Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques
Abstract
:1. Introduction
2. Mathematical Framework
2.1. Polynomization
2.2. Building Non-Gaussian Physiological Random Field
2.3. Excursion Set
2.4. Euler–Poincaré Characteristic
- C1: The maximum of and should be asymptotically negligible, specifically , as .
- C2: The Hessian of must have a finite variance conditional on , where is the gradient of .
- C3: The densities of and must be uniformly bounded for all .
- is the gradient of in the direction perpendicular to .
- is the gradient in the tangent direction within the plane of .
- denotes the -Hessian matrix in the tangent plane.
- r is the matrix representing the internal curvature of .
3. Data Used
4. Methodology
- Pre-processing: As part of this step, the ECG signals were filtered using random polynomials. This process is referred to as polynomization.
- Random field transformation: The filtered signal was used to build the NGPRF, collapsing c number of cycles into a geometric structure.
- Geometrical property: Each NGPRF was sectioned at several levels, denoted by , known as excursion sets.
- Feature extraction: For each excursion set, a value was calculated that represented the difference between the number of connected components and the number of holes, capturing key aspects of the set’s geometric structure. This feature is referred to as the Euler–Poincaré characteristic.
- Classifier selection: An EKNN model is proposed to classify OSA from the EPC models. The training dataset was used for learning, and the test dataset was used to validate the model. Also, a feedforward multi-layer neural network is proposed for the binary classification.
4.1. Pre-Processing
Algorithm 1 Algorithm for pre-processing the ECG signals |
|
4.2. Transforming into a Random Field and Geometrical Approach
Algorithm 2 Process to construct the non-Gaussian random physiological field |
|
4.3. Extracting the Feature
4.4. Classification
4.5. Neural Network Classifier
5. Results and Discussion
6. Conclusions and Future Works
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Accu | accuracy |
BMI | body mass index |
CNN | convolutional neural network |
CTM | central tendency measure |
DWT | discrete wavelet transform |
ECG | electrocardiogram |
EDR | ECG-derived respiration |
EEG | electroencephalogram |
EKNN | ensemble k-nearest neighbors |
EMG | electromyogram |
EPC | Euler–Poincaré characteristic |
FENet | frequency extraction network |
FNN | feedforward neural network |
HRV | heart rate variability |
IAE | integral absolute error |
KNN | k-nearest neighbors |
LSTM | long short-term memory |
LZ | Lempel–Ziv |
ML | machine learning |
NGPRF | non-Gaussian physiological random field |
NGRF | non-Gaussian random field |
NRMSE | normalized root mean square error |
OSA | obstructive sleep apnea |
PG | polygraphy |
PSO | particle swarm optimization |
RFC | random forest classifier |
ROC-AUC | characteristic-area under the curve |
SBD | sleep-disordered breathing |
Sen | sensitivity |
Spec | specificity |
pulse oximetry |
Appendix A. Results Obtained with Balance Data Using SMOTE
- Data preparation: Load the ECG dataset, separate features and labels, and scale the features using the StandardScaler.
- Data balancing: Apply SMOTE to handle class imbalance, ensuring balanced data for model training. In this step, features from the EPC model are randomly copied to generate new data for the minority class.
- Train–test split: Split the balanced dataset into training and testing sets, resulting in two groups of 52 patients each, with 26 patients from the apnea group and the others from the no-apnea group.
- Model building and training: Create a neural network model, compile it with the Adam optimizer, and train it on the training set with one-hot encoded labels, using the same FNN with parameters described in Table 3.
- Model evaluation: Evaluate the model’s performance on the test set and generate predictions.
- Performance metrics: Calculate and visualize confusion matrices, and compute detailed metrics such as accuracy, sensitivity, specificity, precision, and F1 score for both training and test sets.
