorithm for the resource-constrained minimum-weight arborescence problem. Netw. Int. J. 1997, 29, 55–67. [Google Scholar] [CrossRef]
- Pereira, A.H.; Mateus, G.R.; Urrutia, S. Branch-and-cut algorithms for the p-arborescence star problem. Int. Trans. Oper. Res. 2021, 29, 2374–2400. [Google Scholar] [CrossRef]
- Morais, V.; Gendron, B.; Mateus, G.R. The p-arborescence star problem: Formulations and exact solution approaches. Comput. Oper. Res. 2019, 102, 91–101. [Google Scholar] [CrossRef]
- Hakimi, S.L. Optimum distribution of switching centers in a communication network and some related graph theoretic problems. Oper. Res. 1965, 13, 462–475. [Google Scholar] [CrossRef]
- Guttmann-Beck, N.; Hassin, R. On two restricted ancestors tree problems. Inf. Process. Lett. 2010, 110, 570–575. [Google Scholar] [CrossRef]
- Carrabs, F.; Gaudioso, M. A Lagrangian approach for the minimum spanning tree problem with conflicting edge pairs. Networks 2021, 78, 32–45. [Google Scholar] [CrossRef]
- Kruskal, J.B. On the shortest spanning subtree of a graph and the traveling salesman problem. Proc. Am. Math. Soc. 1956, 7, 48–50. [Google Scholar] [CrossRef]
- Gouveia, L.; Lopes, M.J. The capacitated minimum spanning tree problem: On improved multistar constraints. Eur. J. Oper. Res. 2005, 160, 47–62. [Google Scholar] [CrossRef]
- Frieze, A.M.; Tkocz, T. A Randomly Weighted Minimum Arborescence with a Random Cost Constraint. Math. Oper. Res. 2021, 47, 1664–1680. [Google Scholar] [CrossRef]
- Fertin, G.; Fradin, J.; Jean, G. Algorithmic Aspects of the Maximum Colorful Arborescence Problem. In Theory and Applications of Models of Computation; TAMC 2017; Springer: Cham, Switzerland, 2017; pp. 216–230. [Google Scholar]
- Eswaran, K.P.; Tarjan, R.E. Augmentation problems. SIAM J. Comput. 1976, 5, 653–665. [Google Scholar] [CrossRef]
- Li, J.; Liu, X.; Lichen, J. The constrained arborescence augmentation problem in digraphs. In Proceedings of the 2017 3rd IEEE International Conference on Computer and Communications (ICCC), Chengdu, China, 13–16 December 2017; pp. 1204–1209. [Google Scholar]
- Kawatra, R.; Bricker, D. Design of a degree-constrained minimal spanning tree with unreliable links and node outage costs. Eur. J. Oper. Res. 2004, 156, 73–82. [Google Scholar] [CrossRef]
- Galbiati, G.; Gualandi, S.; Maffioli, F. On minimum changeover cost arborescences. Lect. Notes Comput. Sci. 2011, 6630, 112–123. [Google Scholar]
- Bérczi, K.; Fujishige, S.; Kamiyama, N. A linear-time algorithm to find a pair of arc-disjoint spanning in-arborescence and out-arborescence in a directed acyclic graph. Inf. Process. Lett. 2009, 109, 1227–1231. [Google Scholar] [CrossRef]
- Bang-Jensen, J. Edge-disjoint in- and out-branchings in tournaments and related path problems. J. Comb. Theory—Ser. B 1991, 51, 1–23. [Google Scholar] [CrossRef]
- Li, Y.; Thai, M.; Wang, F.; Du, D.Z. On the construction of a strongly connected broadcast arborescence with bounded transmission delay. IEEE Trans. Mob. Comput. 2006, 5, 1460–1470. [Google Scholar]
- Carrabs, F.; Cerulli, R.; Pentangelo, R.; Raiconi, A. Minimum spanning tree with conflicting edge pairs: A branch-and-cut approach. Ann. Oper. Res. 2021, 298, 65–78. [Google Scholar] [CrossRef]
- Darmann, A.; Pferschy, U.; Schauer, J. Determining a Minimum Spanning Tree with Disjunctive Constraints. In Algorithmic Decision Theory; Springer: Berlin/Heidelberg, Germeny, 2009; pp. 414–423. [Google Scholar]
- Viana, L.A.d.C.; Campêlo, M. Two dependency constrained spanning tree problems. Int. Trans. Oper. Res. 2020, 27, 867–898. [Google Scholar] [CrossRef]
- Escudero, L. An inexact algorithm for the sequential ordering problem. Eur. J. Oper. Res. 1988, 37, 236–249. [Google Scholar] [CrossRef]
