Adaptive-Step Perturb-and-Observe Algorithm for Multidimensional Phase Noise Stabilization in Fiber-Based Multi-Arm Mach–Zehnder Interferometers
Abstract
:1. Introduction
2. Multi-Arm Mach–Zehnder Interferometer
3. Fiber-Optic MAMZI
4. MAMZI with Phase Noise Stabilization
4.1. MAMZI Simulation with Phase Noise
4.2. Operation of the Control Algorithm
- (i)
- The algorithm evaluates the error defined as , where is the measured intensity at k-th output and is a reference value. If the error exceeds a predefined threshold (usually less than 0.001 to reach high visibility [22]), the optimization process starts in the initial work cycle (“”).
- (ii)
- The controller perturbs the -th phase control as , where the step is a manually adjustable value. The factor considers the amplitude of the simulated noise and allows optimization of the system response in the presence of fluctuations. However, the algorithm does not rely solely on this dependency; we can adjust the factor to be larger or smaller, which will only modify the response based on variations in the parameter .
- (iii)
- The algorithm then proceeds to perturb the next phase (“”) of the other arm of the MAMZI, repeating step (ii).
- (iv)
- Once all phases have been processed, the system restarts the cycle from step (i), continuing the iterative optimization process.
4.3. Analysis of the Results in Phase Noise Stabilization
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Elsherif, M.; Salih, A.E.; Muñoz, M.G.; Alam, F.; AlQattan, B.; Antonysamy, D.S.; Zaki, M.F.; Yetisen, A.K.; Park, S.; Wilkinson, T.D.; et al. Optical Fiber Sensors: Working Principle, Applications, and Limitations. Adv. Photonics Res. 2022, 3, 2699–9293. [Google Scholar] [CrossRef]
- Li, L.; Xia, L.; Xie, Z.; Liu, D. All-fiber Mach-Zehnder interferometers for sensing applications. Opt. Express 2012, 20, 11109–11120. [Google Scholar] [CrossRef] [PubMed]
- Kawanishi, T.; Sakamoto, T.; Miyazaki, T.; Izutsu, M.; Fujita, T.; Mori, S.; Higuma, K.; Ichikawa, J. High-speed optical DQPSK and FSK modulation using integrated Mach-Zehnder interferometers. Opt. Express 2006, 14, 4469–4478. [Google Scholar] [CrossRef] [PubMed]
- Gisin, N.; Ribordy, G.; Tittel, W.; Zbinden, H. Quantum Cryptography. Rev. Mod. Phys. 2002, 74, 145. [Google Scholar] [CrossRef]
- Cuevas, A.; Carvacho, G.; Saavedra, G.; Cariñe, J.; Nogueira, W.A.T.; Figueroa, M.; Cabello, A.; Mataloni, P.; Lima, G.; Xavier, G.B. Long-distance distribution of genuine energy-time entanglement. Nat. Commun. 2013, 4, 2871. [Google Scholar] [CrossRef]
- Vedovato, F.; Agnesi, C.; Tomasin, M.; Avesani, M.; Jan-Åke, L.; Vallone, G.; Villoresi, P. Postselection-Loophole-Free Bell Violation with Genuine Time-Bin Entanglement. Phys. Rev. Lett. 2018, 121, 190401. [Google Scholar] [CrossRef]
- Grassani, D.; Galli, M.; Bajoni, D. Active stabilization of a Michelson interferometer at an arbitrary phase with subnanometer resolution. Opt. Lett. 2014, 39, 2530–2533. [Google Scholar] [CrossRef]
- Xavier, G.B.; der Weid, J.P.V. Stable single-photon interference in a 1 km fiber-optic Mach–Zehnder interferometer with continuous phase adjustment. Opt. Lett. 2011, 36, 1764. [Google Scholar] [CrossRef]