Metric | Training (%) | Test (%) |
---|---|---|
Accuracy | 92.31 | 84.62 |
Sensitivity | 100.00 | 80.77 |
Specificity | 84.62 | 88.46 |
Precision | 86.67 | 87.50 |
F1 Score | 92.86 | 84.00 |
References
- Malhotra, A.; Ayappa, I.; Ayas, N.; Collop, N.; Kirsch, D.; Mcardle, N.; Mehra, R.; Pack, A.I.; Punjabi, N.; White, D.P.; et al. Metrics of sleep apnea severity: Beyond the apnea-hypopnea index. Sleep 2021, 44, zsab030. [Google Scholar] [CrossRef]
- Baranchuk, A. Sleep apnea, cardiac arrhythmias, and conduction disorders. J. Electrocardiol. 2012, 45, 508–512. [Google Scholar] [CrossRef] [PubMed]
- Suen, C.; Wong, J.; Ryan, C.M.; Goh, S.; Got, T.; Chaudhry, R.; Lee, D.S.; Chung, F. Prevalence of Undiagnosed Obstructive Sleep Apnea Among Patients Hospitalized for Cardiovascular Disease and Associated In-Hospital Outcomes: A Scoping Review. J. Clin. Med. 2020, 9, 989. [Google Scholar] [CrossRef] [PubMed]
- Anzai, T.; Grandinetti, A.; Katz, A.R.; Hurwitz, E.L.; Wu, Y.Y.; Masaki, K. Association between central sleep apnea and atrial fibrillation/flutter in Japanese-American men: The Kuakini Honolulu Heart Program (HHP) and Honolulu-Asia Aging Study (HAAS). J. Electrocardiol. 2020, 61, 10–17. [Google Scholar] [CrossRef] [PubMed]
- Leung, A.A.; Williams, J.V.; Padwal, R.S.; McAlister, F.A. Prevalence, Patient Awareness, Treatment, and Control of Hypertension in Canadian Adults With Common Comorbidities. CJC Open 2024, 6, 1099–1107. [Google Scholar] [CrossRef] [PubMed]
- Rundo, J.V.; Downey, R., III. Polysomnography. Handb. Clin. Neurol. 2019, 160, 381–392. [Google Scholar]
- Gottlieb, D.J.; Punjabi, N.M. Diagnosis and management of obstructive sleep apnea: A review. Jama 2020, 323, 1389–1400. [Google Scholar] [CrossRef]
- Khandoker, A.H.; Palaniswami, M.; Karmakar, C.K. Support vector machines for automated recognition of obstructive sleep apnea syndrome from ECG recordings. IEEE Trans. Inf. Technol. Biomed. 2008, 13, 37–48. [Google Scholar] [CrossRef]
- Varon, C.; Caicedo, A.; Testelmans, D.; Buyse, B.; Van Huffel, S. A novel algorithm for the automatic detection of sleep apnea from single-lead ECG. IEEE Trans. Biomed. Eng. 2015, 62, 2269–2278. [Google Scholar] [CrossRef]
- Jung, D.W.; Hwang, S.H.; Lee, Y.J.; Jeong, D.U.; Park, K.S. Apnea–hypopnea index prediction using electrocardiogram acquired during the sleep-onset period. IEEE Trans. Biomed. Eng. 2016, 64, 295–301. [Google Scholar]
- Mohammadzadeh-Asl, B.; Setarehdan, S.K. Neural network based arrhythmia classification using heart rate variability signal. In Proceedings of the 2006 14th European Signal Processing Conference, Florence, Italy, 4–8 September 2006; pp. 1–4. [Google Scholar]
- Asl, B.M.; Sharafat, A.R.; Setarehdan, S.K. An adaptive backpropagation neural network for arrhythmia classification using RR interval signal. Neural Netw. World 2012, 22, 535. [Google Scholar] [CrossRef]
- Starkey, S.Y.; Jonasson, D.R.; Alexis, S.; Su, S.; Johal, R.; Sweeney, P.; Brasher, P.M.; Fleetham, J.; Ayas, N.; Orenstein, T.; et al. Screening for Obstructive Sleep Apnea in an Atrial Fibrillation Population: What’s the Best Test? CJC Open 2021, 3, 442–449. [Google Scholar] [CrossRef] [PubMed]
