The Algorithm of Gu and Eisenstat and D-Optimal Design of Experiments
Abstract
:1. Introduction
2. Least Squares Problems
3. Aggregate Measures of Uncertainty
4. Choosing a D-Optimal Subset of n Measurements
4.1. Subset Selection Using the QR Factorisation with Column Pivoting
Algorithm 1: SSQR: subset selection algorithm using QR with column pivoting to determine a favourable subset of an observation matrix in terms of the D-measure |
Data: An observation matrix C. Result: Index set where the first n elements specify that represent a good selection of the rows of C in terms of maximising the determinant. Steps: Determine the QR factorization of , where is an orthogonal matrix. Use column pivoting to find the QR factorisation of so that , where U is an orthogonal matrix and T is upper-triangular. Assign the index I by assigning where specifies the row index of the kth column of P such that . |
4.2. Exchange Approach Based on the Gu and Eisenstat Algorithm
Algorithm 2: Basic steps to determine a D-optimal subset of an observation matrix |
- 4.1
- Determine orthogonal Q such that is upper-triangular.
- 4.2
- Set
Algorithm 3: GE: efficient algorithm to determine a D-optimal subset of an observation matrix |
4.3. Combined SSQR-GE Algorithm
4.4. Sequential Approach for Choosing a Set of Additional Observations
4.4.1. Sequential D-Optimality Algorithm
Algorithm 4: Sequential approach to optimising the D-measure in choosing p observations from a possible observations |
4.4.2. Expected Information Gain Calculations
4.4.3. Sequential A-Optimality Algorithm
Algorithm 5: Sequential approach to optimising the A-measure in choosing p observations from a possible observations |
5. Numerical Examples
5.1. Polynomial Calibration Curves
5.2. Tensor Product of Polynomials
5.3. Coordinate Metrology
5.4. Calibration of a Network of Standards Using a Comparator
6. Concluding Remarks
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Numerical Linear Algebra
Appendix A.1. Sherman-Morrison Formula
Appendix A.2. Determinant of a Rank One Update of a Matrix
Appendix B. Legendre Polynomials
References
- Atkinson, A.C.; Donev, A.N.; Tobias, R.D. Optimum Experimental Designs, with SAS; Oxford University Press: Oxford, UK, 2007. [Google Scholar]
- Box, G.E.P.; Hunter, W.G.; Hunter, J.S. Statistics for Experimenters: Design, Innovation and Discovery, 2nd ed.; Wiley: Hoboken, NJ, USA, 2005. [Google Scholar]
- Chaloner, K. Optimal Bayesian experimental design for linear models. Ann. Stat. 1984, 12, 283–300. [Google Scholar] [CrossRef]
- Forbes, A.B.; Minh, H.D. Design of linear calibration experiments. Measurement 2013, 46, 3730–3736. [Google Scholar] [CrossRef]
- Goos, P. The Optimal Design of Blocked and Split-Plot Experiments; Springer: New York, NY, USA, 2002. [Google Scholar]
- Goos, P.; Jones, B. Optimal Design of Experiments: A Case Study Approach; John Wiley & Sons: New York, NY, USA, 2011. [Google Scholar]
- Jones, B.; Nachtsheim, C.J. Effective Model Selection for Definitive Screening Designs. Technometrics 2017, 59, 319–329. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments, 8th ed.; John Wiley & Sons: New York, NY, USA, 2013. [Google Scholar]
