On the Need for Accurate Brushstroke Segmentation of Tablet-Acquired Kinematic and Pressure Data: The Case of Unconstrained Tracing
Abstract
:1. Introduction
2. Materials and Methods
2.1. Participants
2.2. Tracing Protocol
2.3. Tracing Data
2.4. Segmentation Algorithm
2.5. Algorithm Validation
3. Results
4. Discussion
4.1. The Segmentation Algorithm Performance
4.2. Impact of Segmentation Errors on Spatial Features
4.3. Impact of Segmentation Errors on Temporal and Kinematic Features
4.4. Instrumentation Considerations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Asselborn, T.; Chapatte, M.; Dillenbourg, P. Extending the Spectrum of Dysgraphia: A Data Driven Strategy to Estimate Handwriting Quality. Sci. Rep. 2020, 10, 3140. [Google Scholar] [CrossRef]
- Asselborn, T.; Gargot, T.; Kidziński, Ł.; Johal, W.; Cohen, D.; Jolly, C.; Dillenbourg, P. Automated human-level diagnosis of dysgraphia using a consumer tablet. npj Digit. Med. 2018, 1, 42. [Google Scholar] [CrossRef]
- Drotar, P.; Mekyska, J.; Rektorova, I.; Masarova, L.; Smekal, Z.; Faundez-Zanuy, M. Decision Support Framework for Parkinson’s Disease Based on Novel Handwriting Markers. IEEE Trans. Neural Syst. Rehabil. Eng. 2015, 23, 508–516. [Google Scholar] [CrossRef]
- Fleury, A.; Kushki, A.; Tanel, N.; Anagnostou, E.; Chau, T. Statistical persistence and timing characteristics of repetitive circle drawing in children with ASD. Dev. Neurorehabilit. 2013, 16, 245–254. [Google Scholar] [CrossRef]
- Cohen, E.J.; Bravi, R.; Minciacchi, D. Assessing the Development of Fine Motor Control in Elementary School Children Using Drawing and Tracing Tasks. Percept. Mot. Ski. 2021, 128, 605–624. [Google Scholar] [CrossRef] [PubMed]
- Dui, L.G.; Lomurno, E.; Lunardini, F.; Termine, C.; Campi, A.; Matteucci, M.; Ferrante, S. Identification and characterization of learning weakness from drawing analysis at the pre-literacy stage. Sci. Rep. 2022, 12, 21624. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S.; Dror, G. Identifying Developmental Dysgraphia Characteristics Utilizing Handwriting Classification Methods. IEEE Trans. Hum.-Mach. Syst. 2016, 47, 293–298. [Google Scholar] [CrossRef]
- Lopez-De-Ipina, K.; Solé-Casals, J.; Faúndez-Zanuy, M.; Calvo, P.M.; Sesa, E.; Roure, J.; Martinez-De-Lizarduy, U.; Beitia, B.; Fernández, E.; Iradi, J.; et al. Automatic Analysis of Archimedes’ Spiral for Characterization of Genetic Essential Tremor Based on Shannon’s Entropy and Fractal Dimension. Entropy 2018, 20, 531. [Google Scholar] [CrossRef]
- Johnson, B.P.; Phillips, J.G.; Papadopoulos, N.; Fielding, J.; Tonge, B.; Rinehart, N.J. Understanding macrographia in children with autism spectrum disorders. Res. Dev. Disabil. 2013, 34, 2917–2926. [Google Scholar] [CrossRef]
- Mekyska, J.; Faundez-Zanuy, M.; Mzourek, Z.; Galaz, Z.; Smekal, Z.; Rosenblum, S. Identification and Rating of Developmental Dysgraphia by Handwriting Analysis. IEEE Trans. Hum.-Mach. Syst. 2016, 47, 235–248. [Google Scholar] [CrossRef]
- Paz-Villagrán, V.; Danna, J.; Velay, J.-L. Lifts and stops in proficient and dysgraphic handwriting. Hum. Mov. Sci. 2014, 33, 381–394. [Google Scholar] [CrossRef]