- Sun, D.; Schaff, H.V.; Somers, V.K.; Nishimura, R.A.; Geske, J.B.; Dearani, J.A.; Ommen, S.R. Association of Preoperative Sleep-Disordered Breathing With Functional Status After Septal Myectomy for Obstructive Hypertrophic Cardiomyopathy. CJC Open 2022, 4, 848–853. [Google Scholar] [CrossRef] [PubMed]
- Babaeizadeh, S.; White, D.P.; Pittman, S.D.; Zhou, S.H. Automatic detection and quantification of sleep apnea using heart rate variability. J. Electrocardiol. 2010, 43, 535–541. [Google Scholar] [CrossRef] [PubMed]
- Yılmaz, B. Sleep staging and apnea detection from single-lead electrocardiogram. J. Electrocardiol. 2011, 44, e31–e32. [Google Scholar] [CrossRef]
- Zarei, A.; Beheshti, H.; Asl, B.M. Detection of sleep apnea using deep neural networks and single-lead ECG signals. Biomed. Signal Process. Control 2022, 71, 103125. [Google Scholar] [CrossRef]
- Bahrami, M.; Forouzanfar, M. Sleep Apnea Detection From Single-Lead ECG: A Comprehensive Analysis of Machine Learning and Deep Learning Algorithms. IEEE Trans. Instrum. Meas. 2022, 71, 1–11. [Google Scholar] [CrossRef]
- Pant, H.; Dhanda, H.K.; Taran, S. Sleep apnea detection using electrocardiogram signal input to FAWT and optimize ensemble classifier. Measurement 2022, 189, 110485. [Google Scholar] [CrossRef]
- Yang, Q.; Zou, L.; Wei, K.; Liu, G. Obstructive sleep apnea detection from single-lead electrocardiogram signals using one-dimensional squeeze-and-excitation residual group network. Comput. Biol. Med. 2022, 140, 105124. [Google Scholar] [CrossRef]
- Liu, H.; Cui, S.; Zhao, X.; Cong, F. Detection of obstructive sleep apnea from single-channel ECG signals using a CNN-transformer architecture. Biomed. Signal Process. Control 2023, 82, 104581. [Google Scholar] [CrossRef]
- Magalang, U.J.; Dmochowski, J.; Veeramachaneni, S.; Draw, A.; Mador, M.J.; El-Solh, A.; Grant, B.J. Prediction of the Apnea-Hypopnea Index From Overnight Pulse Oximetry. Chest 2003, 124, 1694–1701. [Google Scholar] [CrossRef] [PubMed]
- Heneghan, C.; Chua, C.P.; Garvey, J.F.; de Chazal, P.; Shouldice, R.; Boyle, P.; McNicholas, W.T. A Portable Automated Assessment Tool for Sleep Apnea Using a Combined Holter-Oximeter. Sleep 2008, 31, 1432–1439. [Google Scholar] [CrossRef] [PubMed]
- Álvarez, D.; Hornero, R.; Abásolo, D.; del Campo, F.; Zamarrón, C. Nonlinear characteristics of blood oxygen saturation from nocturnal oximetry for obstructive sleep apnoea detection. Physiol. Meas. 2006, 27, 399–412. [Google Scholar] [CrossRef] [PubMed]
- Maier, C.; Friedrich, J.; Katus, H.; Dickhaus, H. Prospective evaluation of a Holter-ECG derived severity index for screening of sleep disordered breathing. J. Electrocardiol. 2016, 49, 919–924. [Google Scholar] [CrossRef] [PubMed]
- McNames, J.N.; Fraser, A.M. Obstructive sleep apnea classification based on spectrogram patterns in the electrocardiogram. In Proceedings of the Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 749–752. [Google Scholar] [CrossRef]
- Gil, E.; Vergara, J.M.; Laguna, P. Study of the relationship between Pulse Photopletismography amplitude decrease events and sleep apneas in children. In proceeding of 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, New York, NY, USA, 30 August–3 September 2006; pp. 3887–3890. [Google Scholar]
