A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation †
Abstract
:1. Introduction
2. Materials and Methods
2.1. Granger Causality
2.2. Generation of Synthetic Signals
3. Results
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fornito, A.; Zalesky, A.; Bullmore, E. Fundamentals of Brain Network Analysis; Academic Press: New York, NY, USA, 2016. [Google Scholar]
- Sanei, S.; Chambers, J.A. EEG Signal Processing; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Koch, M.A.; Norris, D.G.; Hund-Georgiadis, M. An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage 2002, 16, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Stam, C.J.; Nolte, G.; Daffertshofer, A. Phase lag index: Assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 2007, 28, 1178–1193. [Google Scholar] [CrossRef] [PubMed]
- Lachaux, J.P.; Rodriguez, E.; Martinerie, J.; Varela, F.J. Measuring phase synchrony in brain signals. Hum. Brain Mapp. 1999, 8, 194–208. [Google Scholar] [CrossRef]
- Vinck, M.; Oostenveld, R.; Van Wingerden, M.; Battaglia, F.; Pennartz, C.M. An improved index of phase-synchronization for electrophysiological data in the presence of volume-conduction, noise and sample-size bias. Neuroimage 2011, 55, 1548–1565. [Google Scholar] [CrossRef] [PubMed]
- Šverko, Z.; Vrankić, M.; Vlahinić, S.; Rogelj, P. Complex Pearson correlation coefficient for EEG connectivity analysis. Sensors 2022, 22, 1477. [Google Scholar] [CrossRef]
- Šverko, Z.; Vrankic, M.; Vlahinić, S.; Rogelj, P. Dynamic connectivity analysis using adaptive window size. Sensors 2022, 22, 5162. [Google Scholar] [CrossRef]
- García-Martínez, B.; Fernández-Caballero, A.; Martínez-Rodrigo, A.; Alcaraz, R.; Novais, P. Evaluation of brain functional connectivity from electroencephalographic signals under different emotional states. Int. J. Neural Syst. 2022, 32, 2250026. [Google Scholar] [CrossRef]
- Zhao, Y.; Xue, M.; Dong, C.; He, J.; Chu, D.; Zhang, G.; Xu, F.; Ge, X.; Zheng, Y. Automatic seizure identification from EEG signals based on brain connectivity learning. Int. J. Neural Syst. 2022, 32, 2250050. [Google Scholar] [CrossRef]
- Friston, K.; Moran, R.; Seth, A.K. Analysing connectivity with Granger causality and dynamic causal modelling. Curr. Opin. Neurobiol. 2013, 23, 172–178. [Google Scholar] [CrossRef]
- Uchida, T.; Fujiwara, K.; Inoue, T.; Maruta, Y.; Kano, M.; Suzuki, M. Analysis of VNS effect on EEG connectivity with granger causality and graph theory. In Proceedings of the 2018 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA ASC), Honolulu, HI, USA, 12–15 November 2018; pp. 861–864. [Google Scholar]
- Seth, A.K.; Barrett, A.B.; Barnett, L. Granger causality analysis in neuroscience and neuroimaging. J. Neurosci. 2015, 35, 3293–3297. [Google Scholar] [CrossRef]
- Loo, S.K.; Cho, A.; Hale, T.S.; McGough, J.; McCracken, J.; Smalley, S.L. Characterization of the theta to beta ratio in ADHD: Identifying potential sources of heterogeneity. J. Atten. Disord. 2013, 17, 384–392. [Google Scholar] [CrossRef] [PubMed]
- Youssofzadeh, V.; Prasad, G.; Naeem, M.; Wong-Lin, K. Temporal information of directed causal connectivity in multi-trial ERP data using partial Granger causality. Neuroinformatics 2016, 14, 99–120. [Google Scholar] [CrossRef] [PubMed]
- Basti, A.; Pizzella, V.; Chella, F.; Romani, G.L.; Nolte, G.; Marzetti, L. Disclosing large-scale directed functional connections in MEG with the multivariate phase slope index. Neuroimage 2018, 175, 161–175. [Google Scholar] [CrossRef] [PubMed]
- Al-Ezzi, A.; Yahya, N.; Kamel, N.; Faye, I.; Alsaih, K.; Gunaseli, E. Social anxiety disorder evaluation using effective connectivity measures: EEG phase slope index study. In Proceedings of the 2020 IEEE-EMBS Conference on Biomedical Engineering and Sciences (IECBES), Langkawi Island, Malaysia, 1–3 March 2021; pp. 120–125. [Google Scholar]
- Shovon, M.H.I.; Nandagopal, N.; Vijayalakshmi, R.; Du, J.T.; Cocks, B. Directed connectivity analysis of functional brain networks during cognitive activity using transfer entropy. Neural Process. Lett. 2017, 45, 807–824. [Google Scholar] [CrossRef]