- Moon, C.; Kim, J.; Choi, G.; Seo, Y. An efficient genetic algorithm for the traveling salesman problem with precedence constraints. Eur. J. Oper. Res. 2002, 140, 606–617. [Google Scholar] [CrossRef]
- Balas, E.; Fischetti, M.; Pulleyblank, W. The precedence-constrained asymmetric traveling salesman polytope. Math. Program. 1995, 68, 241–265. [Google Scholar] [CrossRef]
- Hernádvölgyi, I. Solving the sequential ordering problem with automatically generated lower bounds. In Operations Research Proceedings 2003; Springer: Berlin/Heidelberg, Germany, 2004; pp. 355–362. [Google Scholar]
- Escudero, L.; Guignard, M.; Malik, K. A Lagrangian relax-and-cut approach for the sequential ordering problem with precedence relationships. Ann. Oper. Res. 1994, 50, 219–237. [Google Scholar] [CrossRef]
- Gambardella, L.; Dorigo, M. An ant colony system hybridized with a new local search for the sequential ordering problem. INFORMS J. Comput. 2000, 12, 237–255. [Google Scholar] [CrossRef]
- Karan, M.; Skorin-Kapov, N. A branch and bound algorithm for the sequential ordering problem. In Proceedings of the MIPRO, 2011 Proceedings of the 34th International Convention, Opatija, Croatia, 23–27 May 2011; pp. 452–457. [Google Scholar]
- Ascheuer, N.; Escudero, L.; Grötschel, M.; Stoer, M. A cutting plane approach to the sequential ordering problem (with applications to job scheduling in manufacturing). SIAM J. Optim. 1993, 3, 25–42. [Google Scholar] [CrossRef]
- Ascheuer, N.; Jünger, M.; Reinelt, G. A branch & cut algorithm for the asymmetric traveling salesman problem with precedence constraints. Comput. Optim. Appl. 2000, 17, 61–84. [Google Scholar]
- Montemanni, R.; Smith, D.H.; Gambardella, L.M. Ant colony systems for large sequential ordering problems. In Proceedings of the IEEE Swarm Intelligence Symposium (SIS), Honolulu, HI, USA, 1–5 April 2007; pp. 60–67. [Google Scholar]
- Fiala Timlin, M.; Pulleyblank, W. Precedence constrained routing and helicopter scheduling: Heuristic design. Interfaces 1992, 22, 100–111. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Jamal, J.; Montemanni, R. A mixed integer linear program for a precedence-constrained minimum-cost arborescence problem. In Proceedings of the 8th International Conference on Industrial Engineering and Applications (Europe), Online, 8–11 January 2021; pp. 216–221. [Google Scholar]
- Chou, X.; Dell’Amico, M.; Jamal, J.; Montemanni, R. Precedence-Constrained Arborescences. Eur. J. Oper. Res. 2022, 307, 575–589. [Google Scholar] [CrossRef]
- Shi, W.; Su, C. The rectilinear Steiner arborescence problem is NP-complete. SIAM J. Comput. 2005, 35, 729–740. [Google Scholar] [CrossRef]
- Wang, I.L. Multicommodity network flows: A survey, Part I: Applications and Formulations. Int. J. Oper. Res. 2018, 15, 145–153. [Google Scholar]
- Hurkensa, C.A.J.; Woeginger, G.J. On the nearest neighbor rule for the traveling salesman problem. Oper. Res. Lett. 2004, 32, 1–4. [Google Scholar] [CrossRef]
- Dell’Amico, M.; Jamal, J.; Montemanni, R. Compact Models for the Precedence-Constrained Minimum-Cost Arborescence Problem. In Proceedings of the 2022 The 6th International Conference on Intelligent Traffic and Transportation (ICITT), Paris, France, 25–27 September 2022; IOS Press: Amsterdam, The Netherlands, 2023; pp. 112–126. [Google Scholar]
- Floyd, R. Algorithm 97: Shortest Path. Commun. ACM 1962, 5, 345. [Google Scholar] [CrossRef]
- Google. Google OR-Tools. 2023. Available online: https://developers.google.com/optimization (accessed on 20 November 2023).
- Montemanni, R.; Dell’Amico, M. Solving the Parallel Drone Scheduling Traveling Salesman Problem via Constraint Programming. Algorithms 2023, 16, 40. [Google Scholar] [CrossRef]
- IBM. IBM CPLEX Optimizer. 2023. Available online: https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer (accessed on 20 November 2023).
