PIPET: A Pipeline to Generate PET Phantom Datasets for Reconstruction Based on Convolutional Neural Network Training
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pipeline and Phantom Definition
- Select the type and the number of phantoms to generate.
- Generate the 3D voxelized activity map and attenuation map for the phantoms; the tuning of the parameters for each phantom are selected at random within the ranges defined for each phantom during generation.
- Move the generated phantoms to a CPU cluster to run the simulations for each generated phantom.
- For each phantom, join the data files of the simulation, extract the global coordinates, correct the DOI, and transform the data into list mode.
- Convert the list-mode data into CASToR format and reconstruct them by using iterative methods.
2.2. Phantom Generation
2.2.1. NEMA-like Phantom
- Randomly select the main cylinder’s parameters and the number of secondary cylinders based on the ranges defined in Table 2.
- Split the main cylinder into sectors, considering the number of secondary cylinders. In addition, calculate the maximum radius contained in a circular sector.
- Randomly select the parameters of the secondary cylinders based on the ranges defined in Table 2.
- Create an empty array with the dimensions of the generated phantom image.
- Iterate through the array considering the voxelized coordinates of the main and secondary cylinders to assign an activity value, assigning the highest activity values to the secondary cylinders.
2.2.2. Jaszczak-like Phantom
- Randomly select the main cylinder’s parameters and the number of secondary spheres based on the ranges defined in Table 3.
- Split the main cylinder into sectors, considering the number of secondary spheres. In addition, calculate the maximum radius contained in a circular sector.
- Randomly select the parameters of the secondary cylinders based on the ranges defined in Table 3.
- Create an empty array with the dimensions of the generated phantom image.
- Iterate through the array considering the voxelized coordinates of the main cylinder and secondary spheres to assign an activity value, assigning the highest activity values to the spheres.
2.2.3. Derenzo-like Phantom
- Randomly select the main cylinder’s parameters and the number of sectors into which to split the main cylinder based on the ranges defined in Table 4.
- Calculate the triangular number progression, considering the number of sectors, and assign the value to the number of cylinders that each sector will contain.
- Assign the radius of each cylinder, considering the number of cylinders to fit in each sector.
- Create an empty array with the dimensions of the generated phantom image.
- Iterate through the array considering the voxelized coordinates of the main cylinder and secondary spheres to assign an activity value, assigning the highest activity values to the cylinders.
2.2.4. Shepp–Logan-like Phantom
- Define the major and minor axis ranges for each ellipse, avoiding overlap between the different secondary geometry ellipses based on the ranges defined in Table 5.
- Calculate the voxelized coordinates of each ellipse.
- Create an empty array with the dimensions of the generated phantom image.
- Iterate through the array considering the voxelized coordinates of the main ellipse and secondary ellipses to assign an activity value.
2.3. PET Acquisition Simulation
2.3.1. Data Processing
2.3.2. Reconstruction
2.3.3. Evaluation
- is the pixel sample mean of x.
- is the pixel sample mean of y.
- is the variance of x.
- is the variance of y.
- is the covariance of x and y.
- and are two variables to stabilize the division with a weak denominator.
- L is the dynamic range of the pixel values (typically, this is .
- , and by default.