- Carvacho, G.; Carine, J.; Saavedra, G.; Cuevas, Á.; Fuenzalida, J.; Toledo, F.; Figueroa, M.; Cabello, A.; Larsson, J.Å.; Mataloni, P.; et al. Postselection-Loophole-Free Bell Test Over an Installed Optical Fiber Network. Phys. Rev. Lett. 2015, 115, 030503. [Google Scholar] [CrossRef]
- Giovannetti, V.; Lloyd, S.; Maccone, L. Quantum-enhanced measurements: Beating the standard quantum limit. Science 2004, 306, 1330–1336. [Google Scholar] [CrossRef]
- Nielsen, M.A.; Chuang, I.L. Quantum Computation and Quantum Information: 10th Anniversary Edition; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Lanyon, B.P.; Barbieri, M.; Almeida, M.P.; Jennewein, T.; Ralph, T.C.; Resch, K.J.; Pryde, G.J.; O’brien, J.L.; Gilchrist, A.; White, A.G. Simplifying quantum logic using higher-dimensional Hilbert spaces. Nat. Phys. 2009, 5, 134–140. [Google Scholar] [CrossRef]
- Cerf, N.J.; Bourennane, M.; Karlsson, A.; Gisin, N. Security of quantum key distribution using d-level systems. Phys. Rev. Lett. 2002, 88, 127902. [Google Scholar] [CrossRef] [PubMed]
- Scarani, V.; Bechmann-Pasquinucci, H.; Cerf, N.J.; Dušek, M.; Lütkenhaus, N.; Peev, M. The security of practical quantum key distribution. Rev. Mod. Phys. 2009, 81, 1301–1350. [Google Scholar] [CrossRef]
- Cañas, G.; Vera, N.; Cariñe, J.; González, P.; Cardenas, J.; Connolly, P.W.R.; Przysiezna, A.; Gómez, E.S.; Figueroa, M.; Vallone, G.; et al. High-dimensional decoy-state quantum key distribution over multicore telecommunication fibers. Phys. Rev. A 2017, 96, 022317. [Google Scholar] [CrossRef]
- Ding, Y.; Bacco, D.; Dalgaard, K.; Cai, X.; Zhou, X.; Rottwitt, K.; Oxenløwe, L.K. High-dimensional quantum key distribution based on multicore fiber using silicon photonic integrated circuits. NPJ Quantum Inf. 2017, 3, 25. [Google Scholar] [CrossRef]
- Lee, H.J.; Choi, S.K.; Park, H.S. Experimental Demonstration of Four-Dimensional Photonic Spatial Entanglement between Multi-Core Optical Fibres. Sci. Rep. 2017, 7, 4302. [Google Scholar] [CrossRef]
- Gomez, E.S.; Gómez, S.; Machuca, I.; Cabello, A.; Pádua, S.; Walborn, S.P.; Lima, G. Multidimensional Entanglement Generation with Multicore Optical Fibers. Phys. Rev. Appl. 2021, 15, 034024. [Google Scholar] [CrossRef]
- Gan, L.; Wang, R.; Liu, D.; Duan, L.; Liu, S.; Fu, S.; Li, B.; Feng, Z.; Wei, H.; Tong, W.; et al. Spatial-division multiplexed Mach–Zehnder interferometers in heterogeneous multicore fiber for multidimensional measurement. IEEE Photonics J. 2016, 8, 7800908. [Google Scholar] [CrossRef]
- Balado, D.; Liñares, J.; Prieto-Blanco, X.; Barral, D. Phase and polarization autocompensating N-dimensional quantum cryptography in multicore optical fibers. J. Opt. Soc. Am. B 2019, 36, 2793–2803. [Google Scholar] [CrossRef]
- Da Lio, B.; Cozzolino, D.; Biagi, N.; Ding, Y.; Rottwitt, K.; Zavatta, A.; Bacco, D.; Oxenløwe, L.K. Path-encoded high-dimensional quantum communication over a 2-km multicore fiber. NPJ Quantum Inf. 2021, 7, 63. [Google Scholar] [CrossRef]
- Cariñe, J.; Cañas, G.; Skrzypczyk, P.; Šupić, I.; Guerrero, N.; Garcia, T.; Pereira, L.; Prosser, M.A.S.; Xavier, G.B.; Delgado, A.; et al. Multi-core fiber integrated multi-port beam splitters for quantum information processing. Optica 2020, 7, 542–550. [Google Scholar] [CrossRef]