- Parziale, A.; Senatore, R.; Della Cioppa, A.; Marcelli, A. Cartesian genetic programming for diagnosis of Parkinson disease through handwriting analysis: Performance vs. interpretability issues. Artif. Intell. Med. 2020, 111, 101984. [Google Scholar] [CrossRef] [PubMed]
- Di Brina, C.; Niels, R.; Overvelde, A.; Levi, G.; Hulstijn, W. Dynamic time warping: A new method in the study of poor handwriting. Hum. Mov. Sci. 2008, 27, 242–255. [Google Scholar] [CrossRef] [PubMed]
- Mavrogiorgou, P.; Mergl, R.; Tigges, P.; El Husseini, J.; Schröter, A.; Juckel, G.; Zaudig, M.; Hegerl, U. Kinematic analysis of handwriting movements in patients with obsessive-compulsive disorder. J. Neurol. Neurosurg. Psychiatry 2001, 70, 605–612. [Google Scholar] [CrossRef]
- Rosenblum, S.; Dvorkin, A.Y.; Weiss, P.L. Automatic segmentation as a tool for examining the handwriting process of children with dysgraphic and proficient handwriting. Hum. Mov. Sci. 2006, 25, 608–621. [Google Scholar] [CrossRef]
- Fitjar, C.L.; Rønneberg, V.; Nottbusch, G.; Torrance, M. Learning Handwriting: Factors Affecting Pen-Movement Fluency in Beginning Writers. Front. Psychol. 2021, 12, 663829. [Google Scholar] [CrossRef]
- Falk, T.H.; Tam, C.; Schellnus, H.; Chau, T. On the development of a computer-based handwriting assessment tool to objectively quantify handwriting proficiency in children. Comput. Methods Programs Biomed. 2011, 104, e102–e111. [Google Scholar] [CrossRef]
- Rosenblum, S.; Parush, S.; Weiss, P.L. Computerized Temporal Handwriting Characteristics of Proficient and Non-Proficient Handwriters. Am. J. Occup. Ther. 2003, 57, 129–138. [Google Scholar] [CrossRef] [PubMed]
- Rosenblum, S. Development, Reliability, and Validity of the Handwriting Proficiency Screening Questionnaire (HPSQ). Am. J. Occup. Ther. 2008, 62, 298–307. [Google Scholar] [CrossRef]
- Van Gemmert, A.W.A.; Adler, C.H.; Stelmach, G.E. Parkinson′s disease patients undershoot target size in handwriting and similar tasks. J. Neurol. Neurosurg. Psychiatry 2003, 74, 1502–1508. [Google Scholar] [CrossRef] [PubMed]
- Caligiuri, M.P.; Teulings, H.-L.; Dean, C.E.; Niculescu, A.B.; Lohr, J.B. Handwriting movement kinematics for quantifying extrapyramidal side effects in patients treated with atypical antipsychotics. Psychiatry Res. 2010, 177, 77–83. [Google Scholar] [CrossRef]
- Broderick, M.P.; Van Gemmert, A.W.A.; Shill, H.A.; Stelmach, G.E. Hypometria and bradykinesia during drawing movements in individuals with Parkinson’s disease. Exp. Brain Res. 2009, 197, 223–233. [Google Scholar] [CrossRef]
- Kushki, A.; Schwellnus, H.; Ilyas, F.; Chau, T. Changes in kinetics and kinematics of handwriting during a prolonged writing task in children with and without dysgraphia. Res. Dev. Disabil. 2011, 32, 1058–1064. [Google Scholar] [CrossRef]
- Fitjar, C.L.; Rønneberg, V.; Torrance, M. Assessing handwriting: A method for detailed analysis of letter-formation accuracy and fluency. Read. Writ. 2022, 37, 291–327. [Google Scholar] [CrossRef]
- Danna, J.; Paz-Villagrán, V.; Velay, J.-L. Signal-to-Noise velocity peaks difference: A new method for evaluating the handwriting movement fluency in children with dysgraphia. Res. Dev. Disabil. 2013, 34, 4375–4384. [Google Scholar] [CrossRef] [PubMed]
- Schenk, T.; Bauer, B.; Steidle, B.; Marquardt, C. Does training improve writer’s cramp?: An evaluation of a behavioral treatment approach using kinematic analysis. J. Hand Ther. 2004, 17, 349–363. [Google Scholar] [CrossRef]
