An Innovative Enhanced JAYA Algorithm for the Optimization of Continuous and Discrete Problems
Abstract
:1. Introduction
2. Literature Survey
- The proposed approach is based on modifying the JAYA algorithm, which results in improved search capability, faster convergence, and higher-quality solutions.
- To address continuous problems, the proposed approach is evaluated across 20 widely recognized benchmark functions. The results obtained from these benchmark functions are compared to those achieved by other existing algorithms, including the grasshopper optimization algorithm (GOA), dragonfly algorithm (DA), moth–flame optimization (MFO), and others.
- Feature selection is also considered as a discrete problem. The proposed method is then applied to solve this problem, and its findings are compared to other algorithms in the literature, such as the genetic algorithm, particle swarm optimization algorithm, etc.
3. Research Methodology (Proposed Algorithm)
3.1. Standard Version of JAYA Algorithm
3.1.1. First Step: Setting the Parameters
3.1.2. Second Step: Stochastically Generating Individuals
3.1.3. Third Step: Applying Solutions’ Position
3.1.4. Fourth Step: Computing Fitness
3.1.5. Fifth Step: Assessment Solution
3.1.6. Sixth Step: Terminating the Algorithm
Algorithm 1: Conventional JAYA |
|
3.2. Modified JAYA Algorithm
3.2.1. Setting the Parameters
3.2.2. Stochastically Generating Individuals
3.2.3. Applying Solutions’ Position
3.2.4. Computing Fitness
3.2.5. Assessment Solution
3.2.6. Terminating the Algorithm
Algorithm 2: The Proposed Approach (EJAYA) |
|
Algorithm 3: The Binary Version of Proposed Approach (BEJAYA) |
|
4. Results and Discussion
4.1. Numerical Evaluation
- SCA tuning: r1 linearly reduces from 2 to 0.
- DA tuning: The inertia weight (w) is set to decrease linearly from 0.9 to 0.5 over the maximum number of iterations. The enemy distraction weight (e) decreases linearly from 0.1 to 0.1 divided by (MI × 0.5), where MI represents a specific factor. The separation weight (s) is determined by multiplying 2 by a random value and e. Similarly, the alignment weight (a), cohesion weight (c), and food attraction weight (f) are calculated by multiplying 2 by random values.
- GOA tuning: The parameter c is adjusted using the formula c = cMax − l × ((cMax − cMin)/MI), where cMax is set to 1 and cMin is set to 0.00004.
- MFO tuning: Linearly reduces from −1 to −2.
- PSO tuning: Inertia factor (w) = 0.2, while the c1 and c2 = 2.
- CSA tuning: The awareness probability (AP) is set to 0.1 and the flight length (fl) is set to 1.5.
- JAYA tuning: It is updated via the best and worst members.
- EJAYA tuning: AW = 0.3 and a = 3. It is notable that we run the EJAYA for different values of the mentioned parameters and then compare the objective functions. From the comparisons, the algorithm found the better solution (minimum objective function) under these parameters.
4.2. Feature Selection
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Abdelmalek, S.; Dali, A.; Bettayeb, M.; Bakdi, A. A New Effective Robust Nonlinear Controller Based on PSO for Interleaved DC–DC Boost Converters for Fuel Cell Voltage Regulation. Soft Comput. 2020, 24, 17051–17064. [Google Scholar] [CrossRef]
- Sun, N.; Lu, Y. A Self-Adaptive Genetic Algorithm with Improved Mutation Mode Based on Measurement of Population Diversity. Neural Comput. Appl. 2019, 31, 1435–1443. [Google Scholar] [CrossRef]
- Behera, R.K.; Naik, D.; Rath, S.K.; Dharavath, R. Genetic Algorithm-Based Community Detection in Large-Scale Social Networks. Neural Comput. Appl. 2020, 32, 9649–9665. [Google Scholar] [CrossRef]
- Cui, L.; Li, G.; Zhu, Z.; Wen, Z.; Lu, N.; Lu, J. A Novel Differential Evolution Algorithm with a Self-Adaptation Parameter Control Method by Differential Evolution. Soft Comput. 2018, 22, 6171–6190. [Google Scholar] [CrossRef]
- Wang, S.; Li, Y.; Yang, H. Self-Adaptive Mutation Differential Evolution Algorithm Based on Particle Swarm Optimization. Appl. Soft Comput. J. 2019, 81, 105496. [Google Scholar] [CrossRef]
- Emami, H.; Sharifi, A.A. A Novel Bio-Inspired Optimization Algorithm for Solving Peak-to-Average Power Ratio Problem in DC-Biased Optical Systems. Opt. Fiber Technol. 2020, 60, 102383. [Google Scholar] [CrossRef]
