A New Approximation for the Perimeter of an Ellipse
Abstract
:1. Introduction
1.1. The Perimeter of the Ellipse
1.2. Ramanujan’s Approximations
1.3. Symbolic Regression and Learning from Data
1.4. Structure of the Paper
2. Materials and Methods
3. Results
3.1. A New Asymptotic Bound Leads to a More Accurate Approximation for High Eccentricity
3.2. Use of a Highly Accurate Padé Approximation Formula for Low Eccentricities
4. Comparative Results with Sýkora’s Curated Collection of Approximations
4.1. Keplerian Equations
4.2. Keplerian Padè Equations
4.3. Exact Extremes (No Crossing) Equations
4.4. Combined Padè Equations with Exact Extremes (No Crossing)
4.5. Exact Extremes and Crossing Equations
4.6. Algebraic Equations
4.7. All S-Class Equations
4.8. A Detailed Comparison of Results with the Best Performers in the S-Class of Sýkora’s Collection
5. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sykora, S. Approximations of Ellipse Perimeters and of the Complete Elliptic Integral E(x). Review of known formulae. In Stan’s Library; Extra Byte: Castano Primo, Italy, 2005. [Google Scholar] [CrossRef]
- Nemes, G. A historic comment on ellipse perimeter approximations. In Stan’s Library; Extra Byte: Castano Primo, Italy, 2005. [Google Scholar] [CrossRef]
- Barnard, R.W.; Pearce, K.; Schovanec, L. Inequalities for the Perimeter of an Ellipse. J. Math. Anal. Appl. 2001, 260, 295–306. [Google Scholar] [CrossRef]
- Tomkys, H. Formula for the Perimeter of an Ellipse. Nature 1902, 65, 563. [Google Scholar] [CrossRef]
- Muir, T. Formula for the Perimeter of an Ellipse. Nature 1902, 66, 174–175. [Google Scholar] [CrossRef]
- Rogers, R. Perimeter of an Ellipse. Nature 1920, 105, 8. [Google Scholar] [CrossRef]
- Ramanujan, S. Modular equations and approximations to π. Q. J. Math. Oxf. 1914, 45, 350–372. [Google Scholar]
- Villarino, M.B. A note on the accuracy of Ramanujan’s approximative formula for the perimeter of an ellipse. J. Inequal. Pure Appl. Math. 2006, 7, 21. [Google Scholar]
- Wang, Y.; Yao, Q.; Kwok, J.T.; Ni, L.M. Generalizing from a few examples: A survey on few-shot learning. ACM Comput. Surv. 2021, 53, 63. [Google Scholar] [CrossRef]
- Lu, J.; Gong, P.; Ye, J.; Zhang, C. A survey on machine learning from few samples. Pattern Recognit. 2023, 139, 109480. [Google Scholar] [CrossRef]
- TuringBot. Documentation for TuringBot: Symbolic Regression Software. 2024. Available online: https://turingbotsoftware.com/documentation.html (accessed on 12 September 2024).
- Villarino, M.B. Ramanujan’s inverse elliptic arc approximation. Ramanujan J. 2014, 34, 157–161. [Google Scholar] [CrossRef]
- Grosser, M. The Discovery of Neptune; Harvard University Press: Cambridge, MA, USA, 1962. [Google Scholar]
- Lyttleton, R.A. A short method for the discovery of Neptune. Mon. Not. R. Astron. Soc. 1958, 118, 551–559. [Google Scholar] [CrossRef]
- Michaud, E.J.; Liu, Z.; Tegmark, M. Precision Machine Learning. Entropy 2023, 25, 175. [Google Scholar] [CrossRef]
- Sun, H.; Moscato, P. A Memetic Algorithm for Symbolic Regression. In Proceedings of the 2019 IEEE Congress on Evolutionary Computation (CEC), Wellington, New Zealand, 10–13 June 2019; pp. 2167–2174. [Google Scholar] [CrossRef]