- Varotto, G.; Visani, E.; Canafoglia, L.; Franceschetti, S.; Avanzini, G.; Panzica, F. Enhanced frontocentral EEG connectivity in photosensitive generalized epilepsies: A partial directed coherence study. Epilepsia 2012, 53, 359–367. [Google Scholar] [CrossRef]
- Elorrieta, F.; Eyheramendy, S.; Palma, W.; Ojeda, C. A novel bivariate autoregressive model for predicting and forecasting irregularly observed time series. Mon. Not. R. Astron. Soc. 2021, 505, 1105–1116. [Google Scholar] [CrossRef]
- Li, F.; Peng, W.; Jiang, Y.; Song, L.; Liao, Y.; Yi, C.; Zhang, L.; Si, Y.; Zhang, T.; Wang, F.; et al. The dynamic brain networks of motor imagery: Time-varying causality analysis of scalp EEG. Int. J. Neural Syst. 2019, 29, 1850016. [Google Scholar] [CrossRef]
- Martinez-Murcia, F.J.; Ortiz, A.; Gorriz, J.M.; Ramirez, J.; Lopez-Abarejo, P.J.; Lopez-Zamora, M.; Luque, J.L. EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int. J. Neural Syst. 2020, 30, 2050037. [Google Scholar] [CrossRef]
- Thakor, N.V.; Sherman, D.L. EEG signal processing: Theory and applications. In Neural Engineering; Springer: Berlin/Heidelberg, Germany, 2012; pp. 259–303. [Google Scholar]
- Aznan, N.K.N.; Atapour-Abarghouei, A.; Bonner, S.; Connolly, J.D.; Al Moubayed, N.; Breckon, T.P. Simulating brain signals: Creating synthetic eeg data via neural-based generative models for improved ssvep classification. In Proceedings of the 2019 International Joint Conference on Neural Networks (IJCNN), Budapest, Hungary, 14–19 July 2019; pp. 1–8. [Google Scholar]
- Schalk, G.; McFarland, D.J.; Hinterberger, T.; Birbaumer, N.; Wolpaw, J.R. BCI2000: A general-purpose brain-computer interface (BCI) system. IEEE Trans. Biomed. Eng. 2004, 51, 1034–1043. [Google Scholar] [CrossRef]
- Ding, M.; Chen, Y.; Bressler, S.L. Granger causality: Basic theory and application to neuroscience. In Handbook of Time Series Analysis: Recent Theoretical Developments and Applications; Wiley: Hoboken, NJ, USA, 2006; pp. 437–460. [Google Scholar]
- Schlögl, A.; Supp, G. Analyzing event-related EEG data with multivariate autoregressive parameters. Prog. Brain Res. 2006, 159, 135–147. [Google Scholar]
- Winterhalder, M.; Schelter, B.; Hesse, W.; Schwab, K.; Leistritz, L.; Klan, D.; Bauer, R.; Timmer, J.; Witte, H. Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems. Signal Process. 2005, 85, 2137–2160. [Google Scholar] [CrossRef]
- Šverko, Z.; Vlahinić, S.; Stojković, N.; Rogelj, P. Generation of Synthetic EEG Signals for Testing Dynamic Brain Connectivity Estimation Methods. In Proceedings of the 6th International Conference on Advances in Signal Processing and Artificial Intelligence (ASPAI’ 2024), Funchal, Portugal, 17–19 April 2024; pp. 103–107. [Google Scholar]
- Wilke, C.; Ding, L.; He, B. Estimation of time-varying connectivity patterns through the use of an adaptive directed transfer function. IEEE Trans. Biomed. Eng. 2008, 55, 2557–2564. [Google Scholar] [CrossRef] [PubMed]
- Yi, C.; Qiu, Y.; Chen, W.; Chen, C.; Wang, Y.; Li, P.; Yang, L.; Zhang, X.; Jiang, L.; Yao, D.; et al. Constructing time-varying directed EEG network by multivariate nonparametric dynamical granger causality. IEEE Trans. Neural Syst. Rehabil. Eng. 2022, 30, 1412–1421. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Šverko, Z.; Vlahinić, S.; Rogelj, P. A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation. Algorithms 2024, 17, 517. https://doi.org/10.3390/a17110517
Šverko Z, Vlahinić S, Rogelj P. A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation. Algorithms. 2024; 17(11):517. https://doi.org/10.3390/a17110517
Chicago/Turabian StyleŠverko, Zoran, Saša Vlahinić, and Peter Rogelj. 2024. "A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation" Algorithms 17, no. 11: 517. https://doi.org/10.3390/a17110517
APA StyleŠverko, Z., Vlahinić, S., & Rogelj, P. (2024). A Framework for Evaluating Dynamic Directed Brain Connectivity Estimation Methods Using Synthetic EEG Signal Generation. Algorithms, 17(11), 517. https://doi.org/10.3390/a17110517