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
PET | Positron Emission Tomography |
CNN | convolutional neural network |
FDG | fluorodeoxyglucose F18 |
CERN | Conseil Européen pour la Recherche Nucléaire |
GATE | GEANT4 Application for Tomographic Emission |
FOV | Field of View |
MLEM | Maximum Likelihood Estimation Maximization |
DOI | Depth of Interaction |
SSIM | Structural Similarity Index |
FID | Fréchet Inception Distance |
References
- Miele, E.; Spinelli, G.P.; Tomao, F.; Zullo, A.; De Marinis, F.; Pasciuti, G.; Rossi, L.; Zoratto, F.; Tomao, S. Positron Emission Tomography (PET) radiotracers in oncology–Utility of 18F-Fluoro-deoxy-glucose (FDG)-PET in the management of patients with non-small-cell lung cancer (NSCLC). J. Exp. Clin. Cancer Res. 2008, 27, 52. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Zernin, J. Clinical applications of FDG-PET in oncology. Acta Med. Aust. 2002, 29, 162–170. [Google Scholar] [CrossRef] [PubMed]
- National Electrical Manufacturers Association. Performance Measurements of Small Animal Positron Emission Tomographs (NEMA NU 4-2008); National Electrical Manufacturers Association: Rosslyn, VA, USA, 2008. [Google Scholar]
- National Electrical Manufacturers Association. Performance Measurements of Positron Emission Tomographs (NEMA NU 2-2012); National Electrical Manufacturers Association: Rosslyn, VA, USA, 2012. [Google Scholar]
- National Electrical Manufacturers Association. Performance Measurements of Positron Emission Tomographs (NEMA NU 2-2018); National Electrical Manufacturers Association: Rosslyn, VA, USA, 2018. [Google Scholar]
- Radon, J. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. Akad. Der Wiss. 1917, 69, 262–277. [Google Scholar]
- Kak, C.; Slaney, M. Principles of Computerized Tomographic Imaging; IEEE Press: New York, NY, USA, 1988. [Google Scholar]
- Lange, K.; Carson, R. EM reconstruction algorithms for emission and transmission tomography. J. Comput. Assist. Tomogr. 1984, 8, 306–316. [Google Scholar] [PubMed]
- Hudson, H.M.; Larkin, R.S. Accelerated image reconstruction using ordered subsets of projection data. IEEE Trans. Med. Imaging 1994, 13, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Li, T.; Zhang, X.; Qi, W.; Asma, E.; Qi, J. Anatomically aided PET image reconstruction using deep neural networks. Med. Phys. 2021, 48, 5244–5258. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Häggström, I.; Schmidtlein, C.R.; Campanella, G.; Fuchs, T.J. DeepPET: A deep encoder-decoder network for directly solving the PET image reconstruction inverse problem. Med. Image Anal. 2019, 54, 253–262. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Clark, K.; Vendt, B.; Smith, K.; Freymann, J.; Kirby, J.; Koppel, P.; Moore, S.; Phillips, S.; Maffitt, D.; Pringle, M.; et al. The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository. J. Digit. Imaging 2013, 26, 1045–1057. [Google Scholar] [CrossRef]
- Jan, S.; Santin, G.; Strul, D.; Staelens, S.; Assié, K.; Autret, D.; Avner, S.; Barbier, R.; Bardiès, M.; Bloomfield, P.M.; et al. GATE: A simulation toolkit for PET and SPECT. Phys. Med. Biol. 2004, 49, 4543–4561. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Kalaitzidis, P.; Gustafsson, J.; Hindorf, C.; Ljungberg, M. Validation of a computational chain from PET Monte Carlo simulations to reconstructed images. Heliyon 2022, 8, e09316. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Lorduy-Alós, M.; de Andrade, P.H.A.; Peña-Acosta, M.M.; Gallardo, S.; Verdú, G. PET image reconstruction and dosimetry from voxelized phantoms with GATE. Radiat. Phys. Chem. 2024, 222, 111833. [Google Scholar] [CrossRef]
