Segmentation and Tracking Based on Equalized Memory Matching Network and Its Application in Electric Substation Inspection
Abstract
:1. Introduction
- (1)
- An equalized memory matching network is designed, which stores historical information of the target through a memory bank and utilizes a pixel-level equalized matching method to ensure that the detailed information of the reference frames is efficiently delivered to the current frame, so that the segmentation tracker can focus on the most informative region in the current frame.
- (2)
- To avoid excessive consumption of memory resources and accumulation of erroneous segmentation templates, a memory storage and update strategy is designed to filter and store frames with high segmentation quality to ensure that the process of updating the memory bank is both accurate and reliable.
- (3)
- The synthetic feature map generated by the PEMMN and the mask quality assessment strategy are unified into the segmentation tracking framework to achieve accurate segmentation and robust tracking.
- (4)
- Experimental results show that the method performs well on both real videos of substation inspection scenarios and commonly used benchmark datasets.
2. Pixel-Level Equalized Memory Matching Network
2.1. Feature Similarity Matching
2.2. Pixel-Level Equalized Memory Matching
2.3. Pixel-Wise Memory Storage and Update
2.4. Intelligent Inspection Segmentation and Tracking
3. Results and Discussion
3.1. Experimental Setup and Datasets
3.2. Experiments on the Common Benchmark
3.2.1. Evaluation on the OTB100 Dataset
3.2.2. Evaluation on the TC-128 Dataset
3.2.3. Evaluation on the UAV123 Dataset
3.3. Experiments on the Self-Built Actual Inspection Dataset
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Liu, Y.Q.; Qin, H.; Zhang, Z.D.; Pei, S.Q.; Jiang, Z.Q.; Feng, Z.K.; Zhou, J.Z. Probabilistic spatiotemporal wind speed forecasting based on a variational Bayesian deep learning model. Appl. Energy 2020, 260, 114259. [Google Scholar] [CrossRef]
- Zhang, M.; Li, J.; Li, Y.; Xu, R. Deep Learning for Short-Term Voltage Stability Assessment of Power Systems. IEEE Access 2021, 9, 29711–29718. [Google Scholar] [CrossRef]
- Khodayar, M.; Wang, J.H.; Wang, Z.Y. Deep generative graph distribution learning for synthetic power grids. arXiv 2019, arXiv:1901.09674. [Google Scholar]
- Hamdi, H.; Regaya, C.B.; Zaafouri, A. A sliding-neural network control of induction-motor-pump supplied by photovoltaic generator. Prot. Control Mod. Power Syst. 2020, 5, 1–17. [Google Scholar] [CrossRef]
- Hui, X.; Bian, J.; Zhao, X.; Tan, M. Vision-based autonomous navigation approach for unmanned aerial vehicle transmission-line inspection. Int. J. Adv. Robot. Syst. 2018, 15, 1729881417752821. [Google Scholar] [CrossRef]
- Constantin, A.; Dinculescu, R.N. UAV development and impact in the power system. In Proceedings of the 2019 8th International Conference on Modern Power Systems (MPS), Cluj Napoca, Romania, 21–23 May 2019; pp. 1–5. [Google Scholar]
- Zormpas, A.; Moirogiorgou, K.; Kalaitzakis, K.; Plokamakis, G.A.; Partsinevelos, P.; Giakos, G.; Zervakis, M. Power transmission lines inspection using properly equipped unmanned aerial vehicle (UAV). In Proceedings of the IEEE International Conference on Imaging Systems and Techniques, Krakow, Poland, 16–18 October 2018. [Google Scholar]
- Alhassan, A.B.; Zhang, X.; Shen, H.; Xu, H. Power transmission line inspection robots: A review, trends and challenges for future research. Int. J. Electr. Power Energy Syst. 2020, 118, 105862. [Google Scholar] [CrossRef]