- Chretien, S.; Clarkson, P. A fast algorithm for the semi-definite relaxation of the state estimation problem in power grids. J. Ind. Manag. Optim. 2020, 16, 431–443. [Google Scholar] [CrossRef]
- Kekatos, V.; Giannakis, G.B. A convex relaxation approach to optimal placement of phasor measurement units. In Proceedings of the 2011 4th IEEE International Workshop on Computational Advances in Multi-Sensor Adaptive Processing (CAMSAP), San Juan, PR, USA, 13–16 December 2011; pp. 145–148. [Google Scholar]
- Berger, J.; Busser, T.; Dutykh, D.; Nathan Mendes, N. An efficient method to estimate sorption isotherm curve coefficients. Inverse Probl. Sci. Eng. 2019, 27, 735–772. [Google Scholar] [CrossRef]
- Berger, J.; Dutykh, D.; Mendes, N. On the optimal experiment design for heat and moisture parameter estimation. Exp. Therm. Fluid Sci. 2017, 81, 109–122. [Google Scholar] [CrossRef]
- Chernoff, H. Sequential Analysis and Optimal Design; Society for Industrial and Applied Mathematics: Philadelphia, PA, USA, 1972. [Google Scholar] [CrossRef]
- Meyer, R.K.; Nachtsheim, C.J. The Coordinate Exchange Algorithm for Constructing Exact Optimal Designs. Technometrics 1995, 37, 60–69. [Google Scholar] [CrossRef]
- Wald, A. Sequential Tests of Statistical Hypotheses. Ann. Math. Stat. 1945, 16, 117–186. [Google Scholar] [CrossRef]
- Boyd, S.; Vandenberghe, L. Convex Optimization; Cambridge University Press: Cambridge, UK, 2004. [Google Scholar]
- Gill, P.E.; Murray, W.; Wright, M.H. Practical Optimization; Academic Press: London, UK, 1981. [Google Scholar]
- Vandenberghe, L.; Boyd, S. Semidefinite Programming. SIAM Rev. 1996, 38, 49–95. [Google Scholar] [CrossRef]
- Barker, R.M.; Cox, M.G.; Forbes, A.B.; Harris, P.M. Software Support for Metrology Best Practice Guide No. 4: Modelling Discrete Data and Experimental Data Analysis. Technical Report DEM-ES 018; National Physical Laboratory: Teddington, UK, 2007.
- BIPM. The International System of Units (SI Brochure (EN)), 9th ed.; BIPM: Sèvres, France, 2019. [Google Scholar]
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement; JCGM 100:2008; Joint Committee for Guides in Metrology: Sèvres, France, 2008.
- BIPM; IEC; IFCC; ILAC; ISO; IUPAC; IUPAP; OIML. Evaluation of Measurement Data—Supplement 2 to the “Guide to the Expression of Uncertainty in Measurement”—Extension to Any Number of Output Quantities; JCGM 102:2011; Joint Committee for Guides in Metrology: Sèvres, France, 2011.
- Golub, G.; Van Loan, C. Matrix Computations, 4th ed.; Johns Hopkins University Press: Baltimore, MD, USA, 2013. [Google Scholar]
- Hart, G.W. Multidimensional Analysis: Algebras and Systems for Science and Engineering; Springer: Berlin, Germany, 1995. [Google Scholar]
- Gu, M.; Eisenstat, S.C. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization. SIAM J. Sci. Comput. 1996, 17, 848–869. [Google Scholar] [CrossRef]