- Wu, J.; Wang, Y.G.; Burrage, K.; Tian, Y.C.; Lawson, B.; Ding, Z. An Improved Firefly Algorithm for Global Continuous Optimization Problems. Expert Syst. Appl. 2020, 149, 113340. [Google Scholar] [CrossRef]
- Tian, M.; Bo, Y.; Chen, Z.; Wu, P.; Yue, C. Multi-Target Tracking Method Based on Improved Firefly Algorithm Optimized Particle Filter. Neurocomputing 2019, 359, 438–448. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey Wolf Optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Bogar, E.; Beyhan, S. Adolescent Identity Search Algorithm (AISA): A Novel Metaheuristic Approach for Solving Optimization Problems. Appl. Soft Comput. J. 2020, 95, 106503. [Google Scholar] [CrossRef]
- Arora, S.; Singh, S. Butterfly Optimization Algorithm: A Novel Approach for Global Optimization. Soft Comput. 2019, 23, 715–734. [Google Scholar] [CrossRef]
- Soltani, P.; Hadavandi, E. A Monarch Butterfly Optimization-Based Neural Network Simulator for Prediction of Siro-Spun Yarn Tenacity. Soft Comput. 2019, 23, 10521–10535. [Google Scholar] [CrossRef]
- Mirjalili, S. The Ant Lion Optimizer. Adv. Eng. Softw. 2015, 83, 80–98. [Google Scholar] [CrossRef]
- Feng, Z.K.; Niu, W.J.; Liu, S. Cooperation Search Algorithm: A Novel Metaheuristic Evolutionary Intelligence Algorithm for Numerical Optimization and Engineering Optimization Problems. Appl. Soft Comput. J. 2020, 98, 106734. [Google Scholar] [CrossRef]
- Faramarzi, A.; Heidarinejad, M.; Stephens, B.; Mirjalili, S. Equilibrium Optimizer: A Novel Optimization Algorithm. Knowledge-Based Syst. 2020, 191, 105190. [Google Scholar] [CrossRef]
- Askarzadeh, A. A Novel Metaheuristic Method for Solving Constrained Engineering Optimization Problems: Crow Search Algorithm. Comput. Struct. 2016, 169, 1–12. [Google Scholar] [CrossRef]
- Pakzad-Moghaddam, S.H.; Mina, H.; Mostafazadeh, P. A Novel Optimization Booster Algorithm. Comput. Ind. Eng. 2019, 136, 591–613. [Google Scholar] [CrossRef]
- Hashim, F.A.; Houssein, E.H.; Hussain, K.; Mabrouk, M.S.; Al-Atabany, W. Honey Badger Algorithm: New Metaheuristic Algorithm for Solving Optimization Problems. Math. Comput. Simul. 2022, 192, 84–110. [Google Scholar] [CrossRef]
- Abdollahzadeh, B.; Gharehchopogh, F.S.; Mirjalili, S. African Vultures Optimization Algorithm: A New Nature-Inspired Metaheuristic Algorithm for Global Optimization Problems. Comput. Ind. Eng. 2021, 158, 107408. [Google Scholar] [CrossRef]
- Moazzeni, A.R.; Khamehchi, E. Rain Optimization Algorithm (ROA): A New Metaheuristic Method for Drilling Optimization Solutions. J. Pet. Sci. Eng. 2020, 195, 107512. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A New Bio-Inspired Based Metaheuristic Paradigm for Global Optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Kallioras, N.A.; Lagaros, N.D.; Avtzis, D.N. Pity Beetle Algorithm—A New Metaheuristic Inspired by the Behavior of Bark Beetles. Adv. Eng. Softw. 2018, 121, 147–166. [Google Scholar] [CrossRef]
- Zhang, J.; Xiao, M.; Gao, L.; Pan, Q. Queuing Search Algorithm: A Novel Metaheuristic Algorithm for Solving Engineering Optimization Problems. Appl. Math. Model. 2018, 63, 464–490. [Google Scholar] [CrossRef]
- Song, B.; Wang, Z.; Zou, L. An Improved PSO Algorithm for Smooth Path Planning of Mobile Robots Using Continuous High-Degree Bezier Curve. Appl. Soft Comput. 2021, 100, 106960. [Google Scholar] [CrossRef]
- Pekel, E. Solving Technician Routing and Scheduling Problem Using Improved Particle Swarm Optimization. Soft Comput. 2020, 24, 19007–19015. [Google Scholar] [CrossRef]
- Deng, W.; Yao, R.; Zhao, H.; Yang, X.; Li, G. A Novel Intelligent Diagnosis Method Using Optimal LS-SVM with Improved PSO Algorithm. Soft Comput. 2019, 23, 2445–2462. [Google Scholar] [CrossRef]
- Fan, L.; Chen, H.; Gao, Y. An Improved Flower Pollination Algorithm to the Urban Transit Routing Problem. Soft Comput. 2020, 24, 5043–5052. [Google Scholar] [CrossRef]
- Yan, C.; Li, M.; Liu, W. Prediction of Bank Telephone Marketing Results Based on Improved Whale Algorithms Optimizing S_Kohonen Network. Appl. Soft Comput. J. 2020, 92, 106259. [Google Scholar] [CrossRef]
