Minimizing Voltage Ripple of a DC Microgrid via a Particle-Swarm-Optimization-Based Fuzzy Controller
Abstract
:1. Introduction
2. Problem Formulation
2.1. Model of Stochastic Power Source
2.2. Model of Stochastic Load
2.3. Stabilizer Model
2.4. Ballast Load
3. Methodology
3.1. Control Design
- Duty cycle signals initiate battery or supercapacitor discharge into the DC microgrid when production is lower than consumption, providing additional electrical energy.
- When the battery and supercapacitor are fully charged and the production exceeds consumption, these signals discharge overvoltage on the OVD component to prevent overcharging, ensuring safety.
- Alternatively, these duty cycles can be applied to the boost converters of the battery or supercapacitor to charge them when their charge is below the full amount.
Fuzzy Rules
3.2. Optimization Method
Algorithm 1 Algorithm of the PSO-based fuzzy controller: |
|
4. Simulation Results
4.1. Initialization and Fuzzy Optimization
4.2. Ripple Minimization
4.3. Battery Current Minimization
4.4. Energy Transfer between Battery and Supercapacitor
5. Conclusions
- Development of a new PSO-based fuzzy controller designed to minimize the ripple of DC microgrid bus voltage and reduce battery activation frequency.
- Implementation of energy transfer between the supercapacitor and the battery to minimize ripple and increase battery lifespan.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Urcan, D.C.; Bică, D. Integrating and modeling the Vehicle to Grid concept in Micro-Grids. In Proceedings of the 2019 International Conference on ENERGY and ENVIRONMENT (CIEM), Timisoara, Romania, 17–18 October 2019. [Google Scholar] [CrossRef]
- Srujan, D.; Thogaru, R.; Mitra, A.; Borghate, V.B. Energy management in grid-assisted BESS integrated solar PV-based smart charging station. In Proceedings of the IECON 2019—45th Annual Conference of the IEEE Industrial Electronics Society, Lisbon, Portugal, 14–17 October 2019. [Google Scholar] [CrossRef]
- Rangarajan, S.S.; Raman, R.; Singh, A.; Shiva, C.K.; Kumar, R.; Sadhu, P.K.; Collins, E.R.; Senjyu, T. DC microgrids: A propitious smart grid paradigm for Smart Cities. Smart Cities 2023, 6, 1690–1718. [Google Scholar] [CrossRef]
- Al-Ismail, F.S. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access 2021, 9, 36154–36172. [Google Scholar] [CrossRef]
- Garcia Elvira, D.; Valderrama Blavi, H.; Cid Pastor, A.; Martinez Salamero, L. Efficiency optimization of a variable bus voltage DC microgrid. Energies 2018, 11, 3090. [Google Scholar] [CrossRef]
- Ullah, S.; Haidar, A.M.; Hoole, P.; Zen, H.; Ahfock, T. The current state of Distributed Renewable Generation, challenges of interconnection and opportunities for energy conversion based DC microgrids. J. Clean. Prod. 2020, 273, 122777. [Google Scholar] [CrossRef]
- Dutta, S.; Johnson, B. A Practical Digital Implementation of Completely Decentralized Ripple Minimization in Parallel-Connected DC–DC Converters. IEEE Trans. Power Electron. 2022, 37, 14422–14433. [Google Scholar] [CrossRef]
- Xia, Y.; Wei, W.; Long, T.; Blaabjerg, F.; Wang, P. New analysis framework for transient stability evaluation of DC microgrids. IEEE Trans. Smart Grid 2020, 11, 2794–2804. [Google Scholar] [CrossRef]
- Li, X.; Li, Z.; Guo, L.; Zhu, J.; Wang, Y.; Wang, C. Enhanced dynamic stability control for low-inertia hybrid AC/DC microgrid with distributed energy storage systems. IEEE Access 2019, 7, 91234–91242. [Google Scholar] [CrossRef]
- El-Shahat, A.; Sumaiya, S. DC-microgrid system design, control, and analysis. Electronics 2019, 8, 124. [Google Scholar] [CrossRef]
- Twaisan, K.; Barışçı, N. Integrated Distributed Energy Resources (DER) and Microgrids: Modeling and Optimization of DERs. Electronics 2022, 11, 2816. [Google Scholar] [CrossRef]
- Naderi, E.; Mirzaei, L.; Pourakbari-Kasmaei, M.; Cerna, F.V.; Lehtonen, M. Optimization of active power dispatch considering unified power flow controller: Application of evolutionary algorithms in a fuzzy framework. Evol. Intell. 2023, 1–31. [Google Scholar] [CrossRef]
- Naderi, E.; Mirzaei, L.; Trimble, J.P.; Cantrell, D.A. Multi-objective optimal power flow incorporating flexible alternating current transmission systems: Application of a wavelet-oriented evolutionary algorithm. Electr. Power Components Syst. 2024, 52, 766–795. [Google Scholar] [CrossRef]