- Moscato, P.; Ciezak, A.; Noman, N. Dynamic depth for analytic continued fraction regression. In Proceedings of the 2023 Annual Conference on Genetic and Evolutionary Computation, Lisbon, Portugal, 15–19 July 2023; pp. 520–528. [Google Scholar] [CrossRef]
a | Equation (2) Err | Equation (5) Err | Equation (8) Err | Equation (9) Err | Equation (12) Err |
---|---|---|---|---|---|
1.05 | 1.707 | 2.793 | 1.707 | ||
1.15 | 6.296 | 2.284 | 6.296 | ||
1.25 | 6.679 | 5.784 | 6.679 | ||
1.35 | 1.268 | 1.037 | 1.268 | ||
1.05 | 1.707 | 2.793 | 1.707 | ||
1.15 | 6.296 | 2.284 | 6.296 | ||
1.25 | 6.679 | 5.784 | 6.679 | ||
1.35 | 1.268 | 1.037 | 1.268 | ||
1.45 | 1.049 | 1.574 | 1.049 | 3.516 | |
1.55 | 5.328 | 2.166 | 5.328 | 3.422 | |
1.65 | 1.966 | 2.794 | 1.966 | 2.130 | |
1.75 | 5.799 | 3.445 | 5.796 | 9.684 | |
1.85 | 1.450 | 4.109 | 1.448 | 3.493 | |
1.95 | 3.193 | 4.778 | 3.186 | 1.056 | |
2 | 4.560 | 5.112 | 4.546 | 1.738 | |
3 | 3.298 | 1.122 | 3.107 | 6.960 | |
4 | 2.499 | 1.584 | 2.009 | 1.180 | |
5 | 8.514 | 1.923 | 5.339 | 6.511 | |
6 | 1.965 | 2.175 | 8.884 | 2.081 | |
7 | 3.629 | 2.363 | 1.080 | 4.867 | |
8 | 5.821 | 2.506 | 9.776 | 9.345 | |
9 | 8.487 | 2.614 | 5.271 | 1.570 | |
10 | 1.156 | 2.695 | 2.684 | 2.398 | |
11 | 1.497 | 2.756 | 1.371 | 3.415 | |
12 | 1.865 | 2.800 | 2.728 | 4.610 | |
13 | 2.254 | 2.831 | 4.281 | 5.968 | |
14 | 2.660 | 2.852 | 5.977 | 7.471 | |
15 | 3.078 | 2.864 | 7.768 | 9.104 | |
16 | 3.504 | 2.869 | 9.615 | 1.085 | |
17 | 3.935 | 2.869 | 1.148 | 1.269 | |
18 | 4.370 | 2.864 | 1.335 | 1.461 | |
19 | 4.805 | 2.855 | 1.519 | 1.660 | |
20 | 5.239 | 2.843 | 1.699 | 1.864 | |
21 | 5.671 | 2.829 | 1.874 | 2.072 | |
22 | 6.100 | 2.812 | 2.044 | 2.284 | |
23 | 6.524 | 2.794 | 2.206 | 2.499 | |
24 | 6.943 | 2.775 | 2.362 | 2.715 | |
25 | 7.356 | 2.754 | 2.511 | 2.932 | |
26 | 7.763 | 2.733 | 2.652 | 3.150 | |
27 | 8.164 | 2.710 | 2.787 | 3.367 | |
28 | 8.558 | 2.688 | 2.914 | 3.585 | |
29 | 8.945 | 2.665 | 3.035 | 3.801 | |
30 | 9.325 | 2.641 | 3.149 | 4.016 | |
40 | 1.274 | 2.407 | 3.976 | 6.060 | |
50 | 1.554 | 2.194 | 4.395 | 7.852 | |
60 | 1.783 | 2.009 | 4.578 | 9.393 | |
70 | 1.974 | 1.851 | 4.626 | 1.072 | |
80 | 2.134 | 1.714 | 4.595 | 1.186 | |
90 | 2.271 | 1.596 | 4.521 | 1.285 | |
100 | 2.390 | 1.493 | 4.421 | 1.372 | |
500 | 3.572 | 4.225 | 1.780 | 2.295 | |
1000 | 3.784 | 2.249 | 1.004 | 2.470 | |
10,000 | 3.998 | 2.422 | 1.158 | 2.649 | |
100,000 | 4.023 | 2.453 | 1.577 | 2.671 | |
1,000,000,000 | 4.023 | 2.454 | 3.957 | 2.671 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Moscato, P.; Ciezak, A. A New Approximation for the Perimeter of an Ellipse. Algorithms 2024, 17, 464. https://doi.org/10.3390/a17100464
Moscato P, Ciezak A. A New Approximation for the Perimeter of an Ellipse. Algorithms. 2024; 17(10):464. https://doi.org/10.3390/a17100464
Chicago/Turabian StyleMoscato, Pablo, and Andrew Ciezak. 2024. "A New Approximation for the Perimeter of an Ellipse" Algorithms 17, no. 10: 464. https://doi.org/10.3390/a17100464
APA StyleMoscato, P., & Ciezak, A. (2024). A New Approximation for the Perimeter of an Ellipse. Algorithms, 17(10), 464. https://doi.org/10.3390/a17100464