- Gil, E.; Monasterio, V.; Laguna, P.; Vergara, J.M. Pulse Photopletismography Amplitude Decrease Detector for Sleep Apnea Evaluation in Children. In proceeding of 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference, Shanghai, China, 17–18 January 2006; pp. 2743–2746. [Google Scholar]
- Lee, Y.K.; Bister, M.; Blanchfield, P.; Salleh, Y.M. Automated detection of obstructive apnea and hypopnea events from oxygen saturation signal. In Proceedings of the The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, San Francisco, CA, USA, 1–5 September 2004; Volume 1, pp. 321–324. [Google Scholar] [CrossRef]
- Burgos, A.; Goñi, A.; Illarramendi, A.; Bermudez, J. Real-Time Detection of Apneas on a PDA. IEEE Trans. Inf. Technol. Biomed. 2010, 14, 995–1002. [Google Scholar] [CrossRef]
- Varady, P.; Micsik, T.; Benedek, S.; Benyo, Z. A novel method for the detection of apnea and hypopnea events in respiration signals. IEEE Trans. Biomed. Eng. 2002, 49, 936–942. [Google Scholar] [CrossRef]
- de Chazal, P.; Heneghan, C.; Sheridan, E.; Reilly, R.; Nolan, P.; O’Malley, M. Automatic classification of sleep apnea epochs using the electrocardiogram. In Proceedings of the Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 745–748. [Google Scholar] [CrossRef]
- Maier, C.; Dickhaus, H.; Laguna, P. Amplitude variability extraction from multi-lead electrocardiograms for improvement of sleep apnea recognition. In Proceedings of the Computers in Cardiology, Lyon, France, 25–28 September 2005; pp. 355–358. [Google Scholar] [CrossRef]
- Raymond, B.; Cayton, R.M.; Bates, R.A.; Chappell, M. Screening for obstructive sleep apnoea based on the electrocardiogram-the computers in cardiology challenge. In Proceedings of the Computers in Cardiology 2000. Vol.27 (Cat. 00CH37163), Cambridge, MA, USA, 24–27 September 2000; pp. 267–270. [Google Scholar] [CrossRef]
- Li, Z.; Li, Y.; Zhao, G.; Zhang, X.; Xu, W.; Han, D. A model for obstructive sleep apnea detection using a multi-layer feed-forward neural network based on electrocardiogram, pulse oxygen saturation, and body mass index. Sleep Breath. 2021, 25, 2065–2072. [Google Scholar] [CrossRef]
- Ye, G.; Yin, H.; Chen, T.; Chen, H.; Cui, L.; Zhang, X. FENet: A Frequency Extraction Network for Obstructive Sleep Apnea Detection. IEEE J. Biomed. Health Informatics 2021, 25, 2848–2856. [Google Scholar] [CrossRef]
- Rashid, M.M.; Askari, M.R.; Chen, C.; Liang, Y.; Shu, K.; Cinar, A. Artificial Intelligence Algorithms for Treatment of Diabetes. Algorithms 2022, 15, 299. [Google Scholar] [CrossRef]
- Asif, D.; Bibi, M.; Arif, M.S.; Mukheimer, A. Enhancing Heart Disease Prediction through Ensemble Learning Techniques with Hyperparameter Optimization. Algorithms 2023, 16, 8. [Google Scholar] [CrossRef]
- Mondol, C.; Shamrat, F.M.J.M.; Hasan, M.R.; Alam, S.; Ghosh, P.; Tasnim, Z.; Ahmed, K.; Bui, F.M.; Ibrahim, S.M. Early Prediction of Chronic Kidney Disease: A Comprehensive Performance Analysis of Deep Learning Models. Algorithms 2022, 15, 308. [Google Scholar] [CrossRef]
- Khoperskov, A.V.; Polyakov, M.V. Improving the Efficiency of Oncological Diagnosis of the Breast Based on the Combined Use of Simulation Modeling and Artificial Intelligence Algorithms. Algorithms 2022, 15, 292. [Google Scholar] [CrossRef]