- Taddei, M.M.; Cariñe, J.; Martínez, D.; García, T.; Guerrero, N.; Abbott, A.A.; Araújo, M.; Branciard, C.; Gómez, E.S.; Walborn, S.P.; et al. Computational advantage from the quantum superposition of multiple temporal orders of photonic gates. PRX Quantum 2021, 2, 010320. [Google Scholar] [CrossRef]
- Yatinkumar, P. A Comprehensive Review of Maximum Power Point Tracking Techniques for Photovoltaic Systems. Renew. Sustain. Energy Rev. 2020, 112, 379–387. [Google Scholar]
- Elgendy, M.A.; Zahawi, B.; Atkinson, D.J. Assessment of Perturb and Observe MPPT Algorithm Implementation Techniques for PV Pumping Applications. IEEE Trans. Sustain. Energy 2012, 3, 21–33. [Google Scholar] [CrossRef]
- Esram, T.; Chapman, P.L. Comparison of Photovoltaic Array Maximum Power Point Tracking Techniques. IEEE Trans. Energy Convers. 2007, 22, 439–449. [Google Scholar] [CrossRef]
- Ji, Y.; Wu, B.; Hou, Y.; Ding, A. A MZ Modulator Bias Control System Based on Variable Step P&O Algorithm. IEEE Photonics Technol. Lett. 2020, 32, 1473–1476. [Google Scholar]
- Mattle, K.; Michler, M.; Weinfurter, H.; Zeilinger, A.; Zukowski, M. Nonclassical statistics at multiport beam-splitters. Appl. Phys.-Lasers Opt. 1995, 60, 111–117. [Google Scholar]
- Weihs, G.; Reck, M.; Weinfurter, H.; Zeilinger, A. All-fiber three-path mach-zehnder interferometer. Opt. Lett. 1996, 21, 302–304. [Google Scholar] [CrossRef]
- Thorlabs, Inc. Available online: https://www.thorlabs.com/ (accessed on 1 October 2024).
- Preumont, A. Controllability and Observability. Vibration Control of Active Structures. In Solid Mechanics and Its Applications; Springer: Berlin/Heidelberg, Germany, 2011; Volume 179, pp. 275–297. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abarzúa, H.; Melo, C.; Restrepo, S.E.; Vergara, S.; Sbarbaro, D.; Cañas, G.; Lima, G.; Saavedra, G.; Cariñe, J. Adaptive-Step Perturb-and-Observe Algorithm for Multidimensional Phase Noise Stabilization in Fiber-Based Multi-Arm Mach–Zehnder Interferometers. Algorithms 2024, 17, 534. https://doi.org/10.3390/a17120534
Abarzúa H, Melo C, Restrepo SE, Vergara S, Sbarbaro D, Cañas G, Lima G, Saavedra G, Cariñe J. Adaptive-Step Perturb-and-Observe Algorithm for Multidimensional Phase Noise Stabilization in Fiber-Based Multi-Arm Mach–Zehnder Interferometers. Algorithms. 2024; 17(12):534. https://doi.org/10.3390/a17120534
Chicago/Turabian StyleAbarzúa, H., C. Melo, S. E. Restrepo, S. Vergara, D. Sbarbaro, G. Cañas, G. Lima, G. Saavedra, and J. Cariñe. 2024. "Adaptive-Step Perturb-and-Observe Algorithm for Multidimensional Phase Noise Stabilization in Fiber-Based Multi-Arm Mach–Zehnder Interferometers" Algorithms 17, no. 12: 534. https://doi.org/10.3390/a17120534
APA StyleAbarzúa, H., Melo, C., Restrepo, S. E., Vergara, S., Sbarbaro, D., Cañas, G., Lima, G., Saavedra, G., & Cariñe, J. (2024). Adaptive-Step Perturb-and-Observe Algorithm for Multidimensional Phase Noise Stabilization in Fiber-Based Multi-Arm Mach–Zehnder Interferometers. Algorithms, 17(12), 534. https://doi.org/10.3390/a17120534