- Kushki, A.; Chau, T.; Anagnostou, E. Handwriting Difficulties in Children with Autism Spectrum Disorders: A Scoping Review. J. Autism Dev. Disord. 2011, 41, 1706–1716. [Google Scholar] [CrossRef] [PubMed]
- Degtyarenko, I.; Radyvonenko, O.; Bokhan, K.; Khomenko, V. Text/shape classifier for mobile applications with handwriting input. Int. J. Doc. Anal. Recognit. 2016, 19, 369–379. [Google Scholar] [CrossRef]
- López-De-Ipiña, K.; Solé-Casals, J.; Faundez-Zanuy, M.; Calvo, P.M.; Sesa, E.; de Lizarduy, U.M.; De La Riva, P.; Marti-Masso, J.F.; Beitia, B.; Bergareche, A. Selection of Entropy Based Features for Automatic Analysis of Essential Tremor. Entropy 2016, 18, 184. [Google Scholar] [CrossRef]
- Reinders-Messelink, H.; Schoemaker, M.; Snijders, T.; Göeken, L.; Bökkerink, J.; Kamps, W. Analysis of handwriting of children during treatment for acute lymphoblastic leukemia. Med. Pediatr. Oncol. 2001, 37, 393–399. [Google Scholar] [CrossRef] [PubMed]
Temporal Features (In Units of Seconds) | Spatial Features (In Units of Pixels) |
---|---|
Total on-screen time | Average distance between brushstrokes |
Average on-screen time | Standard deviation distance between brushstrokes |
Standard deviation on-screen time | Maximum distance between brushstrokes |
Maximum on-screen time | Minimum distance between brushstrokes |
Minimum on-screen time | Average brushstroke width |
Total in-air time | Standard deviation brushstroke width |
Average in-air time | Maximum brushstroke width |
Standard deviation in-air time | Minimum brushstroke width |
Maximum in-air time | Average brushstroke height |
Minimum in-air time | Standard deviation brushstroke height |
Total movement time | Maximum brushstroke height |
Total stop time | Minimum brushstroke height |
In-air/on-paper time ratio (dimensionless) | Average brushstroke length |
Standard deviation brushstroke length | |
Maximum brushstroke length | |
Minimum brushstroke length | |
Kinematic features (pixels/s) | |
Average velocity | |
Standard deviation stroke velocity | |
Maximum stroke velocity | |
Average acceleration (pixels/s2) | |
Standard deviation acceleration (pixels/s2) | |
Maximum acceleration (pixels/s2) | |
Minimum acceleration (pixels/s2) | |
Average fluency (number of velocity inversions) |
Condition | ||||||
---|---|---|---|---|---|---|
Trial | Hand Position | Drawing Speed | Number of Pen Lifts | Image | Number of Actual Segments | Number of Detected Segments |
1 | resting | slow | minimum | yoda | 11 | 11 |
2 | lego | 3 | 3 | |||
3 | resting | fast | maximum | yoda | 48 | 48 |
4 | lego | 67 | 67 | |||
5 | resting | variable | minimum | yoda | 9 * | 10 * |
6 | lego | 6 | 6 | |||
7 | resting | slow | maximum | yoda | 43 | 43 |
8 | lego | 63 | 63 | |||
9 | resting | fast | minimum | yoda | 11 | 11 |
10 | lego | 5 | 5 | |||
11 | resting | variable | maximum | yoda | 41 | 41 |
12 | lego | 55 | 55 | |||
13 | not resting | slow | minimum | yoda | 4 * | 5 * |
14 | lego | 5 * | 6 * | |||
15 | not resting | fast | maximum | yoda | 45 | 45 |
16 | lego | 70 | 70 | |||
17 | not resting | variable | minimum | yoda | 1 | 1 |
18 | lego | 5 * | 6 * | |||
19 | not resting | slow | maximum | yoda | 43 | 43 |