- Naderi, E.; Azizivahed, A.; Asrari, A. A step toward cleaner energy production: A water saving-based optimization approach for economic dispatch in modern power systems. Electr. Power Syst. Res. 2022, 204, 107689. [Google Scholar] [CrossRef]
- Keyhani, A. Smart power grids. In Smart Power Grids 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 1–25. [Google Scholar]
- Zolfaghari, A.; Aminian, E.; Saffari, H. Numerical investigation on entropy generation in the dropwise condensation inside an inclined pipe. Heat Transf. 2022, 51, 551–577. [Google Scholar] [CrossRef]
- Aghajani, G.; Ghadimi, N. Multi-objective energy management in a micro-grid. Energy Rep. 2018, 4, 218–225. [Google Scholar] [CrossRef]
- Cheng, L.; Yu, T. Game-theoretic approaches applied to transactions in the open and ever-growing electricity markets from the perspective of power demand response: An overview. IEEE Access 2019, 7, 25727–25762. [Google Scholar] [CrossRef]
- Mengelkamp, E.; Gärttner, J.; Rock, K.; Kessler, S.; Orsini, L.; Weinhardt, C. Designing microgrid energy markets: A case study: The Brooklyn Microgrid. Appl. Energy 2018, 210, 870–880. [Google Scholar] [CrossRef]
- Xiong, X.; Yang, Y. A photovoltaic-based DC microgrid system: Analysis, design and experimental results. Electronics 2020, 9, 941. [Google Scholar] [CrossRef]
- Prasad, B.H.; Thogaru, R.B.; Mitra, A. Integration of Electric Vehicles to DC microgrid Enabling V2G and G2V. In Proceedings of the 2022 IEEE Students Conference on Engineering and Systems (SCES), Prayagraj, India, 1–3 July 2022; pp. 1–6. [Google Scholar] [CrossRef]
- Farrokhabadi, M.; König, S.; Cañizares, C.A.; Bhattacharya, K.; Leibfried, T. Battery energy storage system models for microgrid stability analysis and dynamic simulation. IEEE Trans. Power Syst. 2017, 33, 2301–2312. [Google Scholar] [CrossRef]
- Banerji, A.; Sharma, K.; Singh, R.R. Integrating Renewable Energy and Electric Vehicle Systems into Power Grid: Benefits and Challenges. In Proceedings of the 2021 Innovations in Power and Advanced Computing Technologies (i-PACT), Kuala Lumpur, Malaysia, 27–29 November 2021; pp. 1–6. [Google Scholar] [CrossRef]
- Zhao, Q.; Xu, J.; Yang, J.; Liao, K.; He, Z. Three-stage optimal control approach of DC microgrid considering EVs interval prediction and BESS rolling power limits. CSEE J. Power Energy Syst. 2023, 1–11. [Google Scholar]
- Li, S.; Zhao, P.; Gu, C.; Li, J.; Huo, D.; Cheng, S. Aging mitigation for battery energy storage system in electric vehicles. IEEE Trans. Smart Grid 2022, 14, 2152–2163. [Google Scholar] [CrossRef]
- Wang, M.H.; Tan, S.C.; Lee, C.K.; Hui, S. A configuration of storage system for DC microgrids. IEEE Trans. Power Electron. 2017, 33, 3722–3733. [Google Scholar] [CrossRef]
- Fazal, S.; Haque, M.E.; Arif, M.T.; Gargoom, A.; Oo, A.M.T. Grid integration impacts and control strategies for renewable based microgrid. Sustain. Energy Technol. Assessments 2023, 56, 103069. [Google Scholar] [CrossRef]
- Sepasi, S.; Talichet, C.; Pramanik, A.S. Power Quality in Microgrids: A Critical Review of Fundamentals, Standards, and Case Studies. IEEE Access 2023, 11, 108493–108531. [Google Scholar] [CrossRef]
- Sevostyanov, N.A.; Gorbunov, R.L. Control Strategy to Mitigate Voltage Ripples in Droop-Controlled DC Microgrids. IEEE Trans. Power Electron. 2023, 38, 15377–15389. [Google Scholar] [CrossRef]
- Chaturvedi, S.; Fulwani, D.; Patel, D. Dynamic virtual impedance-based second-order ripple regulation in DC microgrids. IEEE J. Emerg. Sel. Top. Power Electron. 2021, 10, 1075–1083. [Google Scholar] [CrossRef]
- Ferahtia, S.; Djerioui, A.; Rezk, H.; Chouder, A.; Houari, A.; Machmoum, M. Adaptive droop based control strategy for DC microgrid including multiple batteries energy storage systems. J. Energy Storage 2022, 48, 103983. [Google Scholar] [CrossRef]
- Sekhar, P.; Krishna, U. Voltage ripple mitigation in DC microgrid with constant power loads. IFAC-PapersOnLine 2019, 52, 300–305. [Google Scholar] [CrossRef]
- Srivastava, C.; Tripathy, M. DC microgrid protection issues and schemes: A critical review. Renew. Sustain. Energy Rev. 2021, 151, 111546. [Google Scholar] [CrossRef]