- Goldberger, A.L.; Amaral, L.A.; Glass, L.; Hausdorff, J.M.; Ivanov, P.C.; Mark, R.G.; Mietus, J.E.; Moody, G.B.; Peng, C.K.; Stanley, H.E. PhysioBank, PhysioToolkit, and PhysioNet components of a new research resource for complex physiologic signals. Circulation 2000, 101, e215–e220. [Google Scholar] [CrossRef] [PubMed]
- Penzel, T.; Moody, G.B.; Mark, R.G.; Goldberger, A.L.; Peter, J.H. Apnea-ECG Database. Comput. Cardiol. 2000, 27, 255–258. [Google Scholar] [CrossRef]
- Ramos-Martinez, M.; Corbier, C.; Alvarado, V.M.; Lopez, G.L. Decomposed Mean Euler-Poincaré Characteristic Model for a Non-Gaussian Physiological Random Field. IEEE Access 2021, 9, 21180–21191. [Google Scholar] [CrossRef]
- Knuth, D.E. Two notes on notation. Am. Math. Mon. 1992, 99, 403–422. [Google Scholar] [CrossRef]
- Pan, J.; Tompkins, W.J. A Real-Time QRS Detection Algorithm. IEEE Trans. Biomed. Eng. 1985, BME-32, 230–236. [Google Scholar] [CrossRef]
- Klinger, A. The Vandermonde Matrix. Am. Math. Mon. 1967, 74, 571–574. [Google Scholar] [CrossRef]
- Gray, S.B. Local Properties of Binary Images in Two Dimensions. IEEE Trans. Comput. 1971, C-21, 551–561. [Google Scholar] [CrossRef]
- Richardson, E.; Werman, M. Efficient classification using the Euler characteristic. Pattern Recognit. Lett. 2014, 49, 99–106. [Google Scholar] [CrossRef]
- Gul, A.; Perperoglou, A.; Khan, Z.; Mahmoud, O.; Miftahuddin, M.; Adler, W.; Lausen, B. Ensemble of a subset of k NN classifiers. Adv. Data Anal. Classif. 2018, 12, 827–840. [Google Scholar] [CrossRef] [PubMed]
- Corthout, J.; Van Huffel, S.; Mendez, M.O.; Bianchi, A.M.; Penzel, T.; Cerutti, S. Automatic screening of Obstructive Sleep Apnea from the ECG based on Empirical Mode Decomposition and wavelet analysis. In Proceedings of the 2008 30th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Vancouver, BC, Canada, 20–25 August 2008; pp. 3608–3611. [Google Scholar] [CrossRef]
- Rajesh, K.; Dhuli, R.; Kumar, T.S. Obstructive sleep apnea detection using discrete wavelet transform-based statistical features. Comput. Biol. Med. 2021, 130, 104199. [Google Scholar] [CrossRef] [PubMed]
- Chawla, N.V.; Bowyer, K.W.; Hall, L.O.; Kegelmeyer, W.P. SMOTE: Synthetic Minority Over-sampling Technique. J. Artif. Intell. Res. 2002, 16, 321–357. [Google Scholar] [CrossRef]
Type of Classifier | Accuracy | Sensitivity | Specificity | F1 Score | MCC |
---|---|---|---|---|---|
Linear SVM | 62.86% | 70% | 20% | 76.36% | −7.75% |
Decision Tree | 65.71% | 78.26% | 41.67% | 75% | 20.94% |
KNN | 74.29% | 78.57% | 57.14% | 83.02% | 31.62% |
Logistic Regression | 77.14% | 86.96% | 58.33% | 83.33% | 47.59% |
Ensemble KNN | 80% | 82.14% | 71.43% | 86.79% | 47.43% |
Parameters | Values |
---|---|
Number of Neighbors (k) | 10 |
Weighting Method | ‘distance’ |
Distance Metric | ‘euclidean’ |
Algorithm for Finding Neighbors | ‘auto’ |
Number of Estimators | 30 |
Ponderation of Models | Uniform |
Parameter | Description | Value |
---|---|---|
Input Layer | Number of input features | 101 (from EPC model) |
Hidden Layers | Number of hidden layers | 2 |
Neurons | Number of neurons per layer | 100 (Layer 1), 64 (Layer 2), 64 (Layer 3) |
Output Layer | Number of neurons in output layer | 1 |
Activation Functions | Activation function per layer | Swish (Layer 1), ReLU (Layer 2), Tanh (Layer 3), Softmax (Output Layer) |
Optimizer | Optimization algorithm | Adam |
Epochs | Number of epochs | 100 |