- Reinelt, G. TSPLIB–A travelling salesman problem library. ORSA J. Comput. 1991, 3, 376–384. [Google Scholar] [CrossRef]
- Montemanni, R.; Smith, D.H.; Rizzoli, A.E.; Gambardella, L.M. Sequential ordering problems for crane scheduling in port terminals. Int. J. Simul. Process Model. 2009, 5, 348–361. [Google Scholar] [CrossRef]
- Shobaki, G.; Jamal, J. An exact algorithm for the sequential ordeing problem and its application to switching energy minimization in compilers. Comput. Optim. Appl. 2015, 61, 343–372. [Google Scholar] [CrossRef]
- Wolpert, D.; Macready, W. No Free Lunch Theorems for Optimization. IEEE Trans. Evol. Comput. 1997, 1, 67. [Google Scholar] [CrossRef]
MILP Solver | CP Solver | |||
---|---|---|---|---|
Complete | Reduced | Complete | Reduced | |
Model | Model | Model | Model | |
Average optimality gap | 0.206 | 0.153 | 0.159 | 0.122 |
Average solution time | 690.8 | 270.8 | 166.4 | 36.4 |
New best-known lower bounds | 2 | 24 | 13 | 32 |
New best-known upper bounds | 1 | 15 | 10 | 54 |
New optimal solutions | 0 | 0 | 7 | 7 |
MILP Solver | CP Solver | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | Complete Model | Reduced Model | Complete Model | Reduced Model | ||||||||||||||
Name | Size | Best-Known [38] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] |
br17.10 | 18 | [35, 44] | 39 | 44 | 0.114 | - | 40 | 44 | 0.091 | - | 44 | 44 | 0.000 | 46.629 | 44 | 44 | 0.000 | 56.628 |
br17.12 | 18 | [35, 44] | 41 | 44 | 0.068 | - | 41 | 44 | 0.068 | - | 44 | 44 | 0.000 | 22.604 | 44 | 44 | 0.000 | 44.550 |
ESC07 | 9 | 1906 | 1906 | 1906 | 0.000 | 0.028 | 1906 | 1906 | 0.000 | 0.070 | 1906 | 1906 | 0.000 | 0.023 | 1906 | 1906 | 0.000 | 0.025 |
ESC11 | 13 | 2174 | 2174 | 2174 | 0.000 | 0.125 | 2174 | 2174 | 0.000 | 0.114 | 2174 | 2174 | 0.000 | 0.107 | 2174 | 2174 | 0.000 | 0.077 |
ESC12 | 14 | 1138 | 1138 | 1138 | 0.000 | 0.035 | 1138 | 1138 | 0.000 | 0.030 | 1138 | 1138 | 0.000 | 0.034 | 1138 | 1138 | 0.000 | 0.037 |
ESC25 | 27 | 1158 | 1158 | 1158 | 0.000 | 6.185 | 1158 | 1158 | 0.000 | 1.945 | 1158 | 1158 | 0.000 | 0.910 | 1158 | 1158 | 0.000 | 0.833 |
ESC47 | 49 | 747 | 747 | 747 | 0.000 | 59.760 | 747 | 747 | 0.000 | 22.153 | 747 | 747 | 0.000 | 3.886 | 747 | 747 | 0.000 | 2.708 |
ESC63 | 65 | 56 | 56 | 56 | 0.000 | 24.600 | 56 | 56 | 0.000 | 57.347 | 56 | 56 | 0.000 | 1.517 | 56 | 56 | 0.000 | 2.465 |
ESC78 | 80 | 1196 | 1196 | 1196 | 0.000 | 2410.483 | 1196 | 1196 | 0.000 | 257.609 | 1196 | 1196 | 0.000 | 100.511 | 1196 | 1196 | 0.000 | 18.971 |
ft53.1 | 54 | 4089 | 4089 | 4089 | 0.000 | 1764.235 | 4089 | 4089 | 0.000 | 2023.553 | 4089 | 4089 | 0.000 | 215.480 | 4089 | 4089 | 0.000 | 291.099 |
ft53.2 | 54 | [4135, 4284] | 4112 | 4317 | 0.047 | - | 4161 | 4334 | 0.040 | - | 4102 | 4284 | 0.042 | - | 4103 | 4284 | 0.042 | - |
ft53.3 | 54 | [4623, 5457] | 4746 | 5425 | 0.125 | - | 4799 | 5279 | 0.091 | - | 4493 | 60 | 0.161 | - | 4508 | 5484 | 0.178 | - |
ft53.4 | 54 | [5657, 6439] | 5922 | 6420 | 0.078 | - | 5923 | 6420 | 0.077 | - | 5338 | 6502 | 0.179 | - | 5357 | 6420 | 0.166 | - |