- Sherman, J.; Morrison, W.J. Adjustment of an Inverse Matrix Corresponding to a Change in One Element of a Given Matrix. Ann. Math. Stat. 1950, 21, 124–127. [Google Scholar] [CrossRef]
- Wilkinson, J.H. The Algebraic Eigenvalue Problem; Oxford University Press, Inc.: New York, NY, USA, 1988. [Google Scholar]
- Preston-Thomas, H. The International Temperature Scale of 1990 (ITS-90). Metrologia 1990, 27, 3–10. [Google Scholar] [CrossRef]
- Bartlett, G.; Forbes, A.; Heaps, E.; Raby, A.C.; Yacoot, A. Spatial positioning correction for multi-axis nanopositioning stages. In Proceedings of the ASPE Convention and Expo, Indianapolis, IN, USA, 16–21 September 2022. [Google Scholar]
- Pukelsheim, F. Optimal Design of Experiments; SIAM: Philadelphia, PA, USA, 2006; Reproduction of 1993 book published by John Wiley and Sons, New York. [Google Scholar]
- Handscombe, D.C.; Mason, J.C. Chebyshev Polynomials; Chapman & Hall/CRC Press: London, UK, 2003. [Google Scholar]
- Forbes, A.B.; Jagan, K.; Dunlevy, J.; Sousa, J.A. Optimization of sensor distribution using Gaussian processes. Meas. Sens. 2021, 18, 100128. [Google Scholar] [CrossRef]
- Rasmussen, C.E.; Williams, C.K.I. Gaussian Processes for Machine Learning; MIT Press: Cambridge, MA, USA, 2006. [Google Scholar]
- Linkeová, I.; Zelený, V. Application of ruled surfaces in freeform and gear metrology. Acta Polytech. 2021, 61, 99–109. [Google Scholar] [CrossRef]
- Zelený, V.; Linkeová, I.; Skalnik, P. Calibration of freeform standard. In Proceedings of the 15th International Conference of the European Society for Precision Engineering and Nanotechnology, EUSPEN 2015, Leuven, Belgium, 1–5 June 2015; pp. 147–148. [Google Scholar]
- Forbes, A.B. Parameter estimation based on least squares methods. In Data Modeling for Metrology and Testing in Measurement Science; Pavese, F., Forbes, A.B., Eds.; Birkhäuser-Boston: New York, NY, USA, 2009; pp. 147–176. [Google Scholar]
- Forbes, A.B. Sensitivity analysis for Gaussian associated features. Appl. Sci. 2022, 12, 2808. [Google Scholar] [CrossRef]
- Grabe, M. Note on the Application of the Method of Least Squares. Metrologia 1978, 14, 143. [Google Scholar] [CrossRef]
- Hotelling, H. Some Improvements in Weighing and Other Experimental Techniques. Ann. Math. Stat. 1944, 15, 297–306. [Google Scholar] [CrossRef]
- Nielsen, L. Evaluation of mass measurements in accordance with the GUM. Metrologia 2014, 51, S183. [Google Scholar] [CrossRef]
- Lewis, A.J.; Hughes, E.B.; Aldred, P.J.E. Long term study of gauge block interferometer performance and gauge blocks stability. Metrologia 2010, 47, 473–486. [Google Scholar] [CrossRef]
- Ding, J.; Zhou, A. Eigenvalues of rank-one updated matrices with some applications. Appl. Math. Lett. 2007, 20, 1223–1226. [Google Scholar] [CrossRef]
- Hogben, L. (Ed.) Handbook of Linear Algebra; Chapman & Hall/CRC: Boca Raton, FL, USA, 2007. [Google Scholar]
- Abramowitz, M.; Stegun, I.A. Handbook of Mathematical Functions; Dover: New York, NY, USA, 1964. [Google Scholar]
- Fletcher, R. Practical Methods of Optimization, 2nd ed.; John Wiley and Sons: Chichester, UK, 1987. [Google Scholar]
