Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques
Abstract
:1. Introduction
- Can considering the news and tweets improve the stock-price prediction accuracy?
- Does the impact of the news and tweets on the price prediction differ under normal and market-panic conditions?
2. Literature Review
2.1. ML Techniques in Stock-Price Prediction
2.2. NN Techniques in Stock-Price Prediction
- We are the first to use Bloomberg Twitter and news publication count variables as critical inputs for stock-price prediction within the North American context;
- We use a novel approach in employing Twitter and news publication count variables as inputs into multi-layer perceptron (MLP) and long short-term memory (LSTM) NNs. This novel approach seeks to assess the influence of these variables on various NN architectures, allowing us to concurrently evaluate and contrast the stock-price prediction performance of both models;
- We focus on examining the existence of a potential notable decline in model performance during periods rife with market panic (e.g., the COVID-19 pandemic). Therefore, we seek to provide insights into the robustness of the proposed models under stressful conditions in financial markets.
3. Problem Definition and Formulation
3.1. Multiple-Layer Perceptron (MLP) Network
3.2. Long Short-Term Memory (LSTM) Networks
4. Model Construction
4.1. Input Parameters Selection
4.2. Data Splitting, Modeling, and Analysis
5. Results and Discussion
5.1. Comparing Predictive Models under Panic and Normal Circumstances
5.2. Comparing the Impact of T and T+ Variables
5.3. Comparing the MLP and LSTM Models
6. Conclusions and Future Research
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Ford | Netflix | Amazon | Apple | Tesla | Walmart | |||||||||||||||||||
TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | |
Training Set | ||||||||||||||||||||||||
Mean | 212 | 253 | 12.3 | 4320 | 1206 | 1061 | 1823 | 620 | 170 | 686 | 4758 | 133 | 3515 | 727 | 947 | 6229 | 2479 | 141 | 2499 | 488 | 268 | 881 | 364 | 78 |
Variance | 159,345 | 28,773 | 3.52 | 12,068,276 | 378,508 | 34,340 | 3,092,910 | 161,330 | 9125 | 497,886 | 21,219,182 | 1281 | 8,044,743 | 190,822 | 207,865 | 50,038,010 | 1,775,513 | 1228 | 5,862,998 | 203,445 | 3227 | 913,234 | 58,531 | 134 |
St Dev | 399.18 | 169.63 | 1.88 | 3473.94 | 615.23 | 185.31 | 1758.67 | 401.66 | 95.52 | 705.61 | 4606.43 | 35.79 | 2836.33 | 436.83 | 455.92 | 7073.76 | 1332.48 | 35.04 | 2421.36 | 451.05 | 56.81 | 955.63 | 241.93 | 11.58 |
CV | 1.88 | 0.67 | 0.15 | 0.80 | 0.51 | 0.17 | 0.96 | 0.65 | 0.56 | 1.03 | 0.97 | 0.27 | 0.81 | 0.60 | 0.48 | 1.14 | 0.54 | 0.25 | 0.97 | 0.92 | 0.21 | 1.08 | 0.66 | 0.15 |
Normal Set | ||||||||||||||||||||||||
Mean | 131 | 334 | 9 | 3560 | 1109 | 708 | 1077 | 956 | 330 | 866 | 1914 | 180 | 1816 | 1035 | 1790 | 1612 | 2864 | 202 | 1395 | 823 | 264 | 394 | 439 | 107 |
Variance | 16,797 | 41,977 | 0.3966 | 13,358,463 | 295,951 | 3622 | 894,611 | 239,512 | 1255 | 275,603 | 1,315,295 | 238 | 1,266,840 | 222,560 | 11,013 | 2,371,030 | 2,337,762 | 825 | 643,150 | 273,027 | 1873 | 93,790 | 104,811 | 74 |
St Dev | 129.60 | 204.88 | 0.63 | 3654.92 | 544.01 | 60.18 | 945.84 | 489.40 | 35.43 | 524.98 | 1146.86 | 15.43 | 1125.54 | 471.76 | 104.94 | 1539.81 | 1528.97 | 28.72 | 801.97 | 522.52 | 43.28 | 306.25 | 323.75 | 8.60 |
CV | 0.99 | 0.61 | 0.07 | 1.03 | 0.49 | 0.09 | 0.88 | 0.51 | 0.11 | 0.61 | 0.60 | 0.09 | 0.62 | 0.46 | 0.06 | 0.96 | 0.53 | 0.14 | 0.57 | 0.63 | 0.16 | 0.78 | 0.74 | 0.08 |
Pan Set | ||||||||||||||||||||||||
Mean | 149 | 336 | 8 | 3140 | 1237 | 653 | 907 | 730 | 343 | 780 | 1741 | 185 | 1734 | 890 | 1869 | 1675 | 2735 | 232 | 1548 | 930 | 382 | 388 | 429 | 111 |
Variance | 19,947 | 44,343 | 2.31 | 10,181,305 | 323,122 | 8425 | 804,327 | 288,309 | 1773 | 235,199 | 1,103,842 | 376 | 1,171,956 | 223,752 | 37,428 | 1,895,009 | 1,812,073 | 2471 | 1,036,664 | 343,690 | 37,976 | 88,037 | 85,835 | 89 |