- Salvadori, J.; Labour, J.; Odille, F.; Marie, P.Y.; Badel, J.N.; Imbert, L.; Sarrut, D. Monte Carlo simulation of digital photon counting PET. EJNMMI Phys. 2020, 7, 23. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Zhang, H.; Bian, Z.; Ma, J.; Feng, Q.; Chen, W. Validation of a Monte Carlo simulation of the Inveon PET scanner using GATE. Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers Detect. Assoc. Equip. 2016, 828, 170–175. [Google Scholar] [CrossRef]
- Sanz-Sanchez, A.; García, F.B.; Mesas-Lafarga, P.; Prats-Climent, J.; Rodríguez-Álvarez, M.J. A. Book of Abstracts of the Conference Mathematical Modelling in Engineering & Human Behaviour (MME&HB2024); Universitat Politècnica de València: València, Spain, 2024; pp. 84–90. ISBN 978-84-09-57681-4. [Google Scholar]
- Van Rossum, G.; Drake, F.L. Python 3 Reference Manual; CreateSpace: Scotts Valley, CA, USA, 2009. [Google Scholar]
- Berthon, B.; Häggström, I.; Apte, A.; Beattie, B.J.; Kirov, A.S.; Humm, J.L.; Marshall, C.; Spezi, E.; Larsson, A.; Schmidtlein, C.R. PETSTEP: Generation of synthetic PET lesions for fast evaluation of segmentation methods. Phys. Medica 2015, 31, 969–980. [Google Scholar] [CrossRef]
- Sarrut, D.; Arbor, N.; Baudier, T.; Borys, D.; Etxebeste, A.; Fuchs, H.; Gajewski, J.; Grevillot, L.; Jan, S.; Kagadis, G.C.; et al. The OpenGATE ecosystem for Monte Carlo simulation in medical physics. Phys. Med. Biol. 2022, 67, 18. [Google Scholar] [CrossRef] [PubMed]
- Freire, M.; Echegoyen, S.; Vidal, L.F.; Valladares, C.; González-Montoro, A.; Vergara, M. Using Neural Networks for Impact Position Estimation in a PET Prototype Based on Glued Monolithic Crystals. In Proceedings of the 2021 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), Piscataway, NJ, USA, 16–23 October 2021; pp. 1–4. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT—An Object Oriented Data Analysis Framework. Nucl. Inst. Meth. in Phys. Res. A 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Merlin, T.; Stute, S.; Benoit, D.; Bert, J.; Carlier, T.; Comtat, C.; Filipovic, M.; Lamare, F.; Visvikis, D. CASToR: A generic data organization and processing code framework for multi-modal and multi-dimensional tomographic reconstruction. Phys. Med. Biol. 2018, 63, 185005. [Google Scholar] [CrossRef] [PubMed]
- Brock, A.; Donahue, J.; Simonyan, K. Large Scale GAN Training for High Fidelity Natural Image Synthesis. arXiv 2019, arXiv:1809.11096. [Google Scholar]
- Heusel, M.; Ramsauer, H.; Unterthiner, T.; Nessler, B.; Hochreiter, S. GANs Trained by a Two Time-Scale Update Rule Converge to a Local Nash Equilibrium. arXiv 2018, arXiv:1706.08500. [Google Scholar]
- Metropolis, N.; Ulam, S. The Monte Carlo Method. J. Am. Stat. Assoc. 1949, 44, 335–341. [Google Scholar] [CrossRef]
- Muraro, S.; Battistoni, G.; Kraan, A.C. Challenges in Monte Carlo Simulations as Clinical and Research Tool in Particle Therapy: A Review. Front. Phys. 2020, 8, 567800. [Google Scholar] [CrossRef]
- Shiri, I.; Sheikhzadeh, P.; Ay, M.R. Deep-Fill: Deep Learning Based Sinogram Domain Gap Filling in Positron Emission Tomography. arXiv 2019, arXiv:1906.07168. [Google Scholar]
- Cruz, N.R.R.d.; Fisac, J.E.O.; Kontaxakis, G. Deep Learning methodologies for brain image reconstruction in Positron Emission Tomography. In Proceedings of the XL Congreso Anual de la Sociedad Española de Ingeniería Biomédica, Valladolid, Spain, 23–25 November 2022; pp. 337–340, ISBN 978-84-09-45972-8. [Google Scholar]