- Zhang, Z.; Mao, L.; Guan, C.; Zhu, L.; Wang, Y. An Improved Scatter Search Algorithm for the Corridor Allocation Problem Considering Corridor Width. Soft Comput. 2020, 24, 461–481. [Google Scholar] [CrossRef]
- Alaei, M.; Khorsand, R.; Ramezanpour, M. An Adaptive Fault Detector Strategy for Scientific Workflow Scheduling Based on Improved Differential Evolution Algorithm in Cloud. Appl. Soft Comput. 2020, 99, 106895. [Google Scholar] [CrossRef]
- Liu, L.; Luo, S.; Guo, F.; Tan, S. Multi-Point Shortest Path Planning Based on an Improved Discrete Bat Algorithm. Appl. Soft Comput. J. 2020, 95, 106498. [Google Scholar] [CrossRef]
- Ouaddah, A.; Boughaci, D. Harmony Search Algorithm for Image Reconstruction from Projections. Appl. Soft Comput. J. 2016, 46, 924–935. [Google Scholar] [CrossRef]
- Gholami, J.; Pourpanah, F.; Wang, X. Feature Selection Based on Improved Binary Global Harmony Search for Data Classification. Appl. Soft Comput. J. 2020, 93, 106402. [Google Scholar] [CrossRef]
- Ouyang, H.; Wu, W.; Zhang, C.; Li, S.; Zou, D.; Liu, G. Improved Harmony Search with General Iteration Models for Engineering Design Optimization Problems. Soft Comput. 2019, 23, 10225–10260. [Google Scholar] [CrossRef]
- Gholami, J.; Ghany, K.K.A.; Zawbaa, H.M. A Novel Global Harmony Search Algorithm for Solving Numerical Optimizations. Soft Comput. 2020, 25, 2837–2849. [Google Scholar] [CrossRef]
- Tian, M.; Bo, Y.; Chen, Z.; Wu, P.; Yue, C. A New Improved Firefly Clustering Algorithm for SMC-PHD Filter. Appl. Soft Comput. J. 2019, 85, 105840. [Google Scholar] [CrossRef]
- Sinha, A.K.; Anand, A. Optimizing Supply Chain Network for Perishable Products Using Improved Bacteria Foraging Algorithm. Appl. Soft Comput. J. 2020, 86, 105921. [Google Scholar] [CrossRef]
- Chang, T.; Kong, D.; Hao, N.; Xu, K.; Yang, G. Solving the Dynamic Weapon Target Assignment Problem by an Improved Artificial Bee Colony Algorithm with Heuristic Factor Initialization. Appl. Soft Comput. J. 2018, 70, 845–863. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, H.; Gao, K. An Evacuation Simulation Method Based on an Improved Artificial Bee Colony Algorithm and a Social Force Model. Appl. Intell. 2020, 51, 100–123. [Google Scholar] [CrossRef]
- Hakli, H.; Kiran, M.S. An Improved Artificial Bee Colony Algorithm for Balancing Local and Global Search Behaviors in Continuous Optimization. Int. J. Mach. Learn. Cybern. 2020, 11, 2051–2076. [Google Scholar] [CrossRef]
- Shao, G.; Shangguan, Y.; Tao, J.; Zheng, J.; Liu, T.; Wen, Y. An Improved Genetic Algorithm for Structural Optimization of Au–Ag Bimetallic Nanoparticles. Appl. Soft Comput. J. 2018, 73, 39–49. [Google Scholar] [CrossRef]
- Wang, R.L.; Okazaki, K. An Improved Genetic Algorithm with Conditional Genetic Operators and Its Application to Set-Covering Problem. Soft Comput. 2007, 11, 687–694. [Google Scholar] [CrossRef]
- Zhao, Z.; Liu, B.; Zhang, C.; Liu, H. An Improved Adaptive NSGA-II with Multi-Population Algorithm. Appl. Intell. 2019, 49, 569–580. [Google Scholar] [CrossRef]
- Morales-Castañeda, B.; Zaldívar, D.; Cuevas, E.; Maciel-Castillo, O.; Aranguren, I.; Fausto, F. An Improved Simulated Annealing Algorithm Based on Ancient Metallurgy Techniques. Appl. Soft Comput. J. 2019, 84, 105761. [Google Scholar] [CrossRef]
- Li, Y.; Wang, C.; Gao, L.; Song, Y.; Li, X. An Improved Simulated Annealing Algorithm Based on Residual Network for Permutation Flow Shop Scheduling. Complex Intell. Syst. 2020, 7, 1173–1183. [Google Scholar] [CrossRef]
- El-Ashmawi, W.H.; Elminaam, D.S.A. A Modified Squirrel Search Algorithm Based on Improved Best Fit Heuristic and Operator Strategy for Bin Packing Problem. Appl. Soft Comput. J. 2019, 82, 105565. [Google Scholar] [CrossRef]
- Zhang, T.; Yue, Q.; Zhao, X.; Liu, G. An Improved Firework Algorithm for Hardware/Software Partitioning. Appl. Intell. 2019, 49, 950–962. [Google Scholar] [CrossRef]
- Sankhwar, S.; Gupta, D.; Ramya, K.C.; Sheeba Rani, S.; Shankar, K.; Lakshmanaprabu, S.K. Improved Grey Wolf Optimization-Based Feature Subset Selection with Fuzzy Neural Classifier for Financial Crisis Prediction. Soft Comput. 2020, 24, 101–110. [Google Scholar] [CrossRef]
- Rizk-Allah, R.M. An Improved Sine–Cosine Algorithm Based on Orthogonal Parallel Information for Global Optimization. Soft Comput. 2019, 23, 7135–7161. [Google Scholar] [CrossRef]