St Dev | 141.23 | 210.58 | 1.52 | 3190.82 | 568.44 | 91.79 | 896.84 | 536.94 | 42.11 | 484.97 | 1050.64 | 19.39 | 1082.57 | 473.02 | 193.46 | 1376.59 | 1346.13 | 49.71 | 1018.17 | 586.25 | 194.87 | 296.71 | 292.98 | 9.43 |
CV | 0.95 | 0.63 | 0.19 | 1.02 | 0.46 | 0.14 | 0.99 | 0.74 | 0.12 | 0.62 | 0.60 | 0.10 | 0.62 | 0.53 | 0.10 | 0.82 | 0.49 | 0.21 | 0.66 | 0.63 | 0.51 | 0.76 | 0.68 | 0.08 |
Overall | ||||||||||||||||||||||||
Mean | 196 | 275 | 11 | 4005 | 1213 | 956 | 1587 | 648 | 214 | 710 | 3984 | 147 | 3058 | 769 | 1184 | 5061 | 2546 | 164 | 2255 | 601 | 297 | 755 | 381 | 87 |
Variance | 124,300 | 34,101 | 6 | 11,703,649 | 363,891 | 59,469 | 2,666,375 | 196,237 | 12,979 | 432,228 | 17,787,737 | 1562 | 6,884,086 | 204,387 | 327,469 | 41,627,970 | 1,797,736 | 3117 | 4,799,559 | 275,483 | 14,664 | 747,508 | 66,393 | 331 |
St Dev | 352.56 | 184.66 | 2.45 | 3421.06 | 603.23 | 243.86 | 1632.90 | 442.99 | 113.93 | 657.44 | 4217.55 | 39.52 | 2623.75 | 452.09 | 572.25 | 6451.97 | 1340.80 | 55.83 | 2190.79 | 524.86 | 121.10 | 864.59 | 257.67 | 18.19 |
CV | 1.80 | 0.67 | 0.22 | 0.85 | 0.50 | 0.26 | 1.03 | 0.68 | 0.53 | 0.93 | 1.06 | 0.27 | 0.86 | 0.59 | 0.48 | 1.27 | 0.53 | 0.34 | 0.97 | 0.87 | 0.41 | 1.15 | 0.68 | 0.21 |
Ford | Netflix | Amazon | Apple | Tesla | Walmart | |||||||||||||||||||
TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | TC | NC | Price | |
Training Set | ||||||||||||||||||||||||
Mean | 212 | 253 | 12.3 | 4320 | 1206 | 1061 | 1823 | 620 | 170 | 686 | 4758 | 133 | 3515 | 727 | 947 | 6229 | 2479 | 141 | 2499 | 488 | 268 | 881 | 364 | 78 |
Variance | 159345 | 28773 | 3.52 | 12068276 | 378508 | 34340 | 3092910 | 161330 | 9125 | 497886 | 21219182 | 1281 | 8044743 | 190822 | 207865 | 50038010 | 1775513 | 1228 | 5862998 | 203445 | 3227 | 913234 | 58531 | 134 |
St Dev | 399.18 | 169.63 | 1.88 | 3473.94 | 615.23 | 185.31 | 1758.67 | 401.66 | 95.52 | 705.61 | 4606.43 | 35.79 | 2836.33 | 436.83 | 455.92 | 7073.76 | 1332.48 | 35.04 | 2421.36 | 451.05 | 56.81 | 955.63 | 241.93 | 11.58 |
CV | 1.88 | 0.67 | 0.15 | 0.80 | 0.51 | 0.17 | 0.96 | 0.65 | 0.56 | 1.03 | 0.97 | 0.27 | 0.81 | 0.60 | 0.48 | 1.14 | 0.54 | 0.25 | 0.97 | 0.92 | 0.21 | 1.08 | 0.66 | 0.15 |
Normal Set | ||||||||||||||||||||||||
Mean | 131 | 334 | 9 | 3560 | 1109 | 708 | 1077 | 956 | 330 | 866 | 1914 | 180 | 1816 | 1035 | 1790 | 1612 | 2864 | 202 | 1395 | 823 | 264 | 394 | 439 | 107 |
Variance | 16797 | 41977 | 0.3966 | 13358463 | 295951 | 3622 | 894611 | 239512 | 1255 | 275603 | 1315295 | 238 | 1266840 | 222560 | 11013 | 2371030 | 2337762 | 825 | 643150 | 273027 | 1873 | 93790 | 104811 | 74 |
St Dev | 129.60 | 204.88 | 0.63 | 3654.92 | 544.01 | 60.18 | 945.84 | 489.40 | 35.43 | 524.98 | 1146.86 | 15.43 | 1125.54 | 471.76 | 104.94 | 1539.81 | 1528.97 | 28.72 | 801.97 | 522.52 | 43.28 | 306.25 | 323.75 | 8.60 |
CV | 0.99 | 0.61 | 0.07 | 1.03 | 0.49 | 0.09 | 0.88 | 0.51 | 0.11 | 0.61 | 0.60 | 0.09 | 0.62 | 0.46 | 0.06 | 0.96 | 0.53 | 0.14 | 0.57 | 0.63 | 0.16 | 0.78 | 0.74 | 0.08 |
Pan Set | ||||||||||||||||||||||||
Mean | 149 | 336 | 8 | 3140 | 1237 | 653 | 907 | 730 | 343 | 780 | 1741 | 185 | 1734 | 890 | 1869 | 1675 | 2735 | 232 | 1548 | 930 | 382 | 388 | 429 | 111 |
Variance | 19947 | 44343 | 2.31 | 10181305 | 323122 | 8425 | 804327 | 288309 | 1773 | 235199 | 1103842 | 376 | 1171956 | 223752 | 37428 | 1895009 | 1812073 | 2471 | 1036664 | 343690 | 37976 | 88037 | 85835 | 89 |
St Dev | 141.23 | 210.58 | 1.52 | 3190.82 | 568.44 | 91.79 | 896.84 | 536.94 | 42.11 | 484.97 | 1050.64 | 19.39 | 1082.57 | 473.02 | 193.46 | 1376.59 | 1346.13 | 49.71 | 1018.17 | 586.25 | 194.87 | 296.71 | 292.98 | 9.43 |