- Whiteley, W.; Luk, W.K.; Gregor, J. DirectPET: Full-size neural network PET reconstruction from sinogram data. J. Med. Imaging 2020, 7, 032503. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Sanaat, A.; Akhavanalaf, A.; Shiri, I.; Salimi, Y.; Arabi, H.; Zaidi, H. Deep-TOF-PET: Deep learning-guided generation of time-of-flight from non-TOF brain PET images in the image and projection domains. Hum. Brain Mapp. 2022, 43, 5032–5043. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Phantom Name | Main Geometry | Secondary Geometry | Number of Secondary Geometries |
---|---|---|---|
NEMA | Cylinder | Cylinder | 6 |
Jaszczak | Cylinder | Sphere | 6 |
Derenzo | Cylinder | Cylinder | 116 |
Shepp–Logan | Ellipse | Ellipse | 10 |
Phantom Name | Main Geometry | Parameter | Tunable | Range | Secondary Geometry | Parameter | Tunable | Range |
---|---|---|---|---|---|---|---|---|
NEMA | Cylinder | Radius (mm) | Yes | 30–60 | Cylinder | Radius (mm) | Yes | Depends on number of geometries |
Height (mm) | Yes | 20–50 | Height (mm) | No | ||||
Number | Yes | 3–8 |
Phantom Name | Main Geometry | Parameter | Tunable | Range | Secondary Geometry | Parameter | Tunable | Range |
---|---|---|---|---|---|---|---|---|
Jaszczak | Cylinder | Radius (mm) | Yes | 30–60 | Sphere | Radius (mm) | Yes | Depends on number of geometries |
Height (mm) | Yes | 20–50 | Height (mm) | No | ||||
Number | Yes | 3–8 |
Phantom Name | Main Geometry | Parameter | Tunable | Range | Secondary Geometry | Parameter | Tunable | Range |
---|---|---|---|---|---|---|---|---|
Derenzo | Cylinder | Radius (mm) | Yes | 40–60 | Cylinder | Radius (mm) | Yes | Depends on number of geometries |
Height (mm) | Yes | 20–50 | Height (mm) | No | ||||
Number | Yes | 3–7 |
Phantom Name | Main Geometry | Parameter | Tunable | Secondary Geometry | Parameter | Tunable |
---|---|---|---|---|---|---|
Shepp–Logan | Ellipse | Major axis | Yes | Ellipse | Major axis | Yes |
Minor axis | Yes | Minor axis | Yes | |||
Number | Yes |
Phantom | Mean SSIM |
---|---|
NEMA | 0.851 |
Jaczaczk | 0.934 |
Derenzo | 0.879 |
Shepp–Logan | 0.487 |
Phantom | FID Score |
---|---|
NEMA | 0.056 |
Jaczaczk | 0.484 |
Derenzo | 0.061 |
Shepp–Logan | 0.529 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sanz-Sanchez, A.; García, F.B.; Mesas-Lafarga, P.; Prats-Climent, J.; Rodríguez-Álvarez, M.J. PIPET: A Pipeline to Generate PET Phantom Datasets for Reconstruction Based on Convolutional Neural Network Training. Algorithms 2024, 17, 511. https://doi.org/10.3390/a17110511
Sanz-Sanchez A, García FB, Mesas-Lafarga P, Prats-Climent J, Rodríguez-Álvarez MJ. PIPET: A Pipeline to Generate PET Phantom Datasets for Reconstruction Based on Convolutional Neural Network Training. Algorithms. 2024; 17(11):511. https://doi.org/10.3390/a17110511
Chicago/Turabian StyleSanz-Sanchez, Alejandro, Francisco B. García, Pablo Mesas-Lafarga, Joan Prats-Climent, and María José Rodríguez-Álvarez. 2024. "PIPET: A Pipeline to Generate PET Phantom Datasets for Reconstruction Based on Convolutional Neural Network Training" Algorithms 17, no. 11: 511. https://doi.org/10.3390/a17110511
APA StyleSanz-Sanchez, A., García, F. B., Mesas-Lafarga, P., Prats-Climent, J., & Rodríguez-Álvarez, M. J. (2024). PIPET: A Pipeline to Generate PET Phantom Datasets for Reconstruction Based on Convolutional Neural Network Training. Algorithms, 17(11), 511. https://doi.org/10.3390/a17110511