ft70.1 | 71 | [33,128, 33,298] | 32,777 | 33,308 | 0.016 | - | 32,827 | 33,308 | 0.014 | - | 32,669 | 33,472 | 0.024 | - | 33,101 | 33,298 | 0.006 | - |
ft70.2 | 71 | [33,357, 34,450] | 33,057 | 33,977 | 0.027 | - | 33,089 | 33,916 | 0.024 | - | 32,938 | 33,670 | 0.022 | - | 32,897 | 33,670 | 0.023 | - |
ft70.3 | 71 | [33,914, 42,732] | 34,152 | 38,546 | 0.114 | - | 34,423 | 38,351 | 0.102 | - | 33,825 | 36,939 | 0.084 | - | 33,813 | 36,932 | 0.084 | - |
ft70.4 | 71 | [36,517, 40,404] | 36,737 | 39,145 | 0.062 | - | 36,850 | 38,771 | 0.050 | - | 33,825 | 36,939 | 0.084 | - | 35,664 | 39,843 | 0.105 | - |
rbg048a | 50 | [261, 264] | 260 | 265 | 0.019 | - | 259 | 264 | 0.019 | - | 263 | 263 | 0.000 | 9.442 | 263 | 263 | 0.000 | 25.294 |
rbg050c | 52 | 225 | 225 | 225 | 0.000 | 863.662 | 225 | 225 | 0.000 | 36.673 | 225 | 225 | 0.000 | 2.575 | 225 | 225 | 0.000 | 1.234 |
rbg109 | 111 | [354, 414] | 354 | 426 | 0.169 | - | 366 | 407 | 0.101 | - | 357 | 488 | 0.268 | - | 359 | 401 | 0.105 | - |
rbg150a | 152 | [447, 541] | 447 | 511 | 0.125 | - | 461 | 509 | 0.094 | - | 463 | 591 | 0.217 | - | 461 | 517 | 0.108 | - |
rbg174a | 176 | [446, 580] | 452 | 601 | 0.248 | - | 463 | 553 | 0.163 | - | 457 | 571 | 0.200 | - | 461 | 572 | 0.194 | - |
rbg253a | 255 | [477, 773] | 523 | 1252 | 0.582 | - | 532 | 718 | 0.259 | - | - | - | - | - | 527 | 722 | 0.270 | - |
rbg323a | 325 | [926, 4035] | 981 | 10,111 | 0.903 | - | 974 | 2466 | 0.605 | - | - | - | - | - | 1009 | 1891 | 0.466 | - |
rbg341a | 343 | [681, 3800] | 764 | 9313 | 0.918 | - | 761 | 2907 | 0.738 | - | - | - | - | - | 780 | 1457 | 0.465 | - |
rbg358a | 360 | [706, 3296] | 950 | 11,528 | 0.918 | - | 755 | 2453 | 0.692 | - | - | - | - | - | 788 | 1150 | 0.315 | - |
rbg378a | 380 | [649, 2759] | 672 | 10,242 | 0.934 | - | 648 | 2191 | 0.704 | - | - | - | - | - | 678 | 1126 | 0.398 | - |
kro124p.1 | 101 | [32,858, 35,231] | 32,651 | 37,120 | 0.120 | - | 32,630 | 36,099 | 0.096 | - | 32,504 | 34,100 | 0.047 | - | 32,561 | 33,962 | 0.041 | - |
kro124p.2 | 101 | [33,190, 37,956] | 32,886 | 42,573 | 0.228 | - | 33,006 | 39,931 | 0.173 | - | 32,764 | 37,074 | 0.116 | - | 32,799 | 35,860 | 0.085 | - |
kro124p.3 | 101 | [34,217, 53,988] | 33,813 | 54,183 | 0.376 | - | 34,005 | 46,764 | 0.273 | - | 33,561 | 43,910 | 0.236 | - | 33,488 | 42,416 | 0.210 | - |
kro124p.4 | 101 | [39,413, 55,187] | 39,969 | 58,944 | 0.322 | - | 39,333 | 53,456 | 0.264 | - | 38,433 | 50,910 | 0.245 | - | 37,676 | 49,590 | 0.240 | - |
p43.1 | 44 | [2827, 4470] | 2660 | 4085 | 0.349 | - | 2656 | 3955 | 0.328 | - | 2860 | 3955 | 0.277 | - | 2851 | 3990 | 0.285 | - |
p43.2 | 44 | [2826, 4275] | 991 | 4450 | 0.777 | - | 2705 | 4210 | 0.357 | - | 2856 | 4160 | 0.313 | - | 2870 | 4180 | 0.313 | - |
p43.3 | 44 | [2864, 5375] | 1067 | 5015 | 0.787 | - | 1383 | 4440 | 0.689 | - | 2966 | 4450 | 0.333 | - | 2897 | 4255 | 0.319 | - |
p43.4 | 44 | [3101, 4900] | 2995 | 5035 | 0.405 | - | 3125 | 4605 | 0.321 | - | 3090 | 4495 | 0.313 | - | 3094 | 4620 | 0.330 | - |
prob.100 | 100 | [674, 1008] | 668 | 2125 | 0.686 | - | 677 | 741 | 0.086 | - | 666 | 784 | 0.151 | - | 667 | 738 | 0.096 | - |