- Venkata Rao, R. Jaya: A Simple and New Optimization Algorithm for Solving Constrained and Unconstrained Optimization Problems. Int. J. Ind. Eng. Comput. 2016, 7, 19–34. [Google Scholar] [CrossRef]
- Rao, R.V.; Saroj, A. An Elitism-Based Self-Adaptive Multi-Population Jaya Algorithm and Its Applications. Soft Comput. 2019, 23, 4383–4406. [Google Scholar] [CrossRef]
- Leghari, Z.H.; Hassan, M.Y.; Said, D.M.; Jumani, T.A.; Memon, Z.A. A Novel Grid-Oriented Dynamic Weight Parameter Based Improved Variant of Jaya Algorithm. Adv. Eng. Softw. 2020, 150, 102904. [Google Scholar] [CrossRef]
- Ding, Z.; Li, J.; Hao, H. Structural Damage Identification Using Improved Jaya Algorithm Based on Sparse Regularization and Bayesian Inference. Mech. Syst. Signal Process. 2019, 132, 211–231. [Google Scholar] [CrossRef]
- Gholami, K.; Olfat, H.; Gholami, J. An Intelligent Hybrid JAYA and Crow Search Algorithms for Optimizing Constrained and Unconstrained Problems. Soft Comput. 2021, 25, 14393–14411. [Google Scholar] [CrossRef]
- Luu, T.V.; Nguyen, N.S. Parameters Extraction of Solar Cells Using Modified JAYA Algorithm. Optik 2020, 203, 164034. [Google Scholar] [CrossRef]
- Fan, J.; Shen, W.; Gao, L.; Zhang, C.; Zhang, Z. A Hybrid Jaya Algorithm for Solving Flexible Job Shop Scheduling Problem Considering Multiple Critical Paths. J. Manuf. Syst. 2021, 60, 298–311. [Google Scholar] [CrossRef]
- Aslan, M.; Gunduz, M.; Kiran, M.S. JayaX: Jaya Algorithm with Xor Operator for Binary Optimization. Appl. Soft Comput. J. 2019, 82, 105576. [Google Scholar] [CrossRef]
- Rao, R.V.; More, K.C. Design Optimization and Analysis of Selected Thermal Devices Using Self-Adaptive Jaya Algorithm. Energy Convers. Manag. 2017, 140, 24–35. [Google Scholar] [CrossRef]
- Ravipudi, J.L.; Neebha, M. Synthesis of Linear Antenna Arrays Using Jaya, Self-Adaptive Jaya and Chaotic Jaya Algorithms. AEU—Int. J. Electron. Commun. 2018, 92, 54–63. [Google Scholar] [CrossRef]
- Raut, U.; Mishra, S. An Improved Elitist–Jaya Algorithm for Simultaneous Network Reconfiguration and DG Allocation in Power Distribution Systems. Renew. Energy Focus 2019, 30, 92–106. [Google Scholar] [CrossRef]
- Rao, R.V.; Saroj, A.; Bhattacharyya, S. Design Optimization of Heat Pipes Using Elitism-Based Self-Adaptive Multipopulation Jaya Algorithm. J. Thermophys. Heat Transf. 2018, 32, 702–712. [Google Scholar] [CrossRef]
- Jian, X.; Cao, Y. A Chaotic Second Order Oscillation JAYA Algorithm for Parameter Extraction of Photovoltaic Models. Photonics 2022, 9, 131. [Google Scholar] [CrossRef]
- Son, N.N.; Chinh, T.M.; Anh, H.P.H. Uncertain Nonlinear System Identification Using Jaya-Based Adaptive Neural Network. Soft Comput. 2020, 24, 17123–17132. [Google Scholar] [CrossRef]
- Rao, R.V. Rao Algorithms: Three Metaphor-Less Simple Algorithms for Solving Optimization Problems. Int. J. Ind. Eng. Comput. 2020, 11, 107–130. [Google Scholar] [CrossRef]
- Chaudhuri, A. Search Space Division Method for Wrapper Feature Selection on High-Dimensional Data Classification. Knowledge-Based Syst. 2024, 291, 111578. [Google Scholar] [CrossRef]
- Sharma, P.; Raju, S. Metaheuristic Optimization Algorithms: A Comprehensive Overview and Classification of Benchmark Test Functions. Soft Comput. 2024, 28, 3123–3186. [Google Scholar] [CrossRef]
- Wang, D.; Tan, D.; Liu, L. Particle Swarm Optimization Algorithm: An Overview. Soft Comput. 2018, 22, 387–408. [Google Scholar] [CrossRef]
- Mirjalili, S. Dragonfly Algorithm: A New Meta-Heuristic Optimization Technique for Solving Single-Objective, Discrete, and Multi-Objective Problems. Neural Comput. Appl. 2016, 27, 1053–1073. [Google Scholar] [CrossRef]
- Saremi, S.; Mirjalili, S.; Lewis, A. Grasshopper Optimisation Algorithm: Theory and Application. Adv. Eng. Softw. 2017, 105, 30–47. [Google Scholar] [CrossRef]
- Mirjalili, S. Moth-Flame Optimization Algorithm: A Novel Nature-Inspired Heuristic Paradigm. Knowledge-Based Syst. 2015, 89, 228–249. [Google Scholar] [CrossRef]
- Mirjalili, S. SCA: A Sine Cosine Algorithm for Solving Optimization Problems. Knowledge-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Gholami, J.; Mardukhi, F.; Zawbaa, H.M. An Improved Crow Search Algorithm for Solving Numerical Optimization Functions. Soft Comput. 2021, 25, 9441–9454. [Google Scholar] [CrossRef]