- Bhat, G.; Danelljan, M.; Gool, L.V.; Timofte, R. Learning discriminative model prediction for tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 6181–6190. [Google Scholar]
- Danelljan, M.; Gool, L.V.; Timofte, R. Probabilistic regression for visual tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 13–19 June 2020; pp. 7181–7190. [Google Scholar]
- Ma, C.; Huang, J.B.; Yang, X.; Yang, M.H. Adaptive correlation filters with long-term and short-term memory for object tracking. Int. J. Comput. Vis. 2018, 126, 771–796. [Google Scholar] [CrossRef]
- Yang, T.; Chan, A.B. Learning dynamic memory networks for object tracking. In Presented at European Conference on Computer Vision; Springer: Cham, Switzerland, 2018. [Google Scholar]
- Yang, T.; Chan, A.B. Visual Tracking via Dynamic Memory Networks. IEEE Trans. Pattern Anal. Mach. Intell. 2021, 43, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Peng, M.; Nai, K.; Li, Z.; Li, K. Reliable correlation tracking via dual-memory selection model. Inf. Sci. 2020, 518, 238–255. [Google Scholar] [CrossRef]
- Fu, Z.; Liu, Q.; Fu, Z.; Wang, Y. STMTrack: Template-free Visual Tracking with Space-time Memory Networks. In Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA, 20–25 June 2021; pp. 13769–13778. [Google Scholar]
- Hu, Y.-T.; Huang, J.-B.; Schwing, A.G. Videomatch: Matching based video object segmentation. In Proceedings of the European Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 54–70. [Google Scholar]
- Voigtlaender, P.; Chai, Y.; Schroff, F.; Adam, H.; Leibe, B.; Chen, L.-C. FEElVOS: Fast end-to-end embedding learning for video object segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 9473–9482. [Google Scholar]
- Yang, Z.; Wei, Y.; Yang, Y. Collaborative Video Object Segmentation by Multi-Scale Fore-ground-Background Integration. IEEE Transac.-Tions. Pattern Anal. Mach. Intell. 2022, 44, 4701–4712. [Google Scholar]
- Oh, S.W.; Lee, J.-Y.; Xu, N.; Kim, S.J. Video Object Segmentation Using Space-Time Memory Networks. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27 October–2 November 2019; pp. 9225–9234. [Google Scholar]
- Lu, X.; Wang, W.; Danelljan, M.; Zhou, T.; Shen, J.; Van Gool, L. Video object segmentation with episodic graph memory networks. In Proceedings of the Computer Vision-ECCV2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 661–679. [Google Scholar]
- Yu, S.; Xiao, J.; Zhang, B.; Lim, E.G.; Zhao, Y. Fast pixel-matching for video object segmentation. Signal Process. Image Commun. 2021, 98, 116373. [Google Scholar] [CrossRef]
- Seong, H.; Hyun, J.; Kim, E. Kernelized memory network for video object segmentation. In Proceedings of the Computer Vi-sion-ECCV2020: 16th European Conference, Glasgow, UK, 23–28 August 2020; pp. 629–645. [Google Scholar]
- Oh, S.W.; Lee, J.-Y.; Lee, S.; Lee, S.; Kim, E. Hierarchical Memory Matching Network for Video Object Segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, BC, Canada, 11–17 October 2021; pp. 12889–12898. [Google Scholar]
- Cho, S.; Lee, H.; Kim, M.; Jang, S.; Lee, S. Pixel-Level Bijective Matching for Video Object Segmentation. In Proceedings of the 2022 IEEE/CVF Winter Conference on Applications of Computer Vision, Waikoloa, Hawaii, USA, 3–8 January 2022; pp. 1453–1462. [Google Scholar]
- Huang, Z.; Huang, L.; Gong, Y.; Huang, C.; Wang, X. Mask scoring R-CNN. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 6409–6418. [Google Scholar]
- Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.; Ma, S. Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 2015, 115, 211–252. [Google Scholar] [CrossRef]