CV | 0.95 | 0.63 | 0.19 | 1.02 | 0.46 | 0.14 | 0.99 | 0.74 | 0.12 | 0.62 | 0.60 | 0.10 | 0.62 | 0.53 | 0.10 | 0.82 | 0.49 | 0.21 | 0.66 | 0.63 | 0.51 | 0.76 | 0.68 | 0.08 |
Overall | ||||||||||||||||||||||||
Mean | 196 | 275 | 11 | 4005 | 1213 | 956 | 1587 | 648 | 214 | 710 | 3984 | 147 | 3058 | 769 | 1184 | 5061 | 2546 | 164 | 2255 | 601 | 297 | 755 | 381 | 87 |
Variance | 124300 | 34101 | 6 | 11703649 | 363891 | 59469 | 2666375 | 196237 | 12979 | 432228 | 17787737 | 1562 | 6884086 | 204387 | 327469 | 41627970 | 1797736 | 3117 | 4799559 | 275483 | 14664 | 747508 | 66393 | 331 |
St Dev | 352.56 | 184.66 | 2.45 | 3421.06 | 603.23 | 243.86 | 1632.90 | 442.99 | 113.93 | 657.44 | 4217.55 | 39.52 | 2623.75 | 452.09 | 572.25 | 6451.97 | 1340.80 | 55.83 | 2190.79 | 524.86 | 121.10 | 864.59 | 257.67 | 18.19 |
CV | 1.80 | 0.67 | 0.22 | 0.85 | 0.50 | 0.26 | 1.03 | 0.68 | 0.53 | 0.93 | 1.06 | 0.27 | 0.86 | 0.59 | 0.48 | 1.27 | 0.53 | 0.34 | 0.97 | 0.87 | 0.41 | 1.15 | 0.68 | 0.21 |
Company | Test Set | Model | RMSE | Company | Test Set | Model | RMSE |
---|---|---|---|---|---|---|---|
PANIC | LSTM (T) | 0.06271 | Amazon | PANIC | LSTM (T) | 0.06246 | |
LSTM (TS) | 0.04938 | LSTM (T+) | 0.06018 | ||||
MLP (T) | 0.02388 | MLP (T) | 0.01950 | ||||
MLP (TS) | 0.02069 | MLP (T+) | 0.01928 | ||||
NORMAL | LSTM (T) | 0.03487 | NORMAL | LSTM (T) | 0.04672 | ||
LSTM (TS) | 0.02874 | LSTM (T+) | 0.04210 | ||||
MLP (T) | 0.02355 | MLP (T) | 0.02602 | ||||
MLP (TS) | 0.02147 | MLP (T+) | 0.02426 | ||||
PANIC | LSTM (T) | 0.07699 | Tesla | PANIC | LSTM (T) | 0.17632 | |
LSTM (TS) | 0.07392 | LSTM (T+) | 0.18758 | ||||
MLP (T) | 0.02746 | MLP (T) | 0.08409 | ||||
MLP (TS) | 0.02407 | MLP (T+) | 0.04863 | ||||
NORMAL | LSTM (T) | 0.04404 | NORMAL | LSTM (T) | 0.05344 | ||
LSTM (TS) | 0.03668 | LSTM (T+) | 0.10091 | ||||
MLP (T) | 0.02070 | MLP (T) | 0.03610 | ||||
MLP (TS) | 0.02193 | MLP (T+) | 0.03531 | ||||
Walmart | PANIC | LSTM (T) | 0.05845 | Apple | PANIC | LSTM (T) | 0.12860 |
LSTM (TS) | 0.07278 | LSTM (T+) | 0.12711 | ||||
MLP (T) | 0.01753 | MLP (T) | 0.02188 | ||||
MLP (TS) | 0.01814 | MLP (T+) | 0.02141 | ||||
NORMAL | LSTM (T) | 0.04021 | NORMAL | LSTM (T) | 0.05848 | ||
LSTM (TS) | 0.04251 | LSTM (T+) | 0.05299 | ||||
MLP (T) | 0.01278 | MLP (T) | 0.02002 | ||||
MLP (TS) | 0.01362 | MLP (T+) | 0.01995 | ||||
Ford | PANIC | LSTM (T) | 0.13641 | Netflix | PANIC | LSTM (T) | 0.11226 |
LSTM (TS) | 0.07553 | LSTM (T+) | 0.09216 | ||||
MLP (T) | 0.16027 | MLP (T) | 0.02553 | ||||
MLP (T+) | 0.03661 | MLP (T+) | 0.02399 | ||||
NORMAL | LSTM (T) | 0.04024 | NORMAL | LSTM (T) | 0.04211 | ||
LSTM (T+) | 0.03007 | LSTM (T+) | 0.03706 | ||||
MLP (T) | 0.04886 | MLP (T) | 0.02954 | ||||
MLP (T+) | 0.02047 | MLP (T+) | 0.02842 |
References
- Edwards, J. Global Market Cap Is Heading toward $100 Trillion and Goldman Sachs Thinks the Only Way Is down. 2017. Available online: https://www.businessinsider.de/global-market-cap-is-about-to-hit-100-trillion-2017-12?r=UK&IR=T (accessed on 5 March 2023).
- SIFMA. Research Quarterly: Equities. Available online: https://www.sifma.org/resources/research/research-quarterly-equities/ (accessed on 5 January 2024).
- NYSE: New York Stock Exchange, New York Stock Exchange. NYSE Total Market Cap. 2018. Available online: https://www.nyse.com/market-cap (accessed on 12 April 2023).
- FXCM. New York Stock Exchange (NYSE). 2016. Available online: https://www.fxcm.com/uk/insights/new-york-stock-exchange-nyse/ (accessed on 13 April 2023).
- Chan, H.L.; Woo, K.Y. Studying the Dynamic Relationships between Residential Property Prices, Stock Prices, and GDP: Lessons from Hong Kong. J. Hous. Res. 2013, 22, 75–89. [Google Scholar] [CrossRef]
- Jones, J.U.S. Ownership down among All but Older Higher Income. 2017. Available online: https://news.gallup.com/poll/211052/stock-ownership-down-among-older-higher-income.aspx (accessed on 15 April 2023).