- Mafarja, M.M.; Mirjalili, S. Hybrid Whale Optimization Algorithm with Simulated Annealing for Feature Selection. Neurocomputing 2017, 260, 302–312. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Turky, R.A.; Alghuwainem, S.; Tostado-Véliz, M.; Jurado, F. Circle Search Algorithm: A Geometry-Based Metaheuristic Optimization Algorithm. Mathematics 2022, 10, 1626. [Google Scholar] [CrossRef]
- Pierezan, J.; Dos Santos Coelho, L. Coyote Optimization Algorithm: A New Metaheuristic for Global Optimization Problems. In Proceedings of the 2018 IEEE Congress on Evolutionary Computation (CEC), Rio de Janeiro, Brazil, 8–13 July 2018. [Google Scholar] [CrossRef]
- Carrasco, J.; García, S.; Rueda, M.M.; Das, S.; Herrera, F. Recent Trends in the Use of Statistical Tests for Comparing Swarm and Evolutionary Computing Algorithms: Practical Guidelines and a Critical Review. Swarm Evol. Comput. 2020, 54, 100665. [Google Scholar] [CrossRef]
- Derrac, J.; García, S.; Hui, S.; Suganthan, P.N.; Herrera, F. Analyzing Convergence Performance of Evolutionary Algorithms: A Statistical Approach. Inf. Sci. 2014, 289, 41–58. [Google Scholar] [CrossRef]
- da Silva, L.S.A.; Lúcio, Y.L.S.; dos Santos Coelho, L.; Mariani, V.C.; Rao, R.V. A Comprehensive Review on Jaya Optimization Algorithm. Artif. Intell. Rev. 2023, 56, 4329–4361. [Google Scholar] [CrossRef]
Test Function | Iteration | Dimension | Range |
---|---|---|---|
1000 | 30 | [−100, 100] | |
1000 | 30 | [−10, 10] | |
1000 | 30 | [−4.5, 4.5] | |
1000 | 30 | [−100, 100] | |
1000 | 30 | [−30, 30] | |
1000 | 30 | [−100, 100] | |
1000 | 30 | [−1.28, 1.28] | |
1000 | 30 | [−10, 10] | |
1000 | 30 | [−10, 10] | |
1000 | 30 | [−32, 32] | |
1000 | 30 | [−600, 600] | |
1000 | 30 | [−50, 50] | |
1000 | 30 | [−50, 50] | |
1000 | 30 | [−10, 10] | |
1000 | 30 | [−1, 1] | |
1000 | 30 | [−100, 100] | |
1000 | 30 | [−1, 1] | |
1000 | 30 | [−100, 100] | |
1000 | 30 | ||
1000 | 30 | [−100, 100] |
Function | Algorithm | Mean | STD | Worst | Best |
---|---|---|---|---|---|
F1 | SCA | 1.03246E−02 | 2.21581E−02 | 4.99561E−02 | 4.70286E−05 |
DA | 7.11906E+02 | 3.98958E+02 | 1.17339E+03 | 2.35173E+02 | |
GOA | 4.37911E 00 | 2.77415E+00 | 8.76370E+00 | 2.02460E+00 | |
MFO | 2.00224E+03 | 4.47089E+03 | 1.00000E+04 | 1.55478E−02 | |
PSO | 9.26402E−09 | 1.56966E−08 | 3.68461E−08 | 1.69501E−11 | |
CSA | 8.15910E−02 | 3.91503E−02 | 1.34609E−01 | 5.01376E−02 | |
JAYA | 1.67017E−04 | 7.75324E−05 | 2.40270E−04 | 5.68884E−05 | |
EJAYA | 4.51194E−52 | 5.40138E−52 | 1.33419E−51 | 4.30324E−54 | |
F2 | SCA | 1.66467E−05 | 2.84255E−05 | 6.62285E−05 | 3.21435E−07 |
DA | 1.25115E+01 | 4.74389E+00 | 1.84707E+01 | 5.28163E+00 | |
GOA | 4.87563E+00 | 3.68567E+00 | 1.11171E+01 | 1.98699E+00 | |
MFO | 8.00000E+03 | 8.36660E+03 | 2.00000E+04 | 5.23906E−03 | |
PSO | 5.41294E−04 | 6.34133E−04 | 1.60348E−03 | 7.37568E−06 | |
CSA | 3.78993E+00 | 1.64683E+00 | 5.37818E+00 | 1.57713E+00 | |
JAYA | 4.80091E−03 | 1.41672E−03 | 6.55615E−03 | 2.68801E−03 | |
EJAYA | 2.05072E−33 | 3.80692E−33 | 8.84524E−33 | 1.04480E−35 | |
F3 | SCA | 1.56908E−04 | 2.71951E−04 | 6.40716E−04 | 7.97609E−06 |
DA | 3.16037E−05 | 5.17153E−05 | 1.20071E−04 | 1.12308E−08 | |
GOA | 1.52414E−01 | 3.40808E−01 | 7.62070E−01 | 3.31072E−15 | |
MFO | 4.00004E+03 | 5.47723E+03 | 1.00001E+04 | 1.40428E−02 | |
PSO | 9.13802E−02 | 2.04332E−01 | 4.56901E−01 | 0.00000E+00 | |
CSA | 4.46483E−29 | 6.23888E−29 | 1.52669E−28 | 5.54668E−31 | |
JAYA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
EJAYA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
F4 | SCA | 2.07301E+01 | 5.63654E+00 | 2.88824E+01 | 1.30543E+01 |
DA | 2.48837E+01 | 1.09484E+01 | 4.00000E+01 | 1.16565E+01 | |
GOA | 1.08496E+01 | 3.61725E+00 | 1.63163E+01 | 8.20644E+00 | |
MFO | 2.00007E+03 | 4.47212E+03 | 1.00000E+04 | 3.10525E−03 | |
PSO | 4.25763E−01 | 1.67833E−01 | 6.65839E−01 | 2.62136E−01 | |
CSA | 7.75578E+00 | 2.16753E+00 | 9.96141E+00 | 5.23108E+00 | |
JAYA | 6.84824E+00 | 1.48590E+00 | 8.79045E+00 | 4.99795E+00 | |
EJAYA | 3.61570E−05 | 6.60817E−05 | 1.53172E−04 | 4.33560E−08 | |
F5 | SCA | 3.18710E+02 | 4.81347E+02 | 1.15414E+03 | 2.83299E+01 |