- Lin, T.-Y.; Maire, M.; Belongie, S.; Hays, J.; Perona, P.; Ramanan, D.; Zitnick, C.L. Microsoft coco: Common objects in context. In Proceedings of the Computer Vision-ECCV2014: 13th European Conference, Zurich, Switzerland, 6–12 September 2014; pp. 740–755. [Google Scholar]
- Wu, Y.; Lim, J.; Yang, M.-H. Online Object Tracking: A Benchmark. In Proceedings of the 2013 IEEE Conference on Computer Vision and Pattern Recognition, Portland, OR, USA, 23–28 June 2013; pp. 2411–2418. [Google Scholar]
- Liang, P.; Blasch, E.; Ling, H. Encoding Color Information for Visual Tracking: Algorithms and Benchmark. IEEE Trans. Image Process. 2015, 24, 5630–5644. [Google Scholar] [CrossRef] [PubMed]
- Mueller, M.; Smith, N.; Ghanem, B. A benchmark and simulator for uav tracking. In Proceedings of the Computer Vision-ECCV 2016, Zurich, Switzerland, October 2016; pp. 445–461. [Google Scholar]
- Zhu, Z.; Wang, Q.; Li, B.; Wu, W.; Yan, J.; Hu, W. Distractor-aware Siamese networks for visual object tracking. In Proceedings of the European Conference on Computer Vision, Zurich, Switzerland, October 2018; pp. 103–119. [Google Scholar]
- Li, X.; Ma, C.; Wu, B.; He, Z.; Yang, M.-H. Target-Aware Deep Tracking. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1369–1378. [Google Scholar]
- Li, P.; Chen, B.; Ouyang, W.; Wang, D.; Yang, X.; Lu, H. GradNet: Gradient-Guided Network for Visual Object Tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Seoul, Republic of Korea, 27–28 October 2019; pp. 6162–6171. [Google Scholar]
- Danelljan, M.; Häger, G.; Khan, F.S.; Felsberg, M. Convolutional Features for Correlation Filter Based Visual Tracking. In Proceedings of the 2015 IEEE International Conference on Computer Vision Workshop, Santiago, Chile, 7–13 December 2015; pp. 621–629. [Google Scholar]
- Zhang, G.; Li, Z.; Li, J.; Hu, X. Cfnet: Cascade fusion network for dense prediction. In Proceedings of the 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Vancouver, BC, Canada, 18–22 August 2023. [Google Scholar]
- Bertinetto, L.; Valmadre, J.; Henriques, J.F.; Vedaldi, A.; Torr, P.H. Fully-convolutional siamese networks for object tracking. In Proceedings of the Computer Vision-ECCV 2016 Workshops, Amsterdam, The Netherlands, 11–14 October 2016; pp. 850–865. [Google Scholar]
- Sosnovik, I.; Moskalev, A.; Smeulders, A. Scale Equivariance Improves Siamese Tracking. In Proceedings of the 2021 IEEE Winter Conference on Applications of Computer Vision, Waikoloa, HI, USA, 3–8 January 2021; pp. 2764–2773. [Google Scholar]
- Zhang, Z.; Peng, H. Deeper and Wider Siamese Networks for Real-Time Visual Tracking. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4586–4595. [Google Scholar]
- Li, B.; Yan, J.; Wu, W.; Zhu, Z.; Hu, X. High Performance Visual Tracking with Siamese Region Proposal Network. In Proceedings of the 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 8971–8980. [Google Scholar]
- Wang, Q.; Zhang, L.; Bertinetto, L.; Hu, W.; Torr, P.H. Fast online object tracking and segmentation: A unifying approach. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 1328–1338. [Google Scholar]
- Xu, Y.; Wang, Z.; Li, Z.; Yuan, Y.; Yu, G. Siamfc++: Towards robust and accurate visual tracking with target estimation guidelines. AAAI Conf. Artif. Intell. 2019, 34, 2159–5399. [Google Scholar] [CrossRef]
- Li, B.; Wu, W.; Wang, Q.; Zhang, F.; Xing, J.; Yan, J. SiamRPN++: Evolution of Siamese Visual Tracking With Very Deep Networks. In Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Long Beach, CA, USA, 15–20 June 2019; pp. 4277–4286. [Google Scholar]
- Guo, D.; Shao, Y.; Cui, Y.; Wang, Z.; Zhang, L.; Shen, C. Graph attention tracking. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, Nashville, TN, USA, 20–25 June 2021; pp. 9538–9547. [Google Scholar]