- Lusardi, A.; Mitchell, O.S. The Economic Importance of Financial Literacy: Theory and Evidence. J. Econ. Lit. 2014, 52, 5–44. [Google Scholar] [CrossRef]
- Armano, G.; Marchesi, M.; Murru, A. A hybrid genetic-neural architecture for stock indexes forecasting. Inf. Sci. 2005, 170, 3–33. [Google Scholar] [CrossRef]
- Wang, J.-J.; Wang, J.-Z.; Zhang, Z.-G.; Guo, S.-P. Stock index forecasting based on a hybrid model. Omega 2012, 40, 758–766. [Google Scholar] [CrossRef]
- Kao, L.-J.; Chiu, C.-C.; Lu, C.-J.; Chang, C.-H. A hybrid approach by integrating wavelet-based feature extraction with MARS and SVR for stock index forecasting. Decis. Support Syst. 2013, 54, 1228–1244. [Google Scholar] [CrossRef]
- Liu, H.; Lv, X.Y. Stock Price Prediction Model Based on IWO Neural Network and its Applications. Adv. Mater. Res. 2014, 989, 1635–1640. [Google Scholar] [CrossRef]
- Guo, Z.; Wang, H.; Yang, J.; Miller, D.J. A Stock Market Forecasting Model Combining Two-Directional Two-Dimensional Principal Component Analysis and Radial Basis Function Neural Network. PLoS ONE 2015, 10, e0122385. [Google Scholar] [CrossRef] [PubMed]
- Mahmud, M.S.; Meesad, P. An innovative recurrent error-based neuro-fuzzy system with momentum for stock price prediction. Soft Comput. 2016, 20, 4173–4191. [Google Scholar] [CrossRef]
- Wang, S.; Wang, L.; Gao, S.; Bai, Z. Stock price prediction based on chaotic hybrid particle swarm optimisation-RBF neural network. Int. J. Appl. Decis. Sci. 2017, 10, 89. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, F.; Xu, B.; Chi, W.; Wang, Q.; Sun, T. Prediction of stock prices based on LM-BP neural network and the estimation of overfitting point by RDCI. Neural Comput. Appl. 2018, 30, 1425–1444. [Google Scholar] [CrossRef]
- Bisoi, R.; Dash, P.K.; Parida, A.K. Hybrid Variational Mode Decomposition and evolutionary robust kernel extreme learning machine for stock price and movement prediction on daily basis. Appl. Soft Comput. 2019, 74, 652–678. [Google Scholar] [CrossRef]
- Ding, G.; Qin, L. Study on the prediction of stock price based on the associated network model of LSTM. Int. J. Mach. Learn. Cybern. 2020, 11, 1307–1317. [Google Scholar] [CrossRef]
- Qiu, J.; Wang, B.; Zhou, C. Forecasting stock prices with long-short term memory neural network based on attention mechanism. PLoS ONE 2020, 15, e0227222. [Google Scholar] [CrossRef] [PubMed]
- Jin, Z.; Yang, Y.; Liu, Y. Stock closing price prediction based on sentiment analysis and LSTM. Neural Comput. Appl. 2020, 32, 9713–9729. [Google Scholar] [CrossRef]
- Vijh, M.; Chandola, D.; Tikkiwal, V.A.; Kumar, A. Stock Closing Price Prediction using Machine Learning Techniques. Procedia Comput. Sci. 2020, 167, 599–606. [Google Scholar] [CrossRef]
- Lu, W.; Li, J.; Wang, J.; Qin, L. A CNN-BiLSTM-AM method for stock price prediction. Neural Comput. Appl. 2021, 33, 4741–4753. [Google Scholar] [CrossRef]
- Hu, Z.; Zhao, Y.; Khushi, M. A Survey of Forex and Stock Price Prediction Using Deep Learning. Appl. Syst. Innov. 2021, 4, 9. [Google Scholar] [CrossRef]
- Kurani, A.; Doshi, P.; Vakharia, A.; Shah, M. A Comprehensive Comparative Study of Artificial Neural Network (ANN) and Support Vector Machines (SVM) on Stock Forecasting. Ann. Data Sci. 2023, 10, 183–208. [Google Scholar] [CrossRef]
- Kim, K. Electronic and Algorithmic Trading Technology: The Complete Guide; Academic Press: New York, NY, USA, 2010. [Google Scholar]
- Ritter, G. Machine Learning for Trading. SSRN Electron. J. 2017. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Q. Application of Deep Reinforcement Learning on Automated Stock Trading. In Proceedings of the 2019 IEEE 10th International Conference on Software Engineering and Service Science (ICSESS), Beijing, China, 18–20 October 2019. [Google Scholar] [CrossRef]
- Zhang, Z.; Zohren, S.; Roberts, S.J. Deep Reinforcement Learning for Trading. J. Financ. Data Sci. 2020, 2, 25–40. [Google Scholar] [CrossRef]
- Das, S.; Kadapakkam, P.-R. Machine over Mind? Stock price clustering in the era of algorithmic trading. N. Am. J. Econ. Financ. 2018, 51, 100831. [Google Scholar] [CrossRef]
- Business Wire. Global Algorithmic Trading Market to Surpass US$ 21,685.53 Million by 2026. 2019. Available online: https://www.businesswire.com/news/home/20190205005634/en/Global-Algorithmic (accessed on 10 September 2020).
- Pricope, T.V. Deep Reinforcement Learning in Quantitative Algorithmic Trading: A Review. arXiv 2024, arXiv:2106.00123v1. [Google Scholar]
- Johnston, M. What Happened to Oil Prices in 2020. Investopedia. 2022. Available online: https://www.investopedia.com/articles/investing/100615/will-oil-prices-go-2017.asp (accessed on 5 March 2024).