DA | 1.98429E+05 | 1.16600E+05 | 3.96126E+05 | 1.09284E+05 | |
GOA | 3.36730E+03 | 3.58249E+03 | 8.65663E+03 | 1.73102E+02 | |
MFO | 6.00002E+03 | 8.94426E+03 | 2.00000E+04 | 2.06509E−02 | |
PSO | 7.99993E+01 | 3.47184E+01 | 1.14977E+02 | 2.56017E+01 | |
CSA | 7.54176E+01 | 3.79232E+01 | 1.23610E+02 | 3.56602E+01 | |
JAYA | 7.66403E+01 | 6.16420E+01 | 1.63148E+02 | 1.36139E+01 | |
EJAYA | 4.01170E+01 | 3.68858E+01 | 1.06099E+02 | 2.33569E+01 | |
F6 | SCA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 |
DA | 4.96992E−10 | 8.02601E−10 | 1.84421E−09 | 0.00000E+00 | |
GOA | 2.44249E−15 | 1.44755E−15 | 3.99680E−15 | 2.22045E−16 | |
MFO | 4.00002E+03 | 5.47722E+03 | 1.00000E+04 | 5.82894E−03 | |
PSO | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
CSA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
JAYA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
EJAYA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 |
Function | Algorithm | Mean | STD | Worst | Best |
---|---|---|---|---|---|
F7 | SCA | 4.80880E−02 | 3.63449E−02 | 1.09292E−01 | 1.27893E−02 |
DA | 3.38066E−01 | 1.98080E−01 | 5.66407E−01 | 1.41424E−01 | |
GOA | 2.16150E−02 | 1.07270E−02 | 3.66619E−02 | 9.20112E−03 | |
MFO | 2.00009E+03 | 4.47209E+03 | 1.00000E+04 | 7.58884E−03 | |
PSO | 6.16951E−02 | 2.78374E−02 | 1.06271E−01 | 3.43940E−02 | |
CSA | 4.86380E−02 | 1.51938E−02 | 6.31833E−02 | 2.79767E−02 | |
JAYA | 7.59642E−02 | 3.91281E−02 | 1.39709E−01 | 3.96932E−02 | |
EJAYA | 5.22059E−03 | 2.49125E−03 | 8.46121E−03 | 2.67151E−03 | |
F8 | SCA | 2.08951E+00 | 7.27978E−02 | 2.16510E+00 | 1.98118E+00 |
DA | 8.91103E+00 | 4.03396E+00 | 1.36540E+01 | 3.94314E+00 | |
GOA | 2.08458E+01 | 8.52657E+00 | 3.39048E+01 | 1.08618E+01 | |
MFO | 1.99721E−02 | 2.00586E−02 | 5.14874E−02 | 1.15134E−03 | |
PSO | 1.81730E−01 | 2.48844E−01 | 4.54324E−01 | 1.41313E−09 | |
CSA | 2.41661E+00 | 1.14717E+00 | 3.56754E+00 | 9.53489E−01 | |
JAYA | 2.30841E+00 | 1.58824E+00 | 4.63521E+00 | 9.08648E−01 | |
EJAYA | 7.01740E−01 | 2.13049E−01 | 9.38772E−01 | 4.69613E−01 | |
F9 | SCA | 9.10575E−04 | 8.84160E−04 | 2.47096E−03 | 3.83725E−04 |
DA | 1.83618E−04 | 3.84288E−04 | 8.70693E−04 | 8.51019E−07 | |
GOA | 2.24691E−12 | 3.54081E−12 | 8.40632E−12 | 4.53539E−14 | |
MFO | 8.00003E+03 | 4.47212E+03 | 1.00001E+04 | 5.10610E−02 | |
PSO | 1.34978E−31 | 0.00000E+00 | 1.34978E−31 | 1.34978E−31 | |
CSA | 3.22994E−28 | 3.18425E−28 | 8.05694E−28 | 6.08306E−29 | |
JAYA | 1.34978E−31 | 0.00000E+00 | 1.34978E−31 | 1.34978E−31 | |
EJAYA | 1.34978E−31 | 0.00000E+00 | 1.34978E−31 | 1.34978E−31 | |
F10 | SCA | 1.41044E+01 | 9.07295E+00 | 2.03084E+01 | 1.88488E−02 |
DA | 9.33009E+00 | 1.40125E+00 | 1.08356E+01 | 7.67650E+00 | |
GOA | 4.63716E+00 | 1.36267E+00 | 6.54250E+00 | 3.04090E+00 | |
MFO | 4.00001E+03 | 5.47722E+03 | 1.00000E+04 | 6.47865E−03 | |
PSO | 1.84941E−04 | 2.07915E−04 | 4.31328E−04 | 9.85355E−06 | |
CSA | 4.42033E+00 | 4.32812E−01 | 4.96195E+00 | 3.89060E+00 | |
JAYA | 3.99985E+00 | 8.92096E+00 | 1.99581E+01 | 7.47414E−03 | |
EJAYA | 7.99361E−15 | 0.00000E+00 | 7.99361E−15 | 7.99361E−15 | |
F11 | SCA | 2.67656E−01 | 2.61150E−01 | 5.40061E−01 | 1.06340E−03 |
DA | 1.16399E+01 | 4.54763E+00 | 1.72099E+01 | 6.25351E+00 | |
GOA | 8.62586E−01 | 1.13266E−01 | 1.00433E+00 | 7.25621E−01 | |
MFO | 2.00006E+03 | 4.47211E+03 | 1.00000E+04 | 1.05132E−02 | |
PSO | 7.87895E−03 | 8.05111E−03 | 1.72263E−02 | 7.31268E−11 | |
CSA | 3.51615E−01 | 1.13874E−01 | 4.57751E−01 | 2.22855E−01 | |
JAYA | 8.08963E−02 | 1.26610E−01 | 3.03887E−01 | 5.41900E−04 | |
EJAYA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
F12 | SCA | 2.42008E+02 | 5.36482E+02 | 1.20169E+03 | 6.33283E−01 |
DA | 5.15708E+01 | 4.82337E+01 | 1.30150E+02 | 3.91676E+00 | |
GOA | 6.92309E+00 | 9.24018E−01 | 8.30938E+00 | 6.02632E+00 | |
MFO | 6.00004E+03 | 8.94432E+03 | 2.00001E+04 | 2.13515E−03 | |
PSO | 2.07338E−02 | 4.63622E−02 | 1.03669E−01 | 2.84415E−12 | |
CSA | 5.38686E+00 | 1.52415E+00 | 6.90146E+00 | 2.97901E+00 | |
JAYA | 8.02845E+00 | 3.70934E+00 | 1.43468E+01 | 4.95010E+00 | |
EJAYA | 5.85022E−02 | 3.06103E−02 | 1.06179E−01 | 2.41507E−02 |
Function | Algorithm | Mean | STD | Worst | Best |
---|---|---|---|---|---|
F13 | SCA | 2.18862E+00 | 1.08652E+00 | 2.98211E+00 | 9.98054E−01 |