prob.42 | 42 | 171 | 171 | 171 | 0.000 | 396.458 | 171 | 171 | 0.000 | 230.506 | 171 | 171 | 0.000 | 79.667 | 171 | 171 | 0.000 | 34.245 |
ry48p.1 | 49 | [13,371, 13,722] | 13,114 | 14,272 | 0.081 | - | 13,200 | 13,670 | 0.034 | - | 13,036 | 13,670 | 0.046 | - | 13,061 | 13,670 | 0.045 | - |
ry48p.2 | 49 | [13,508, 14,659] | 13,299 | 14,415 | 0.077 | - | 13,336 | 14,305 | 0.068 | - | 13,216 | 14,305 | 0.076 | - | 13,185 | 14,305 | 0.078 | - |
ry48p.3 | 49 | [14,371, 16,326] | 13,882 | 16,193 | 0.143 | - | 13,994 | 15,840 | 0.117 | - | 13,764 | 15,546 | 0.115 | - | 13,728 | 15,477 | 0.113 | - |
ry48p.4 | 49 | [17,339, 19,649] | 17,162 | 19,744 | 0.131 | - | 17,180 | 19,583 | 0.123 | - | 16,550 | 19,837 | 0.166 | - | 16,483 | 19,495 | 0.155 | - |
Average | 0.158 | 552.557 | 0.167 | 263.000 | 0.103 | 37.184 | 0.128 | 36.782 |
MILP Solver | CP Solver | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | Complete Model | Reduced Model | Complete Model | Reduced Model | ||||||||||||||
Name | Size | Best-Known [38] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] |
R.200.100.1 | 200 | 29 | 29 | 29 | 0.000 | 18.394 | 29 | 29 | 0.000 | 6.017 | 29 | 29 | 0.000 | 28.271 | 29 | 29 | 0.000 | 31.403 |
R.200.100.15 | 200 | [505, 1271] | 497 | 1431 | 0.653 | - | 525 | 1033 | 0.492 | - | 381 | 1864 | 0.796 | - | 589 | 979 | 0.398 | - |
R.200.100.30 | 200 | [669, 2011] | 686 | 3252 | 0.789 | - | 774 | 1761 | 0.560 | - | 451 | 3001 | 0.850 | - | 838 | 1871 | 0.552 | - |
R.200.100.60 | 200 | [8070, 18,761] | 8760 | 17,004 | 0.485 | - | 8861 | 16,930 | 0.477 | - | 6018 | 31,561 | 0.809 | - | 8440 | 16,197 | 0.479 | |
R.200.1000.1 | 200 | 887 | 887 | 887 | 0.000 | 1288.092 | 887 | 887 | 0.000 | 15.635 | 887 | 887 | 0.000 | 649.979 | 887 | 887 | 0.000 | 26.0915 |
R.200.1000.15 | 200 | [6665, 16,496] | 6769 | 16,336 | 0.586 | - | 6895 | 12,601 | 0.453 | - | 5318 | 25,196 | 0.789 | - | 7231 | 12,812 | 0.436 | - |
R.200.1000.30 | 200 | [9340, 30,351] | 9937 | 23,226 | 0.572 | - | 10,512 | 22,781 | 0.539 | - | 7381 | 38,410 | 0.808 | - | 10,120 | 23,249 | 0.565 | - |
R.200.1000.60 | 200 | [10,508, 23,748] | 11,399 | 21,706 | 0.475 | - | 12,042 | 21,993 | 0.452 | - | 6666 | 28,522 | 0.766 | - | 10,665 | 19,934 | 0.465 | |
R.300.100.1 | 300 | 13 | 13 | 13 | 0.000 | 37.352 | 13 | 13 | 0.000 | 35.012 | 13 | 13 | 0.000 | 205.731 | 13 | 13 | 0.000 | 56.4263 |
R.300.100.15 | 300 | [625, 12,903] | 660 | 6958 | 0.905 | - | 669 | 2259 | 0.704 | - | - | - | - | - | 811 | 2056 | 0.606 | - |
R.300.100.30 | 300 | [948, 3767] | 1008 | 6790 | 0.852 | - | 1102 | 3163 | 0.652 | - | - | - | - | - | 1157 | 2590 | 0.553 | - |
R.300.100.60 | 300 | [824, 3005] | 919 | 4732 | 0.806 | - | 949 | 1954 | 0.514 | - | - | - | - | - | 991 | 1865 | 0.469 | - |
R.300.1000.1 | 300 | 715 | 715 | 715 | 0.000 | 3187.049 | 715 | 715 | 0.000 | 64.683 | 715 | 715 | 0.000 | 257.074 | 715 | 715 | 0.000 | 71.6789 |
R.300.1000.15 | 300 | [7213, 112,424] | 7607 | 110,366 | 0.931 | - | 7832 | 24,047 | 0.674 | - | - | - | - | - | 8768 | 29,423 | 0.702 | - |
R.300.1000.30 | 300 | [10,385, 40,457] | 11,179 | 53,835 | 0.792 | - | 12,071 | 40,863 | 0.705 | - | - | - | - | - | 12,269 | 31,618 | 0.612 | - |