Classes | Number of output classes | 2 (binary classification) |
Phase | Accuracy | Sensitivity | Specificity | F1 Score |
---|---|---|---|---|
Training | 100% | 96% | 100% | 98% |
Test | 97% | 93% | 100% | 95% |
Literature Work | Efficiency | Analyzed Signal | Proposed Techniques | Classification |
---|---|---|---|---|
Mcnames et al. [26] | Accu = 92.6% | ECG | HRV in RR, T and S ECG pulse Energy(WT) | Threshold (5 min window) |
Raymond et al. [34] | Accu = 92% | ECG | EDR signal RR signal | Shared mixture classifier (spectral features) |
De Chazal et al. [32] | Accu = 89.4% Sens = 84.1% Spec = 90.0% | ECG | RR variability R-wave amplitude (PSD) | Linear and quadratic discriminants (spectral features) |
Lee et al. [29] | Accu = 88% Sens = 98% Spec = 92% | WT ADA, DDA, NA | Transform coefficients Threshold | |
Maier et al. [33] | Accu = 89.8% Sens = 81.3% Spec = 82.8% | ECG | RR series MAV series | Threshold (120 ms. window) |
Corthout et al. [50] | Accu = 90% Sens = 84% Spec = 93% | ECG | EDM+HT, EDM+RAS WA | Linear Discriminant classifier (feature set) |
Burgos et al. [30] | Accu = 93.03% Sens = 92.35% Spec = 93.52% | Desaturation indexes | Bagging with ADTree | |
Ye et al. [36] | Accu = 99.22% Sens = 99.25% Spec = 99.02% | ECG | R-R intervals | FENet |
Rajesh et al. [51] | Accu = 89% Sens = 86% Spec = 92% | ECG | Power Spectrum, Discrete Wavelet Transform, PSO | Random forest classifier |
Li et al. [35] | Accu = 97.8% Sens = 98.6% Spec = 93.9% | ECG BMI | Feature extraction | Multi-layer FNN |
Zarei et al. [17] | Accu = 97.21% Sens = 94.41% Spec = 98.94% | ECG | LSTM-CNN | AHI index |
EKNN approach | Accu = 89% Sens = 89% Spec = 86% | ECG | Random Field Euler–Poincaré characteristic | EKNN classifier |
FNN approach | Accu = 98.5% Sens = 94.5% Spec = 100% | ECG | Random Field Euler–Poincaré characteristic | Multi-layer FNN |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramos-Martinez, M.; Sorcia-Vázquez, F.D.J.; Ortiz-Torres, G.; Martínez García, M.; Mena-Enriquez, M.G.; Sarmiento-Bustos, E.; Mixteco-Sánchez, J.C.; Rentería-Vargas, E.M.; Valdez-Resendiz, J.E.; Rumbo-Morales, J.Y. Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms 2024, 17, 527. https://doi.org/10.3390/a17110527
Ramos-Martinez M, Sorcia-Vázquez FDJ, Ortiz-Torres G, Martínez García M, Mena-Enriquez MG, Sarmiento-Bustos E, Mixteco-Sánchez JC, Rentería-Vargas EM, Valdez-Resendiz JE, Rumbo-Morales JY. Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms. 2024; 17(11):527. https://doi.org/10.3390/a17110527
Chicago/Turabian StyleRamos-Martinez, Moises, Felipe D. J. Sorcia-Vázquez, Gerardo Ortiz-Torres, Mario Martínez García, Mayra G. Mena-Enriquez, Estela Sarmiento-Bustos, Juan Carlos Mixteco-Sánchez, Erasmo Misael Rentería-Vargas, Jesús E. Valdez-Resendiz, and Jesse Yoe Rumbo-Morales. 2024. "Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques" Algorithms 17, no. 11: 527. https://doi.org/10.3390/a17110527
APA StyleRamos-Martinez, M., Sorcia-Vázquez, F. D. J., Ortiz-Torres, G., Martínez García, M., Mena-Enriquez, M. G., Sarmiento-Bustos, E., Mixteco-Sánchez, J. C., Rentería-Vargas, E. M., Valdez-Resendiz, J. E., & Rumbo-Morales, J. Y. (2024). Sleep Apnea Classification Using the Mean Euler–Poincaré Characteristic and AI Techniques. Algorithms, 17(11), 527. https://doi.org/10.3390/a17110527