20 | lego | 52 | 52 | |||
21 | not resting | fast | minimum | yoda | 4 | 4 |
22 | lego | 1 * | 2 * | |||
23 | not resting | variable | maximum | yoda | 39 | 39 |
24 | lego | 44 | 44 |
Trial | Image | Number of Actual Segments | Number of Detected Segments |
---|---|---|---|
1 | yoda | 19 | 19 |
2 | yoda | 34 * | 33 * |
3 | yoda | 26 | 26 |
4 | lego | 22 | 22 |
5 | lego | 24 | 24 |
6 | yoda | 37 | 37 |
7 | yoda | 53 | 53 |
8 | yoda | 12 | 12 |
9 | yoda | 41 | 41 |
10 | lego | 27 | 27 |
11 | yoda | 26 * | 28 * |
12 | yoda | 26 | 26 |
13 | lego | 31 | 31 |
14 | lego | 33 | 33 |
Biomechanical Features | Avg Error ± SD % |
---|---|
Minimum distance between brushstrokes | 99.31 ± 1.08 |
Minimum in-air time | 95.34 ± 1.96 |
Standard deviation of in-air time | 49.21 ± 27.33 |
Standard deviation of on-screen time | 30.71 ± 14.82 |
Standard deviation of brushstroke length | 28.84 ± 11.60 |
Maximum on-screen time | 24.95 ± 23.95 |
Average fluency | 22.76 ± 15.66 |
Average on-screen time | 22.71 ± 15.70 |
Average brushstroke length | 22.69 ± 15.70 |
Average in-air time | 22.02 ± 15.52 |
Maximum brushstroke length | 21.04 ± 20.22 |
Average distance between brushstrokes | 18.60 ± 5.76 |
Average brushstroke width | 15.45 ± 10.81 |
Standard deviation of brushstroke height | 14.21 ± 4.05 |
Minimum brushstroke length | 11.12 ± 24.86 |
Minimum on-screen time | 10.77 ± 22.68 |
Average acceleration | 12.66 ± 15.19 |
Standard deviation of brushstroke width | 6.26 ± 5.61 |
Maximum brushstroke height | 6.04 ± 12.42 |
Minimum brushstroke width | 5.75 ± 12.85 |
Average brushstroke height | 4.98 ± 3.97 |
Maximum brushstroke width | 4.07 ± 9.10 |
Standard deviation of distance between brushstrokes | 2.88 ± 1.81 |
Minimum brushstroke height | 1.72 ± 3.84 |
In-air/on-surface time ratio | 0.99 ± 0.61 |
Total in-air time | 0.92 ± 0.60 |
Maximum distance between brushstrokes | 0.88 ± 1.76 |
Total stop time | 0.27 ± 0.05 |
Maximum in-air time | 0.23 ± 0.51 |
Standard deviation of acceleration | 0.13 ± 0.19 |
Total on-screen time | 0.06 ± 0.02 |
Average velocity | 0.05 ± 0.02 |
Standard deviation of velocity | 0.04 ± 0.08 |
Total movement time | 0.04 ± 0.02 |
Maximum velocity | 0.00 ± 0.00 |
Maximum acceleration | 0.00 ± 0.00 |
Minimum acceleration | 0.00 ± 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Franz, K.S.; Reszetnik, G.; Chau, T. On the Need for Accurate Brushstroke Segmentation of Tablet-Acquired Kinematic and Pressure Data: The Case of Unconstrained Tracing. Algorithms 2024, 17, 128. https://doi.org/10.3390/a17030128
Franz KS, Reszetnik G, Chau T. On the Need for Accurate Brushstroke Segmentation of Tablet-Acquired Kinematic and Pressure Data: The Case of Unconstrained Tracing. Algorithms. 2024; 17(3):128. https://doi.org/10.3390/a17030128
Chicago/Turabian StyleFranz, Karly S., Grace Reszetnik, and Tom Chau. 2024. "On the Need for Accurate Brushstroke Segmentation of Tablet-Acquired Kinematic and Pressure Data: The Case of Unconstrained Tracing" Algorithms 17, no. 3: 128. https://doi.org/10.3390/a17030128
APA StyleFranz, K. S., Reszetnik, G., & Chau, T. (2024). On the Need for Accurate Brushstroke Segmentation of Tablet-Acquired Kinematic and Pressure Data: The Case of Unconstrained Tracing. Algorithms, 17(3), 128. https://doi.org/10.3390/a17030128