DA | 3.17541E+00 | 1.62401E+00 | 4.95049E+00 | 9.98004E−01 | |
GOA | 9.98004E−01 | 2.00148E−16 | 9.98004E−01 | 9.98004E−01 | |
MFO | 2.04105E+03 | 4.45009E+03 | 1.00000E+04 | 6.82542E−03 | |
PSO | 3.76477E+00 | 2.01645E+00 | 5.92885E+00 | 1.99203E+00 | |
CSA | 9.98004E−01 | 0.00000E+00 | 9.98004E−01 | 9.98004E−01 | |
JAYA | 9.98455E−01 | 7.86438E−04 | 9.99822E−01 | 9.98004E−01 | |
EJAYA | 9.98004E−01 | 2.71948E−16 | 9.98004E−01 | 9.98004E−01 | |
F14 | SCA | 4.00116E+01 | 4.78411E+01 | 1.19870E+02 | 1.23403E+00 |
DA | 1.85503E+03 | 1.55822E+03 | 4.35763E+03 | 2.88031E+02 | |
GOA | 1.77073E+00 | 2.99038E+00 | 7.02426E+00 | 5.84282E−03 | |
MFO | 6.00002E+03 | 8.94427E+03 | 2.00000E+04 | 1.22123E−02 | |
PSO | 1.03821E−02 | 1.61032E−02 | 3.82335E−02 | 6.80767E−04 | |
CSA | 3.61472E−01 | 1.90615E−01 | 5.70487E−01 | 1.44379E−01 | |
JAYA | 6.06570E−01 | 6.68239E−01 | 1.53341E+00 | 1.31801E−03 | |
EJAYA | 4.99191E−04 | 2.28724E−04 | 8.08109E−04 | 2.63417E−04 | |
F15 | SCA | 7.14393E−01 | 1.55307E+00 | 3.49250E+00 | 4.10077E−03 |
DA | 1.56568E+01 | 8.10350E+00 | 2.48120E+01 | 6.28732E+00 | |
GOA | 7.89100E+00 | 3.77821E+00 | 1.38955E+01 | 4.12501E+00 | |
MFO | 6.00005E+03 | 8.94427E+03 | 2.00000E+04 | 6.34759E−03 | |
PSO | 6.02316E−04 | 1.01510E−03 | 2.41332E−03 | 4.86309E−05 | |
CSA | 1.55546E+00 | 1.38591E+00 | 3.93547E+00 | 6.87757E−01 | |
JAYA | 7.20921E+00 | 8.28920E+00 | 2.02500E+01 | 2.75554E−01 | |
EJAYA | 1.24909E−08 | 2.79305E−08 | 6.24544E−08 | 3.69422E−31 | |
F16 | SCA | 3.07360E+00 | 4.81821E+00 | 1.10442E+01 | 6.16382E−03 |
DA | 2.10898E+07 | 1.38457E+07 | 4.32807E+07 | 1.04843E+07 | |
GOA | 8.44624E+06 | 5.85351E+06 | 1.67968E+07 | 1.04565E+06 | |
MFO | 1.00000E+04 | 7.07106E+03 | 2.00000E+04 | 3.94652E−02 | |
PSO | 4.11067E−04 | 6.21091E−04 | 1.49353E−03 | 1.74388E−06 | |
CSA | 1.89219E+06 | 5.04692E+05 | 2.41621E+06 | 1.11103E+06 | |
JAYA | 2.39280E+01 | 4.74185E+01 | 1.08578E+02 | 2.48714E−01 | |
EJAYA | 2.35507E−50 | 3.86420E−50 | 9.19815E−50 | 1.42800E−52 | |
F17 | SCA | 2.01648E−01 | 1.16116E+00 | 1.34264E+00 | −1.04745E+00 |
DA | 7.64331E+02 | 7.72456E+02 | 2.10686E+03 | 2.13861E+02 | |
GOA | 7.06963E+00 | 7.54351E+00 | 1.99448E+01 | 2.12165E−01 | |
MFO | 4.00002E+03 | 5.47721E+03 | 1.00000E+04 | 1.61671E−02 | |
PSO | −1.00752E+00 | 2.60779E−01 | −5.41030E−01 | −1.12500E+00 | |
CSA | 2.20753E+00 | 2.86786E+00 | 7.21599E+00 | 3.35290E−02 | |
JAYA | −1.09034E+00 | 1.92613E−02 | −1.05758E+00 | −1.10662E+00 | |
EJAYA | −1.12500E+00 | 1.48667E−06 | −1.12500E+00 | −1.12500E+00 | |
F18 | SCA | 1.44106E−04 | 1.15066E−04 | 2.60150E−04 | 3.83455E−07 |
DA | 1.63188E+02 | 9.89062E+01 | 2.76239E+02 | 3.26153E+01 | |
GOA | 1.57916E+00 | 1.93039E+00 | 4.88053E+00 | 5.46532E−02 | |
MFO | 4.00002E+03 | 5.47721E+03 | 1.00000E+04 | 2.25808E−03 | |
PSO | 7.19291E−07 | 9.89483E−07 | 2.03067E−06 | 7.13614E−10 | |
CSA | 1.03218E+00 | 5.14330E−01 | 1.73690E+00 | 4.04716E−01 | |
JAYA | 2.51463E−05 | 1.45855E−05 | 4.44227E−05 | 1.14162E−05 | |
EJAYA | 1.45987E−53 | 1.60395E−53 | 3.99903E−53 | 1.27040E−54 | |
F19 | SCA | 3.89447E+02 | 4.41530E+02 | 7.01655E+02 | 7.72382E+01 |
DA | 7.64813E+04 | 4.62739E+04 | 1.09202E+05 | 4.37607E+04 | |
GOA | 2.01840E+03 | 1.15525E+03 | 2.83529E+03 | 1.20152E+03 | |
MFO | 5.00000E+03 | 7.07106E+03 | 1.00000E+04 | 5.75507E−03 | |
PSO | 1.60102E+02 | 2.00487E+02 | 3.01868E+02 | 1.83363E+01 | |
CSA | 5.09682E+02 | 2.18121E+02 | 6.63916E+02 | 3.55447E+02 | |
JAYA | 2.37153E+05 | 2.84377E+05 | 4.38238E+05 | 3.60687E+04 | |
EJAYA | 1.60948E+01 | 2.13564E+00 | 1.76049E+01 | 1.45847E+01 | |
F20 | SCA | 3.46460E−08 | 4.59083E−09 | 3.78922E−08 | 3.13998E−08 |
DA | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
GOA | 3.39673E−12 | 4.72614E−12 | 6.73861E−12 | 5.48450E−14 | |
MFO | 5.00004E+03 | 7.07102E+03 | 1.00000E+04 | 7.49789E−02 | |
PSO | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | 0.00000E+00 | |
CSA | 1.11599E−08 | 1.57825E−08 | 2.23199E−08 | 1.09912E−14 | |
JAYA | 8.92734E−10 | 9.63121E−10 | 1.57376E−09 | 2.11705E−10 | |
EJAYA | 1.73648E−09 | 2.39446E−09 | 3.42962E−09 | 4.33438E−11 |
Dataset | No. of Features | No. of Samples |
---|---|---|
Breast cancer | 9 | 699 |
Breast EW | 30 | 569 |
Congress EW | 16 | 453 |