- Cevik, E.; Altinkeski, B.K.; Cevik, E.I.; Dibooglu, S. Investor sentiments and stock markets during the COVID-19 pandemic. Financ. Innov. 2022, 8, 69. [Google Scholar] [CrossRef] [PubMed]
- Joseph, I.; Obini, N.; Sulaiman, A.; Loko, A. Comparative Model Profiles of COVID-19 Occurrence in Nigeria. Int. J. Math. Trends Technol. 2020, 68, 297–310. [Google Scholar] [CrossRef]
- Baig, A.S.; Butt, H.A.; Haroon, O.; Rizvi, S.A.R. Deaths, panic, lockdowns and US equity markets: The case of COVID-19 pandemic. Financ. Res. Lett. 2020, 38, 101701. [Google Scholar] [CrossRef]
- Pang, X.; Zhou, Y.; Wang, P.; Lin, W.; Chang, V. An innovative neural network approach for stock market prediction. J. Supercomput. 2020, 76, 2098–2118. [Google Scholar] [CrossRef]
- Bommareddy, S.R.; Reddy, K.S.S.; Kaushik, P.; Kumar, V.; Hulipalled, V.R. Predicting the stock price using linear regression. Int. J. Adv. Res. Comput. Sci. 2018, 9, 81–85. [Google Scholar]
- Hiransha, M.; Gopalakrishnan, E.A.; Menon, V.K.; Soman, K.P. NSE Stock Market Prediction Using Deep-Learning Models. Procedia Comput. Sci. 2018, 132, 1351–1362. [Google Scholar] [CrossRef]
- Mehtab, S.; Sen, J.; Dutta, A. Stock Price Prediction Using Machine Learning and LSTM-Based Deep Learning Models. In Machine Learning and Metaheuristics Algorithms, and Applications; Springer: Berlin/Heidelberg, Germany, 2021. [Google Scholar] [CrossRef]
- Nguyen, H.T.; Tran, T.B.; Bui, P.H.D. An effective way for Taiwanese stock price prediction: Boosting the performance with machine learning techniques. Concurr. Comput. Pract. Exp. 2021, 35, e6437. [Google Scholar] [CrossRef]
- Kumar, A.; Hooda, S.; Gill, R.; Ahlawat, D.; Srivastva, D.; Kumar, R. Stock Price Prediction Using Machine Learning. In Proceedings of the 2023 International Conference on Computational Intelligence and Sustainable Engineering Solutions (CISES), Greater Noida, India, 28–30 April 2023. [Google Scholar] [CrossRef]
- Mittal, A.; Joshi, N.; Savani, V. Stock Price Prediction Using Machine Learning Algorithm with Web Interface (GUI). In Artificial Intelligence and Communication Technologies; SCRS: New Delhi, India, 2023; pp. 361–377. [Google Scholar] [CrossRef]
- Perdana, I.L.; Rokhim, R. Stock price index prediction using machine learning. AIP Conf. Proc. 2023, 2693, 020031. [Google Scholar] [CrossRef]
- Shirata, R.; Harada, T. A Proposal of a Method to Determine the Appropriate Learning Period in Stock Price Prediction Using Machine Learning. IEEJ Trans. Electr. Electron. Eng. 2024, 19, 726–732. [Google Scholar] [CrossRef]
- Liu, W.-J.; Ge, Y.-B.; Gu, Y.-C. News-driven stock market index prediction based on trellis network and sentiment attention mechanism. Expert Syst. Appl. 2024, 250, 123966. [Google Scholar] [CrossRef]
- Ammer, M.A.; Aldhyani, T.H.H. Deep Learning Algorithm to Predict Cryptocurrency Fluctuation Prices: Increasing Investment Awareness. Electronics 2022, 11, 2349. [Google Scholar] [CrossRef]
- Wanjawa, B.W.; Muchemi, L. ANN model to predict stock prices at stock exchange markets. arXiv 2014, arXiv:1502.06434. [Google Scholar]
- Malkiel, B.G. A Random Walk down Wall Street: Including a Life-Cycle Guide to Personal Investing; WW Norton & Company: New York, NY, USA, 1999. [Google Scholar]
- Moghar, A.; Hamiche, M. Stock Market Prediction Using LSTM Recurrent Neural Network. Procedia Comput. Sci. 2020, 170, 1168–1173. [Google Scholar] [CrossRef]
- Yu, P.; Yan, X. Stock price prediction based on deep neural networks. Neural Comput. Appl. 2020, 32, 1609–1628. [Google Scholar] [CrossRef]
- Cheng, C.-H.; Yang, J.-H. Fuzzy time-series model based on rough set rule induction for forecasting stock price. Neurocomputing 2018, 302, 33–45. [Google Scholar] [CrossRef]
- Nguyen, N. Hidden Markov model for stock trading. Int. J. Financ. Stud. 2018, 6, 36. [Google Scholar] [CrossRef]
- Rundo, F.; Trenta, F.; Di Stallo, A.L.; Battiato, S. Advanced Markov-Based Machine Learning Framework for Making Adaptive Trading System. Computation 2019, 7, 4. [Google Scholar] [CrossRef]
- Khairi, T.W.A.; Zaki, R.M.; Mahmood, W.A. Stock Price Prediction using Technical, Fundamental and News based Approach. In Proceedings of the 2019 2nd Scientific Conference of Computer Sciences (SCCS), Baghdad, Iraq, 27–28 March 2019. [Google Scholar] [CrossRef]
- Ghorbani, M.; Chong, E.K.P. Stock price prediction using principal components. PLoS ONE 2020, 15, e0230124. [Google Scholar] [CrossRef]
- Zhong, S.; Hitchcock, D. S&P 500 Stock Price Prediction Using Technical, Fundamental and Text Data. Stat. Optim. Inf. Comput. 2021, 9, 769–788. [Google Scholar] [CrossRef]
- Sorto, M.; Aasheim, C.; Wimmer, H. Feeling the stock market: A study in the prediction of financial markets based on news sentiment. In Proceedings of the Southern Association for Information Systems Conference, St. Simons Island, GA, USA, 25 March 2017; p. 19. [Google Scholar]