R.300.1000.60 | 300 | [9413, 30,655] | 10,180 | 38,212 | 0.734 | - | 10,275 | 25,323 | 0.594 | - | - | - | - | - | 10,408 | 21,623 | 0.519 | - |
R.400.100.1 | 400 | 6 | 6 | 376 | 0.984 | - | 6 | 6 | 0.000 | 995.137 | 6 | 6 | 0.000 | 726.057 | 6 | 6 | 0.000 | 97.3851 |
R.400.100.15 | 400 | [729, 47,117] | 781 | 35,044 | 0.978 | - | 856 | 22,767 | 0.962 | - | - | - | - | - | 963 | 3591 | 0.732 | - |
R.400.100.30 | 400 | [780, 7243] | 911 | 39,022 | 0.977 | - | 1010 | 26,438 | 0.962 | - | - | - | - | - | 1084 | 3061 | 0.646 | - |
R.400.100.60 | 400 | [731, 5545] | 837 | 3309 | 0.747 | - | 861 | 2652 | 0.675 | - | - | - | - | - | 966 | 2069 | 0.533 | - |
R.400.1000.1 | 400 | 780 | 780 | 780 | 0.000 | 161.021 | 780 | 780 | 0.000 | 124.990 | 780 | 780 | 0.000 | 208.525 | 780 | 780 | 0.000 | 90.9555 |
R.400.1000.15 | 400 | [7760, 501,543] | 8357 | 85,878 | 0.903 | - | 9083 | 85,878 | 0.894 | - | - | - | - | - | 9976 | 35,160 | 0.716 | - |
R.400.1000.30 | 400 | [10,076, 95,523] | 11,030 | 127,290 | 0.913 | - | 11,783 | 127,290 | 0.907 | - | - | - | - | - | 12,337 | 57,272 | 0.785 | - |
R.400.1000.60 | 400 | [8103, 55,950] | 9360 | 65,615 | 0.857 | - | 9877 | 36,662 | 0.731 | - | - | - | - | - | 9954 | 22,376 | 0.555 | - |
R.500.100.1 | 500 | 3 | 3 | 3 | 0.000 | 2157.743 | 3 | 3 | 0.000 | 1881.297 | 3 | 3 | 0.000 | 2333.235 | 3 | 3 | 0.000 | 112.086 |
R.500.100.15 | 500 | [924, 11,452] | 964 | 11,452 | 0.916 | - | 1018 | 11,452 | 0.911 | - | - | - | - | - | 1250 | 5508 | 0.773 | - |
R.500.100.30 | 500 | [773, 12,225] | 849 | 16,963 | 0.950 | - | 976 | 14,273 | 0.932 | - | - | - | - | - | 1099 | 4841 | 0.773 | - |
R.500.100.60 | 500 | [669, 8427] | 840 | 49,105 | 0.983 | - | 840 | 6357 | 0.868 | - | - | - | - | - | 931 | 2723 | 0.658 | - |
R.500.1000.1 | 500 | 297 | 297 | 297 | 0.000 | 97.473 | 297 | 297 | 0.000 | 85.459 | 297 | 297 | 0.000 | 85.281 | 297 | 297 | 0.000 | 77.4382 |
R.500.1000.15 | 500 | [8420, 107,776] | 8949 | 107,776 | 0.917 | - | 9461 | 107,776 | 0.912 | - | - | - | - | - | 10,628 | 45,356 | 0.766 | |
R.500.1000.30 | 500 | [10,431, 181,835] | 11,799 | 156,359 | 0.925 | - | 12,694 | 156,359 | 0.919 | - | - | - | - | - | 12,576 | 57,330 | 0.781 | |
R.500.1000.60 | 500 | [7094, 33,260] | 8233 | 112,466 | 0.927 | - | 8192 | 45,696 | 0.821 | - | - | - | - | - | 6559 | 20,465 | 0.680 | - |
R.600.100.1 | 600 | [1, 379] | 1 | 55 | 0.982 | - | 1 | 55 | 0.982 | - | 1 | 1 | 0.000 | 2710.470 | 1 | 1 | 0.000 | 2182.18 |
R.600.100.15 | 600 | [670, 5949] | 714 | 5931 | 0.880 | - | 845 | 4044 | 0.791 | - | - | - | - | - | 938 | 2443 | 0.616 | - |
R.600.100.30 | 600 | [873, 12,875] | 945 | 18,932 | 0.950 | - | 1099 | 18,932 | 0.942 | - | - | - | - | - | 740 | 6467 | 0.886 | - |
R.600.100.60 | 600 | [751, 7893] | 838 | 26,732 | 0.969 | - | 778 | 25,214 | 0.969 | - | - | - | - | - | 538 | 2494 | 0.784 | - |
R.600.1000.1 | 600 | 322 | 322 | 322 | 0.000 | 352.202 | 322 | 322 | 0.000 | 140.645 | 322 | 322 | 0.000 | 127.397 | 322 | 322 | 0.000 | 103.378 |
R.600.1000.15 | 600 | [10,181, 121,877] | 10,753 | 121,877 | 0.912 | - | 10,915 | 121,877 | 0.910 | - | - | - | - | - | 9401 | 65,039 | 0.855 | - |