−1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
−0.500 | −0.488 | −0.447 | −0.447 | −0.707 | −0.669 | −0.655 | −0.655 |
0.500 | 0.437 | 0.447 | 0.447 | 0.000 | 0.006 | 0.000 | 0.000 |
1.000 | 1.000 | 1.000 | 1.000 | 0.707 | 0.686 | 0.655 | 0.655 |
1.000 | 1.000 | 1.000 | 0.000 | ||||
−1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
−0.809 | −0.786 | −0.765 | −0.765 | −0.866 | −0.845 | −0.830 | −0.830 |
−0.309 | −0.286 | −0.285 | −0.285 | −0.500 | −0.484 | −0.469 | −0.469 |
0.309 | 0.308 | 0.285 | 0.285 | 0.000 | 0.002 | 0.000 | 0.000 |
0.809 | 0.779 | 0.765 | 0.765 | 0.500 | 0.493 | 0.469 | 0.469 |
1.000 | 1.000 | 1.000 | 1.000 | 0.866 | 0.841 | 0.830 | 0.830 |
1.000 | 1.000 | 1.000 | 0.000 | ||||
−1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
−0.901 | −0.880 | −0.872 | −0.872 | −0.924 | −0.908 | −0.900 | −0.900 |
−0.623 | −0.613 | −0.592 | −0.592 | −0.707 | −0.692 | −0.677 | −0.677 |
−0.223 | −0.211 | −0.209 | −0.209 | −0.383 | −0.383 | −0.363 | −0.363 |
0.223 | 0.225 | 0.210 | 0.209 | 0.000 | −0.002 | 0.000 | 0.000 |
0.623 | 0.608 | 0.592 | 0.592 | 0.383 | 0.376 | 0.363 | 0.363 |
0.901 | 0.882 | 0.872 | 0.872 | 0.707 | 0.695 | 0.677 | 0.677 |
1.000 | 1.000 | 1.000 | 1.000 | 0.924 | 0.906 | 0.900 | 0.900 |
1.000 | 1.000 | 1.000 | 0.000 | ||||
−1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 | −1.000 |
−0.940 | −0.925 | −0.920 | −0.920 | −0.951 | −0.938 | −0.934 | −0.934 |
−0.766 | −0.753 | −0.739 | −0.739 | −0.809 | −0.796 | −0.784 | −0.784 |
−0.500 | −0.493 | −0.478 | −0.478 | −0.588 | −0.580 | −0.565 | −0.565 |
−0.174 | −0.177 | −0.165 | −0.165 | −0.309 | −0.311 | −0.296 | −0.296 |
0.174 | 0.168 | 0.165 | 0.165 | 0.000 | −0.001 | 0.000 | 0.000 |
0.500 | 0.497 | 0.478 | 0.478 | 0.309 | 0.307 | 0.296 | 0.296 |
0.766 | 0.751 | 0.739 | 0.739 | 0.588 | 0.582 | 0.566 | 0.565 |
0.940 | 0.925 | 0.920 | 0.920 | 0.809 | 0.795 | 0.785 | 0.784 |
1.000 | 1.000 | 1.000 | 1.000 | 0.951 | 0.939 | 0.934 | 0.934 |
1.000 | 1.000 | 1.000 | 0.000 |
n | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
---|---|---|---|---|---|---|---|---|
0.4871 | 0.4152 | 0.3748 | 0.3511 | 0.3379 | 0.3316 | 0.3304 | 0.3332 | |
0.4714 | 0.3789 | 0.3175 | 0.2734 | 0.2403 | 0.2143 | 0.1935 | 0.1763 | |
0.4682 | 0.3746 | 0.3130 | 0.2691 | 0.2362 | 0.2107 | 0.1901 | 0.1733 | |
0.4673 | 0.3735 | 0.3119 | 0.2682 | 0.2354 | 0.2099 | 0.1894 | 0.1726 | |
3 | 6 | 7 | 9 | 12 | 17 | 19 | 21 |
2.3867 | 2.3867 | 0.0049 | 0.0049 | 0.0139 | 2.6219 | 2.6219 | 10.5328 | |
0.7259 | 0.7259 | 0.0042 | 0.0042 | 0.0035 | 0.4999 | 0.4999 | 2.8188 | |
0.2049 | 0.2413 | 0.0012 | 0.0014 | 0.0014 | 0.2883 | 0.2520 | 1.4690 |
1.00 | 0.50 | 0.50 | 0.20 | 0.20 | 1.0 | 1.0 | 0.05 | 0.05 |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | −1 | −1 | −1 | 0 | 0 | 0 |
0 | 0 | 1 | −1 | −1 | 0 | −1 | 0 | 0 |
0 | 0 | 0 | 1 | −1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | −1 | −1 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | −1 | −1 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −1 |
1.00 | 0.50 | 0.50 | 0.20 | 0.20 | 1.0 | 1.0 | 0.05 | 0.05 |