- Wafi, A.S.; Hassan, H.; Mabrouk, A. Fundamental analysis models in financial markets—Review study. Procedia Econ. Financ. 2015, 30, 939–947. [Google Scholar] [CrossRef]
- Gupta, R.; Chen, M. Sentiment Analysis for Stock Price Prediction. In Proceedings of the 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR), Shenzhen, China, 6–8 August 2020. [Google Scholar] [CrossRef]
- Jing, N.; Wu, Z.; Wang, H. A hybrid model integrating deep learning with investor sentiment analysis for stock price prediction. Expert Syst. Appl. 2021, 178, 115019. [Google Scholar] [CrossRef]
- Wu, S.; Liu, Y.; Zou, Z.; Weng, T.-H. S_I_LSTM: Stock price prediction based on multiple data sources and sentiment analysis. Connect. Sci. 2022, 34, 44–62. [Google Scholar] [CrossRef]
- Wang, Y.-F. Predicting stock price using fuzzy grey prediction system. Expert Syst. Appl. 2002, 22, 33–38. [Google Scholar] [CrossRef]
- Leigh, W.; Purvis, R.; Ragusa, J.M. Forecasting the NYSE composite index with technical analysis, pattern recognizer, neural network, and genetic algorithm: A case study in romantic decision support. Decis. Support Syst. 2002, 32, 361–377. [Google Scholar] [CrossRef]
- Kim, K.-J. Financial time series forecasting using support vector machines. Neurocomputing 2003, 55, 307–319. [Google Scholar] [CrossRef]
- Wang, Y.-F. Mining stock price using fuzzy rough set system. Expert Syst. Appl. 2003, 24, 13–23. [Google Scholar] [CrossRef]
- Chen, A.-S.; Leung, M.T. Regression neural network for error correction in foreign exchange forecasting and trading. Comput. Oper. Res. 2004, 31, 1049–1068. [Google Scholar] [CrossRef]
- Pai, P.-F.; Lin, C.-S. A hybrid ARIMA and support vector machines model in stock price forecasting. Omega 2005, 33, 497–505. [Google Scholar] [CrossRef]
- Enke, D.; Thawornwong, S. The use of data mining and neural networks for forecasting stock market returns. Expert Syst. Appl. 2005, 29, 927–940. [Google Scholar] [CrossRef]
- Kim, M.-J.; Min, S.-H.; Han, I. An evolutionary approach to the combination of multiple classifiers to predict a stock price index. Expert Syst. Appl. 2006, 31, 241–247. [Google Scholar] [CrossRef]
- Schumaker, R.P.; Chen, H. Textual analysis of stock market prediction using breaking financial news. ACM Trans. Inf. Syst. 2009, 27, 1–19. [Google Scholar] [CrossRef]
- Huang, C.-L.; Tsai, C.-Y. A hybrid SOFM-SVR with a filter-based feature selection for stock market forecasting. Expert Syst. Appl. 2009, 36, 1529–1539. [Google Scholar] [CrossRef]
- Kara, Y.; Boyacioglu, M.A.; Baykan, K. Predicting direction of stock price index movement using artificial neural networks and support vector machines: The sample of the Istanbul Stock Exchange. Expert Syst. Appl. 2011, 38, 5311–5319. [Google Scholar] [CrossRef]
- Groth, S.S.; Muntermann, J. An intraday market risk management approach based on textual analysis. Decis. Support Syst. 2011, 50, 680–691. [Google Scholar] [CrossRef]
- Schumaker, R.P.; Zhang, Y.; Huang, C.-N.; Chen, H. Evaluating sentiment in financial news articles. Decis. Support Syst. 2012, 53, 458–464. [Google Scholar] [CrossRef]
- Yolcu, U.; Egrioglu, E.; Aladag, C.H. A new linear & nonlinear artificial neural network model for time series forecasting. Decis. Support Syst. 2013, 54, 1340–1347. [Google Scholar] [CrossRef]
- Hagenau, M.; Liebmann, M.; Neumann, D. Automated news reading: Stock price prediction based on financial news using context-capturing features. Decis. Support Syst. 2013, 55, 685–697. [Google Scholar] [CrossRef]
- Umoh, U.A.; Inyang, U.G. A FuzzFuzzy-Neural Intelligent Trading Model for Stock Price Prediction. Int. J. Comput. Sci. Issues 2014, 12, 36. [Google Scholar]
- Nayak, S.C.; Misra, B.B.; Behera, H.S. Fluctuation prediction of stock market index by adaptive evolutionary higher order neural networks. Int. J. Swarm Intell. 2016, 2, 229. [Google Scholar] [CrossRef]
- Tsai, C.-F.; Quan, Z.-Y. Stock Prediction by Searching for Similarities in Candlestick Charts. ACM Trans. Manag. Inf. Syst. 2014, 5, 9. [Google Scholar]
- Li, X.; Xie, H.; Chen, L.; Wang, J.; Deng, X. News impact on stock price return via sentiment analysis. Knowl.-Based Syst. 2014, 69, 14–23. [Google Scholar] [CrossRef]
- Sun, X.-Q.; Shen, H.-W.; Cheng, X.-Q. Trading Network Predicts Stock Price. Sci. Rep. 2014, 4, 3711. [Google Scholar] [CrossRef]
- Dash, R.; Dash, P.; Bisoi, R. A self adaptive differential harmony search based optimized extreme learning machine for financial time series prediction. Swarm Evol. Comput. 2014, 19, 25–42. [Google Scholar] [CrossRef]
- Adebiyi, A.A.; Adewumi, A.O.; Ayo, C.K. Comparison of ARIMA and Artificial Neural Networks Models for Stock Price Prediction. J. Appl. Math. 2014, 2014, 614342. [Google Scholar] [CrossRef]