R.600.1000.30 | 600 | [10,151, 151,010] | 11,352 | 190,145 | 0.940 | - | 12,431 | 190,145 | 0.935 | - | - | - | - | - | 9356 | 48,775 | 0.808 | - |
R.600.1000.60 | 600 | [7604, 87,770] | 7962 | 256,464 | 0.969 | - | 8162 | 75,269 | 0.892 | - | - | - | - | - | 6908 | 42,652 | 0.838 | - |
R.700.100.1 | 700 | 2 | - | - | - | - | - | - | - | - | 2 | 2 | 0.000 | 1649.486 | 2 | 2 | 0.000 | 619.22 |
R.700.100.15 | 700 | [799, 6561] | 815 | 14,478 | 0.944 | - | 972 | 5718 | 0.830 | - | - | - | - | - | 655 | 2759 | 0.763 | - |
R.700.100.30 | 700 | [762, 20,281] | 896 | 6960 | 0.871 | - | 983 | 4218 | 0.767 | - | - | - | - | - | 588 | 2531 | 0.768 | - |
R.700.100.60 | 700 | [516, 9030] | 538 | 7033 | 0.924 | - | 555 | 1854 | 0.701 | - | - | - | - | - | 383 | 1598 | 0.760 | - |
R.700.1000.1 | 700 | [611, 621] | 611 | 616 | 0.008 | - | 611 | 616 | 0.008 | - | 611 | 611 | 0.000 | 592.107 | 611 | 611 | 0.000 | 368.139 |
R.700.1000.15 | 700 | [4636, 147,321] | 4375 | 147,321 | 0.970 | - | 5136 | 7145 | 0.281 | - | - | - | - | - | 2787 | 6315 | 0.559 | - |
R.700.1000.30 | 700 | [4303, 50,000] | 4477 | 32,742 | 0.863 | - | 4827 | 6981 | 0.309 | - | - | - | - | - | 2658 | 6115 | 0.565 | - |
R.700.1000.60 | 700 | [2857, 15,579] | 2942 | 8534 | 0.655 | - | 2997 | 5842 | 0.487 | - | - | - | - | - | 1913 | 5357 | 0.643 | - |
Average | 0.689 | 912.416 | 0.577 | 372.097 | 0.268 | 797.801 | 0.492 | 319.698 |
MILP Solver | CP Solver | |||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Instance | Complete Model | Reduced Model | Complete Model | Reduced Model | ||||||||||||||
Name | Size | Best-Known [38] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] | LB | UB | Gap | Time [s] |
gsm.153.124 | 126 | [246, 313] | 257 | 312 | 0.176 | - | 269 | 311 | 0.135 | - | 278 | 317 | 0.123 | - | 280 | 311 | 0.100 | - |
gsm.444.350 | 353 | [2103, 2873] | 2294 | 4878 | 0.530 | - | 2405 | 4856 | 0.505 | - | - | - | - | - | 2456 | 4310 | 0.430 | - |
gsm.462.77 | 79 | [396, 488] | 402 | 478 | 0.159 | - | 402 | 477 | 0.157 | - | 419 | 474 | 0.116 | - | 418 | 465 | 0.101 | - |
jpeg.1483.25 | 27 | 87 | 87 | 87 | 0.000 | 26.041 | 87 | 87 | 0.000 | 18.556 | 87 | 87 | 0.000 | 1.194 | 87 | 87 | 0.000 | 1.071 |
jpeg.3184.107 | 109 | [489, 684] | 506 | 656 | 0.229 | - | 510 | 715 | 0.287 | - | 518 | 718 | 0.279 | - | 517 | 692 | 0.253 | - |
jpeg.3195.85 | 87 | [22, 25] | 17 | 25 | 0.320 | - | 17 | 25 | 0.320 | - | 23 | 25 | 0.080 | - | 22 | 25 | 0.120 | - |
jpeg.3198.93 | 95 | [172, 204] | 180 | 188 | 0.043 | - | 180 | 188 | 0.043 | - | 181 | 188 | 0.037 | - | 181 | 188 | 0.037 | - |
jpeg.3203.135 | 137 | [600, 750] | 602 | 980 | 0.386 | - | 618 | 751 | 0.177 | - | 629 | 913 | 0.311 | - | 626 | 750 | 0.165 | - |
jpeg.3740.15 | 17 | 33 | 33 | 33 | 0.000 | 1.523 | 33 | 33 | 0.000 | 0.839 | 33 | 33 | 0.000 | 0.157 | 33 | 33 | 0.000 | 0.095 |
jpeg.4154.36 | 38 | 90 | 90 | 90 | 0.000 | 556.798 | 90 | 90 | 0.000 | 60.924 | 90 | 90 | 0.000 | 1.272 | 90 | 90 | 0.000 | 1.764 |
jpeg.4753.54 | 56 | 164 | 164 | 164 | 0.000 | 2753.752 | 164 | 164 | 0.000 | 1790.269 | 164 | 164 | 0.000 | 15.342 | 164 | 164 | 0.000 | 16.877 |