---|---|---|---|---|---|---|---|---|
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | −1 | −1 | −1 | −1 | −1 | 1 | 1 |
1 | −1 | −1 | 1 | −1 | 1 | −1 | 1 | −1 |
1 | −1 | −1 | 1 | −1 | −1 | 1 | −1 | 1 |
1 | −1 | −1 | −1 | 1 | 1 | −1 | −1 | 1 |
1 | −1 | −1 | −1 | 1 | −1 | 1 | 1 | −1 |
0 | 1 | 0 | −1 | −1 | 0 | 0 | −1 | −1 |
0 | 1 | −1 | 0 | 1 | −1 | 0 | −1 | −1 |
0 | 0 | 1 | −1 | 0 | −1 | −1 | −1 | −1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | −1 | −1 | −1 | −1 | 1 | 1 |
0 | 1 | −1 | 1 | −1 | 1 | −1 | −1 | 1 |
0 | 1 | −1 | 0 | 1 | −1 | 0 | −1 | −1 |
0 | 1 | −1 | 0 | −1 | 1 | 1 | 1 | −1 |
0 | 0 | 1 | −1 | −1 | 0 | 0 | −1 | −1 |
0 | 0 | 0 | 1 | 0 | −1 | −1 | 1 | −1 |
0 | 0 | 0 | 1 | −1 | −1 | 1 | −1 | 1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | −1 | −1 | 0 | −1 | 0 | 0 |
0 | 1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | −1 | −1 | 0 | 0 |
0 | 0 | 0 | 1 | −1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | −1 | −1 |
0 | 0 | 0 | 0 | 0 | 1 | −1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −1 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | −1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | −1 | −1 | 0 | −1 | 0 | 0 |
0 | 1 | −1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | −1 | −1 | 0 | 0 |
0 | 0 | 0 | 1 | −1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 1 | 0 | −1 | −1 |
0 | 0 | 0 | 0 | 0 | 1 | −1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | −1 |
E | O1 | E | 02 | E | O3 | E | 04 | |
---|---|---|---|---|---|---|---|---|
1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 |
0.50 | 0.61 | 0.56 | 0.66 | 0.64 | 0.69 | 0.69 | 1.04 | 1.04 |
0.50 | 0.61 | 0.55 | 0.66 | 0.64 | 0.69 | 0.69 | 1.04 | 1.04 |
0.20 | 0.39 | 0.31 | 0.43 | 0.40 | 0.60 | 0.58 | 0.50 | 0.57 |
0.20 | 0.49 | 0.29 | 0.52 | 0.39 | 0.61 | 0.58 | 0.54 | 0.60 |
0.10 | 0.57 | 0.26 | 0.61 | 0.32 | 0.90 | 0.44 | 0.57 | 0.36 |
0.10 | 0.91 | 0.27 | 1.03 | 0.36 | 1.64 | 0.45 | 1.34 | 0.34 |
0.05 | 0.35 | 0.20 | 0.36 | 0.28 | 0.40 | 0.48 | 0.29 | 0.27 |
0.05 | 0.35 | 0.20 | 0.36 | 0.28 | 0.40 | 0.48 | 0.29 | 0.27 |
0.17 | 0.06 | 0.21 | 0.12 | 0.21 | 0.13 | 0.21 | 0.15 | |
7.0 | 17.4 | 7.0 | 11.0 | 7.0 | 6.3 | 7.0 | 6.3 | |
24 | 62 | 24 | 48 | 24 | 22 | 24 | 22 | |
0.50 | 0.50 | 0.50 | 0.50 | 0.20 | 0.20 | 0.20 | 0.20 | |
0.00 | 0.00 | 0.20 | 0.20 | 0.80 | 0.80 | 0.20 | 0.20 | |
0.00 | 0.00 | 0.20 | 0.20 | 0.20 | 0.20 | 0.80 | 0.80 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Forbes, A. The Algorithm of Gu and Eisenstat and D-Optimal Design of Experiments. Algorithms 2024, 17, 193. https://doi.org/10.3390/a17050193
Forbes A. The Algorithm of Gu and Eisenstat and D-Optimal Design of Experiments. Algorithms. 2024; 17(5):193. https://doi.org/10.3390/a17050193
Chicago/Turabian StyleForbes, Alistair. 2024. "The Algorithm of Gu and Eisenstat and D-Optimal Design of Experiments" Algorithms 17, no. 5: 193. https://doi.org/10.3390/a17050193
APA StyleForbes, A. (2024). The Algorithm of Gu and Eisenstat and D-Optimal Design of Experiments. Algorithms, 17(5), 193. https://doi.org/10.3390/a17050193