- Lee, H.; Surdeanu, M.; MacCartney, B.; Jurafsky, D. On the Importance of Text Analysis for Stock Price Prediction. In Proceedings of the LREC 2014, Ninth International Conference on Language Resources and Evaluation, Reykjavik, Iceland, 26–31 May 2014; pp. 1170–1175. [Google Scholar]
- de Fortuny, E.J.; De Smedt, T.; Martens, D.; Daelemans, W. Evaluating and understanding text-based stock price prediction models. Inf. Process. Manag. 2014, 50, 426–441. [Google Scholar] [CrossRef]
- Bisoi, R.; Dash, P. A hybrid evolutionary dynamic neural network for stock market trend analysis and prediction using unscented Kalman filter. Appl. Soft Comput. 2014, 19, 41–56. [Google Scholar] [CrossRef]
- Mondal, P.; Shit, L.; Goswami, S. Study of Effectiveness of Time Series Modeling (Arima) in Forecasting Stock Prices. Int. J. Comput. Sci. Eng. Appl. 2014, 4, 13–29. [Google Scholar] [CrossRef]
- Geva, T.; Zahavi, J. Empirical evaluation of an automated intraday stock recommendation system incorporating both market data and textual news. Decis. Support Syst. 2014, 57, 212–223. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, H.; Nunamaker, J.F.; Zimbra, D. Analyzing firm-specific social media and market: A stakeholder-based event analysis framework. Decis. Support Syst. 2014, 67, 30–39. [Google Scholar] [CrossRef]
- Hafezi, R.; Shahrabi, J.; Hadavandi, E. A bat-neural network multi-agent system (BNNMAS) for stock price prediction: Case study of DAX stock price. Appl. Soft Comput. 2015, 29, 196–210. [Google Scholar] [CrossRef]
- Ballings, M.; Van den Poel, D.; Hespeels, N.; Gryp, R. Evaluating multiple classifiers for stock price direction prediction. Expert Syst. Appl. 2015, 42, 7046–7056. [Google Scholar] [CrossRef]
- Nguyen, T.H.; Shirai, K.; Velcin, J. Sentiment analysis on social media for stock movement prediction. Expert Syst. Appl. 2015, 42, 9603–9611. [Google Scholar] [CrossRef]
- Wang, L.; Wang, Z.; Zhao, S.; Tan, S. Stock market trend prediction using dynamical Bayesian factor graph. Expert Syst. Appl. 2015, 42, 6267–6275. [Google Scholar] [CrossRef]
- Sun, B.; Guo, H.; Karimi, H.R.; Ge, Y.; Xiong, S. Prediction of stock index futures prices based on fuzzy sets and multivariate fuzzy time series. Neurocomputing 2015, 151, 1528–1536. [Google Scholar] [CrossRef]
- Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Integrating metaheuristics and Artificial Neural Networks for improved stock price prediction. Expert Syst. Appl. 2016, 44, 320–331. [Google Scholar] [CrossRef]
- Dash, R.; Dash, P. Efficient stock price prediction using a self evolving recurrent neuro-fuzzy inference system optimized through a modified differential harmony search technique. Expert Syst. Appl. 2016, 52, 75–90. [Google Scholar] [CrossRef]
- Zhou, T.; Gao, S.; Wang, J.; Chu, C.; Todo, Y.; Tang, Z. Financial time series prediction using a dendritic neuron model. Knowl. Based Syst. 2016, 105, 214–224. [Google Scholar] [CrossRef]
- Shynkevich, Y.; McGinnity, T.; Coleman, S.A.; Belatreche, A. Forecasting movements of health-care stock prices based on different categories of news articles using multiple kernel learning. Decis. Support Syst. 2016, 85, 74–83. [Google Scholar] [CrossRef]
- Nie, C.-X.; Jin, X.-B. The Interval Slope Method for Long-Term Forecasting of Stock Price Trends. Adv. Math. Phys. 2016, 2016, 8045656. [Google Scholar] [CrossRef]
- Chen, R.; Pan, B. Chinese Stock Index Futures Price Fluctuation Analysis and Prediction Based on Complementary Ensemble Empirical Mode Decomposition. Math. Probl. Eng. 2016, 2016, 3791504. [Google Scholar] [CrossRef]
- Lahmiri, S. Intraday stock price forecasting based on variational mode decomposition. J. Comput. Sci. 2016, 12, 23–27. [Google Scholar] [CrossRef]
- Qiu, M.; Song, Y.; Akagi, F. Application of artificial neural network for the prediction of stock market returns: The case of the Japanese stock market. Chaos Solitons Fractals 2016, 85, 1–7. [Google Scholar] [CrossRef]
- Qiu, M.; Song, Y. Predicting the Direction of Stock Market Index Movement Using an Optimized Artificial Neural Network Model. PLoS ONE 2016, 11, e0155133. [Google Scholar] [CrossRef]
- An, Y.; Chan, N.H. Short-Term Stock Price Prediction Based on Limit Order Book Dynamics. J. Forecast. 2017, 36, 541–556. [Google Scholar] [CrossRef]
- Shynkevich, Y.; McGinnity, T.; Coleman, S.A.; Belatreche, A.; Li, Y. Forecasting price movements using technical indicators: Investigating the impact of varying input window length. Neurocomputing 2017, 264, 71–88. [Google Scholar] [CrossRef]
- Ouahilal, M.; El Mohajir, M.; Chahhou, M.; El Mohajir, B.E. A novel hybrid model based on Hodrick–Prescott filter and support vector regression algorithm for optimizing stock market price prediction. J. Big Data 2017, 4, 31. [Google Scholar] [CrossRef]
- Rout, A.K.; Dash, P.; Dash, R.; Bisoi, R. Forecasting financial time series using a low complexity recurrent neural network and evolutionary learning approach. J. King Saud Univ. Comput. Inf. Sci. 2017, 29, 536–552. [Google Scholar] [CrossRef]