- Guo, D.; Wang, J.; Cui, Y.; Wang, Z.; Chen, S. SiamCAR: Siamese Fully Convolutional Classification and Regression for Visual Tracking. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6268–6276. [Google Scholar]
- Chen, C.; Shen, X.; Li, G.; Zhang, S.; Ji, R. Siamese box adaptive network for visual tracking. In Proceedings of the 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, Seattle, WA, USA, 14–19 June 2020; pp. 6667–6676. [Google Scholar]
- Zhang, Z.; Peng, H.; Fu, J.; Li, B.; Hu, W. Ocean: Object-aware anchor-free tracking. In Proceedings of the 2020 Computer Vision–ECCV: 16th European Conference, Glasgow, UK, 31 August 2020; pp. 23–28. [Google Scholar]
- Ma, C.; Huang, J.-B.; Yang, X.; Yang, M.-H. Hierarchical convolutional features for visual tracking. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 3074–3082. [Google Scholar]
- Zhang, H.; Zhang, J.; Nie, G. Residual memory inference network for regression tracking with weighted gradient harmonized loss. Inf. Sci. 2022, 597, 105–124. [Google Scholar] [CrossRef]
- Zhang, H.; Liang, J.; Zhang, J.; Xian, P. Attention-driven memory network for online visual tracking. IEEE Trans. Neural Netw. Learn. Syst. 2023, 1–14. [Google Scholar] [CrossRef]
Methods | OTB100 [28] | TC128 [29] | UAV123 [30] | |||
---|---|---|---|---|---|---|
SR | P | SR | P | SR | P | |
DaSiamRPN [31] | 0.658 | 0.880 | - | - | - | - |
TADT [32] | 0.656 | 0.854 | - | - | - | - |
GradNet [33] | 0.639 | 0.861 | - | - | - | - |
DeepSRDCF [34] | 0.636 | 0.851 | - | - | - | - |
CFNet [35] | 0.587 | 0.778 | - | - | - | - |
SiamFC [36] | 0.587 | 0.772 | 0.489 | 0.672 | - | - |
SESiamFC [37] | 0.650 | 0.864 | - | - | - | - |
SiamDW [38] | - | - | - | - | 0.536 | 0.776 |
SiamDWfc [38] | 0.627 | 0.828 | - | - | - | - |
SiamRPN [39] | 0.629 | 0.847 | - | - | 0.581 | 0.772 |
SiamMask [40] | 0.649 | 0.842 | 0.540 | 0.725 | 0.602 | 0.794 |
SiamFC++ [41] | - | - | 0.566 | 0.763 | - | - |
SiamRPN++ [42] | - | - | 0.577 | 0.775 | 0.611 | 0.804 |
SiamGAT [43] | - | - | 0.559 | 0.753 | - | - |
SiamCAR [44] | - | - | - | - | 0.615 | 0.804 |
SiamBAN [45] | - | - | - | - | 0.604 | 0.795 |
Ocean [46] | - | - | 0.557 | 0.752 | 0.621 | 0.823 |
HCFT [47] | - | - | 0.495 | 0.692 | - | - |
RMIT [48] | - | - | 0.551 | 0.761 | - | - |
ADMT [49] | - | - | - | - | 0.535 | 0.754 |
Ours | 0.670 | 0.881 | 0.580 | 0.779 | 0.625 | 0.827 |
Tracker | Success Rate | Precision |
---|---|---|
Ours | 0.580 | 0.779 |
SiamRPN++ | 0.577 | 0.775 |
SiamFC++ | 0.566 | 0.763 |
SiamGAT | 0.559 | 0.753 |
Ocean | 0.557 | 0.752 |
RMIT | 0.551 | 0.761 |
SiamMASK | 0.540 | 0.725 |
HCFT | 0.495 | 0.692 |
SiamFC | 0.489 | 0.672 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, H.; Zhou, B.; Tian, Y.; Li, Z. Segmentation and Tracking Based on Equalized Memory Matching Network and Its Application in Electric Substation Inspection. Algorithms 2024, 17, 203. https://doi.org/10.3390/a17050203
Zhang H, Zhou B, Tian Y, Li Z. Segmentation and Tracking Based on Equalized Memory Matching Network and Its Application in Electric Substation Inspection. Algorithms. 2024; 17(5):203. https://doi.org/10.3390/a17050203
Chicago/Turabian StyleZhang, Huanlong, Bin Zhou, Yangyang Tian, and Zhe Li. 2024. "Segmentation and Tracking Based on Equalized Memory Matching Network and Its Application in Electric Substation Inspection" Algorithms 17, no. 5: 203. https://doi.org/10.3390/a17050203
APA StyleZhang, H., Zhou, B., Tian, Y., & Li, Z. (2024). Segmentation and Tracking Based on Equalized Memory Matching Network and Its Application in Electric Substation Inspection. Algorithms, 17(5), 203. https://doi.org/10.3390/a17050203