Exactly | 13 | 1000 |
Exactly2 | 13 | 1000 |
HeartEW | 13 | 270 |
Ionosphere EW | 34 | 351 |
Krvskp EW | 36 | 3196 |
Lymphography | 18 | 148 |
M-of-n | 13 | 1000 |
Penglung EW | 325 | 73 |
Sonar EW | 60 | 208 |
Spect EW | 22 | 267 |
Tic-tac-toe | 9 | 958 |
Vote | 16 | 300 |
Waveform EW | 40 | 5000 |
Wine EW | 13 | 178 |
Zoo | 16 | 101 |
Dataset | WOASAT-2 | ALO | GA | PSO | FULL | EJAYA |
---|---|---|---|---|---|---|
Breast cancer | 0.97 | 0.96 | 0.96 | 0.95 | 0.94 | 0.98 |
Breast EW | 0.98 | 0.93 | 0.94 | 0.94 | 0.96 | 0.97 |
Congress EW | 0.98 | 0.93 | 0.94 | 0.94 | 0.92 | 0.99 |
Exactly | 1.00 | 0.66 | 0.67 | 0.68 | 0.67 | 1.00 |
Exactly2 | 0.75 | 0.75 | 0.76 | 0.75 | 0.74 | 0.76 |
Heart EW | 0.85 | 0.83 | 0.82 | 0.78 | 0.82 | 0.86 |
Ionosphere EW | 0.96 | 0.87 | 0.83 | 0.84 | 0.87 | 0.96 |
Krvskp EW | 0.98 | 0.96 | 0.92 | 0.94 | 0.92 | 0.98 |
Lymphography | 0.89 | 0.79 | 0.71 | 0.69 | 0.68 | 0.90 |
M-of-n | 1.00 | 0.86 | 0.93 | 0.86 | 0.85 | 1.00 |
Penglung EW | 0.94 | 0.63 | 0.70 | 0.72 | 0.66 | 1.00 |
Sonar EW | 0.97 | 0.74 | 0.73 | 0.74 | 0.62 | 0.99 |
Spect EW | 0.88 | 0.80 | 0.78 | 0.77 | 0.83 | 0.88 |
Tic-tac-toe | 0.79 | 0.73 | 0.71 | 0.73 | 0.72 | 0.80 |
Vote | 0.97 | 0.92 | 0.89 | 0.89 | 0.88 | 0.97 |
Waveform EW | 0.76 | 0.77 | 0.77 | 0.76 | 0.77 | 0.78 |
Wine EW | 0.99 | 0.91 | 0.93 | 0.95 | 0.93 | 1.00 |
Zoo | 0.97 | 0.91 | 0.88 | 0.83 | 0.79 | 1.00 |
Average | 0.92 | 0.83 | 0.83 | 0.82 | 0.81 | 0.93 |
Dataset | WOASAT-2 | ALO | GA | PSO | FULL | EJAYA |
---|---|---|---|---|---|---|
Breast cancer | 4.2 | 6.28 | 5.09 | 5.72 | 5.4 | 6 |
Breast EW | 11.6 | 16.08 | 16.35 | 16.56 | 14 | 14 |
Congress EW | 6.4 | 6.98 | 6.62 | 6.83 | 7.8 | 6.2 |
Exactly | 6 | 6.62 | 10.82 | 9.75 | 7 | 6 |
Exactly2 | 2.8 | 10.7 | 6.18 | 6.18 | 7.2 | 1.6 |
Hear tEW | 5.4 | 10.31 | 9.49 | 7.94 | 6.8 | 7.3 |
Ionosphere EW | 12.8 | 9.42 | 17.31 | 19.18 | 14.6 | 10.2 |
Krvskp EW | 18.4 | 24.7 | 22.43 | 20.81 | 19.4 | 11.8 |
Lymphography | 7.2 | 11.05 | 11.05 | 8.98 | 10.8 | 7.2 |
M-of-n | 6 | 11.08 | 6.83 | 9.04 | 7.6 | 6 |
Penglung EW | 127.4 | 164.13 | 177.13 | 178.75 | 141.2 | 124.1 |
Sonar EW | 26.4 | 37.92 | 33.3 | 31.2 | 29.2 | 19 |
Spect EW | 9.4 | 16.15 | 11.75 | 12.5 | 11.4 | 8.7 |
Tic-tac-toe | 6 | 6.99 | 6.85 | 6.61 | 6.6 | 6 |
Vote | 5.2 | 9.52 | 6.62 | 8.8 | 6.8 | 3.1 |
Waveform EW | 20.6 | 35.72 | 25.28 | 22.72 | 19 | 14.5 |
Wine EW | 6.4 | 10.7 | 8.63 | 8.36 | 6.2 | 4.3 |
Zoo | 5.6 | 13.97 | 10.11 | 9.74 | 7.4 | 6.8 |
Average | 15.98 | 22.68 | 21.76 | 21.64 | 18.24 | 14.60 |
Functions | SCA | DA | GOA | MFO | PSO | CSA | JAYA | EJAYA |
---|---|---|---|---|---|---|---|---|
F1 | 3 | 8 | 7 | 5 | 2 | 6 | 4 | 1 |
F2 | 2 | 8 | 7 | 5 | 3 | 6 | 4 | 1 |
F3 | 7 | 6 | 5 | 8 | 2 | 4 | 2 | 2 |
F4 | 8 | 7 | 6 | 2 | 3 | 5 | 4 | 1 |
F5 | 5 | 8 | 7 | 1 | 4 | 6 | 2 | 3 |
F6 | 3.5 | 3.5 | 7 | 8 | 3.5 | 3.5 | 3.5 | 3.5 |
F7 | 4 | 8 | 3 | 2 | 6 | 5 | 7 | 1 |
F8 | 6 | 7 | 8 | 2 | 1 | 5 | 4 | 3 |
F9 | 7 | 6 | 5 | 8 | 2 | 4 | 2 | 2 |
F10 | 5 | 8 | 6 | 3 | 2 | 7 | 4 | 1 |
F11 | 4 | 8 | 7 | 5 | 2 | 6 | 3 | 1 |
F12 | 4 | 6 | 8 | 2 | 1 | 5 | 7 | 3 |
F13 | 7 | 4 | 4 | 1 | 8 | 4 | 4 | 4 |
F14 | 7 | 8 | 4 | 5 | 2 | 6 | 3 | 1 |
F15 | 3 | 8 | 7 | 4 | 2 | 6 | 5 | 1 |
F16 | 3 | 8 | 6 | 4 | 2 | 7 | 5 | 1 |
F17 | 4 | 8 | 7 | 5 | 1.5 | 6 | 3 | 1.5 |
F18 | 3 | 8 | 6 | 5 | 2 | 7 | 4 | 1 |
F19 | 4 | 8 | 6 | 1 | 3 | 5 | 7 | 2 |
F20 | 7 | 1.5 | 4 | 8 | 1.5 | 3 | 6 | 5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bairooz, J.J.; Mardukhi, F. An Innovative Enhanced JAYA Algorithm for the Optimization of Continuous and Discrete Problems. Algorithms 2024, 17, 472. https://doi.org/10.3390/a17110472
Bairooz JJ, Mardukhi F. An Innovative Enhanced JAYA Algorithm for the Optimization of Continuous and Discrete Problems. Algorithms. 2024; 17(11):472. https://doi.org/10.3390/a17110472
Chicago/Turabian StyleBairooz, Jalal Jabbar, and Farhad Mardukhi. 2024. "An Innovative Enhanced JAYA Algorithm for the Optimization of Continuous and Discrete Problems" Algorithms 17, no. 11: 472. https://doi.org/10.3390/a17110472
APA StyleBairooz, J. J., & Mardukhi, F. (2024). An Innovative Enhanced JAYA Algorithm for the Optimization of Continuous and Discrete Problems. Algorithms, 17(11), 472. https://doi.org/10.3390/a17110472