- Hannan, M.A.; Faisal, M.; Ker, P.J.; Begum, R.A.; Dong, Z.Y.; Zhang, C. Review of optimal methods and algorithms for sizing energy storage systems to achieve decarbonization in microgrid applications. Renew. Sustain. Energy Rev. 2020, 131, 110022. [Google Scholar] [CrossRef]
- Smith, R.; Lukowski, J.; Weaver, W. DC microgrid stabilization through fuzzy control of interleaved heterogeneous storage elements. In Proceedings of the 2018 IEEE 19th Workshop on Control and Modeling for Power Electronics (COMPEL), Padua, Italy, 25–28 June 2018. [Google Scholar] [CrossRef]
- Smith, R.; Lukowski, J.; Weaver, W. Fuzzy control of energy storage systems in DC microgrids. In Proceedings of the 2019 IEEE 20th Workshop on Control and Modeling for Power Electronics (COMPEL), Toronto, ON, Canada, 17–20 June 2019. [Google Scholar] [CrossRef]
- Taheri, B.; Shahhoseini, A. Direct current (DC) microgrid control in the presence of electrical vehicle/photovoltaic (EV/PV) systems and hybrid energy storage systems: A Case study of grounding and protection issue. IET Gener. Transm. Distrib. 2023, 17, 3084–3099. [Google Scholar] [CrossRef]
- Zadeh, L. Outline of a new approach to the analysis of complex systems and decision processes. IEEE Trans. Syst. Man, Cybern. 1973, 1, 28–44. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95—International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995. [Google Scholar] [CrossRef]
- Karimi, H.; Dashti, R. Comprehensive framework for capacitor placement in distribution networks from the perspective of distribution system management in a restructured environment. Int. J. Electr. Power Energy Syst. 2016, 82, 11–18. [Google Scholar] [CrossRef]
Input and Output | Term |
---|---|
Bus voltage error | e |
Integrated bus voltage error | |
Battery voltage | |
Ultracapacitor voltage | |
Battery current | |
Ultracapacitor current | |
Over-voltage discharge current |
Rules | e | Then | ||||||
---|---|---|---|---|---|---|---|---|
1 | Not high | High | Negative | Negative | then | Very Neg | - | - |
2 | Not high | Not low | Negative | - | then | Neg | - | - |
3 | Not low | Not high | Positive | - | then | Pos | - | - |
4 | Not low | Low | Positive | Positive | then | Very Pos | - | - |
5 | - | Not Low | Positive | - | then | Zero | - | - |
6 | - | Not high | Negative | - | then | Zero | - | - |
7 | - | Not high | Negative | Negative | then | - | Very Neg | - |
8 | - | Not high | Negative | - | then | - | Neg | - |
9 | - | Not low | Positive | - | then | - | Pos | - |
10 | - | Not low | Positive | - | then | - | Very Pos | - |
11 | High | High | Negative | - | then | - | - | Low |
12 | High | High | Negative | Negative | then | - | - | High |
13 | Not high | - | - | - | then | - | - | Off |
14 | - | Not high | - | - | then | - | - | Off |
15 | - | - | Not Pos | - | then | - | - | Off |
16 | - | - | - | Not Pos | then | - | - | Off |
17 | High | Low | - | - | then | Pos | - | - |
18 | High | Low | - | - | then | - | Neg | - |
19 | Low | High | - | - | then | Neg | - | - |
20 | Low | High | - | - | then | - | Pos | - |
Methods | IAE |
---|---|
PI controller | 33.5499 |
Fuzzy controller | 37.3996 |
PSO-based fuzzy controller | 18.768 |
Methods | IAE |
---|---|
PI controller | 304.5562 |
Fuzzy controller | 118.5752 |
PSO-based fuzzy controller | 67.1039 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolfaghari, H.; Karimi, H.; Ramezani, A.; Davoodi, M. Minimizing Voltage Ripple of a DC Microgrid via a Particle-Swarm-Optimization-Based Fuzzy Controller. Algorithms 2024, 17, 140. https://doi.org/10.3390/a17040140
Zolfaghari H, Karimi H, Ramezani A, Davoodi M. Minimizing Voltage Ripple of a DC Microgrid via a Particle-Swarm-Optimization-Based Fuzzy Controller. Algorithms. 2024; 17(4):140. https://doi.org/10.3390/a17040140
Chicago/Turabian StyleZolfaghari, Hussein, Hossein Karimi, Amin Ramezani, and Mohammadreza Davoodi. 2024. "Minimizing Voltage Ripple of a DC Microgrid via a Particle-Swarm-Optimization-Based Fuzzy Controller" Algorithms 17, no. 4: 140. https://doi.org/10.3390/a17040140
APA StyleZolfaghari, H., Karimi, H., Ramezani, A., & Davoodi, M. (2024). Minimizing Voltage Ripple of a DC Microgrid via a Particle-Swarm-Optimization-Based Fuzzy Controller. Algorithms, 17(4), 140. https://doi.org/10.3390/a17040140