susan.248.197 | 199 | [736, 1184] | 792 | 1978 | 0.600 | - | 802 | 1370 | 0.415 | - | 805 | 1361 | 0.409 | - | 780 | 1320 | 0.409 | - |
susan.260.158 | 160 | [564, 876] | 568 | 937 | 0.394 | - | 573 | 938 | 0.389 | - | 596 | 991 | 0.399 | - | 598 | 897 | 0.333 | - |
susan.343.182 | 184 | [591, 862] | 617 | 798 | 0.227 | - | 622 | 776 | 0.198 | - | 636 | 1043 | 0.390 | - | 632 | 792 | 0.202 | - |
typeset.10192.123 | 125 | [280, 415] | 274 | 429 | 0.361 | - | 282 | 379 | 0.256 | - | 293 | 385 | 0.239 | - | 292 | 387 | 0.245 | - |
typeset.10835.26 | 28 | [99, 112] | 99 | 111 | 0.108 | - | 100 | 112 | 0.107 | - | 110 | 111 | 0.009 | - | 109 | 111 | 0.018 | - |
typeset.12395.43 | 45 | [143, 146] | 140 | 146 | 0.041 | - | 141 | 146 | 0.034 | - | 146 | 146 | 0.000 | 2181.942 | 146 | 146 | 0.000 | 2780.121 |
typeset.15087.23 | 25 | 97 | 97 | 97 | 0.000 | 60.502 | 97 | 97 | 0.000 | 29.118 | 97 | 97 | 0.000 | 0.477 | 97 | 97 | 0.000 | 0.318 |
typeset.15577.36 | 38 | 125 | 125 | 125 | 0.000 | 286.210 | 125 | 125 | 0.000 | 43.164 | 125 | 125 | 0.000 | 2.116 | 125 | 125 | 0.000 | 1.713 |
typeset.16000.68 | 70 | [77, 80] | 66 | 81 | 0.185 | - | 66 | 80 | 0.175 | - | 79 | 80 | 0.013 | - | 71 | 80 | 0.113 | - |
typeset.1723.25 | 27 | 60 | 60 | 60 | 0.000 | 590.577 | 60 | 60 | 0.000 | 86.068 | 60 | 60 | 0.000 | 4.013 | 60 | 60 | 0.000 | 3.469 |
typeset.19972.246 | 248 | [1325, 1929] | 1422 | 3562 | 0.601 | - | 1452 | 2509 | 0.421 | - | 1519 | 2961 | 0.487 | - | 1525 | 2804 | 0.456 | - |
typeset.4391.240 | 242 | [1093, 1412] | 1108 | 2595 | 0.573 | - | 1137 | 2476 | 0.541 | - | 1149 | 2511 | 0.542 | - | 1154 | 1905 | 0.394 | - |
typeset.4597.45 | 47 | [150, 155] | 150 | 154 | 0.026 | - | 151 | 154 | 0.019 | - | 154 | 154 | 0.000 | 209.659 | 154 | 154 | 0.000 | 128.916 |
typeset.4724.433 | 435 | [2460, 3433] | - | - | - | - | 2673 | 6131 | 0.564 | - | - | - | - | - | 2679 | 7194 | 0.628 | - |
typeset.5797.33 | 35 | 113 | 113 | 113 | 0.000 | 851.490 | 113 | 113 | 0.000 | 28.504 | 113 | 113 | 0.000 | 0.547 | 113 | 113 | 0.000 | 0.574 |
typeset.5881.246 | 248 | [1305, 1700] | 1378 | 2258 | 0.390 | - | 1396 | 2426 | 0.425 | - | 1406 | 2385 | 0.410 | - | 1394 | 2084 | 0.331 | - |
Average | 0.206 | 640.862 | 0.191 | 257.180 | 0.154 | 241.672 | 0.161 | 293.492 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dell’Amico, M.; Jamal, J.; Montemanni, R. Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times. Algorithms 2024, 17, 12. https://doi.org/10.3390/a17010012
Dell’Amico M, Jamal J, Montemanni R. Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times. Algorithms. 2024; 17(1):12. https://doi.org/10.3390/a17010012
Chicago/Turabian StyleDell’Amico, Mauro, Jafar Jamal, and Roberto Montemanni. 2024. "Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times" Algorithms 17, no. 1: 12. https://doi.org/10.3390/a17010012
APA StyleDell’Amico, M., Jamal, J., & Montemanni, R. (2024). Compact Models to Solve the Precedence-Constrained Minimum-Cost Arborescence Problem with Waiting Times. Algorithms, 17(1), 12. https://doi.org/10.3390/a17010012