- Castelli, M.; Vanneschi, L.; Trujillo, L.; Popovič, A. Stock index return forecasting: Semantics-based genetic programming with local search optimiser. Int. J. Bio-Inspired Comput. 2017, 10, 159–171. [Google Scholar] [CrossRef]
- Tao, L.; Hao, Y.; Yijie, H.; Chunfeng, S. K-Line Patterns’ Predictive Power Analysis Using the Methods of Similarity Match and Clustering. Math. Probl. Eng. 2017, 2017, 3096917. [Google Scholar] [CrossRef]
- Chong, E.; Han, C.; Park, F.C. Deep learning networks for stock market analysis and prediction: Methodology, data representations, and case studies. Expert Syst. Appl. 2017, 83, 187–205. [Google Scholar] [CrossRef]
- Weng, B.; Ahmed, M.A.; Megahed, F.M. Stock market one-day ahead movement prediction using disparate data sources. Expert Syst. Appl. 2017, 79, 153–163. [Google Scholar] [CrossRef]
- Zhuge, Q.; Xu, L.; Zhang, G. LSTM Neural Network with Emotional Analysis for Prediction of Stock Price. Eng. Lett. 2017, 25, 1–9. [Google Scholar]
- Kraus, M.; Feuerriegel, S. Decision support from financial disclosures with deep neural networks and transfer learning. Decis. Support Syst. 2017, 104, 38–48. [Google Scholar] [CrossRef]
- Jeon, S.; Hong, B.; Chang, V. Pattern graph tracking-based stock price prediction using big data. Futur. Gener. Comput. Syst. 2018, 80, 171–187. [Google Scholar] [CrossRef]
- Agustini, W.F.; Affianti, I.R.; Putri, E.R. Stock price prediction using geometric Brownian motion. J. Phys. Conf. Ser. 2018, 974, 012047. [Google Scholar] [CrossRef]
- Matsubara, T.; Akita, R.; Uehara, K. Stock Price Prediction by Deep Neural Generative Model of News Articles. IEICE Trans. Inf. Syst. 2018, 101, 901–908. [Google Scholar] [CrossRef]
- Ebadati, E.O.M.; Mortazavi, T.M. An efficient hybrid machine learning method for time series stock market forecasting. Neural Netw. World 2018, 28, 41–55. [Google Scholar] [CrossRef]
- Kooli, C.; Trabelsi, R.; Tlili, F. The impact of accounting disclosure on emerging stock market prediction in an unstable socio-political context. J. Account. Manag. Inf. Syst. 2018, 17, 313–329. [Google Scholar] [CrossRef]
- Lahmiri, S. Minute-ahead stock price forecasting based on singular spectrum analysis and support vector regression. Appl. Math. Comput. 2018, 320, 444–451. [Google Scholar] [CrossRef]
- Zhou, X.; Pan, Z.; Hu, G.; Tang, S.; Zhao, C. Stock Market Prediction on High-Frequency Data Using Generative Adversarial Nets. Math. Probl. Eng. 2018, 2018, 1–11. [Google Scholar] [CrossRef]
- Shah, H.; Tairan, N.; Garg, H.; Ghazali, R. A Quick Gbest Guided Artificial Bee Colony Algorithm for Stock Market Prices Prediction. Symmetry 2018, 10, 292. [Google Scholar] [CrossRef]
- Göçken, M.; Özçalıcı, M.; Boru, A.; Dosdoğru, A.T. Stock price prediction using hybrid soft computing models incorporating parameter tuning and input variable selection. Neural Comput. Appl. 2019, 31, 577–592. [Google Scholar] [CrossRef]
- Vanstone, B.J.; Gepp, A.; Harris, G. The effect of sentiment on stock price prediction. In International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems; Springer: Cham, Switzerland, 2019; pp. 551–559. [Google Scholar]
- Zheng, J.; Wang, Y.; Li, S.; Chen, H. The Stock Index Prediction Based on SVR Model with Bat Optimization Algorithm. Algorithms 2021, 14, 299. [Google Scholar] [CrossRef]
- Chen, J.; Wen, Y.; Nanehkaran, Y.; Suzauddola; Chen, W.; Zhang, D. Machine learning techniques for stock price prediction and graphic signal recognition. Eng. Appl. Artif. Intell. 2023, 121, 106038. [Google Scholar] [CrossRef]
- Jiang, Z.; Liu, J.; Yang, L. Comparison Analysis of Stock Price Prediction Based on Different Machine Learning Methods. In Proceedings of the 2nd International Academic Conference on Blockchain, Information Technology and Smart Finance (ICBIS 2023), Hangzhou, China, 17–19 February 2023; pp. 59–67. [Google Scholar] [CrossRef]
- Antad, S.; Khandelwal, S.; Khandelwal, A.; Khandare, R.; Khandave, P.; Khangar, D.; Khanke, R. Stock Price Prediction Website Using Linear Regression—A Machine Learning Algorithm. ITM Web Conf. 2023, 56, 05016. [Google Scholar] [CrossRef]
- Khan, W.; Ghazanfar, M.A.; Azam, M.A.; Karami, A.; Alyoubi, K.H.; Alfakeeh, A.S. Stock market prediction using machine learning classifiers and social media, news. J. Ambient. Intell. Humaniz. Comput. 2022, 13, 3433–3456. [Google Scholar] [CrossRef]
- Shaban, W.M.; Ashraf, E.; Slama, A.E. SMP-DL: A novel stock market prediction approach based on deep learning for effective trend forecasting. Neural Comput. Appl. 2023, 36, 1849–1873. [Google Scholar] [CrossRef]
- Belcastro, L.; Carbone, D.; Cosentino, C.; Marozzo, F.; Trunfio, P. Enhancing Cryptocurrency Price Forecasting by Integrating Machine Learning with Social Media and Market Data. Algorithms 2023, 16, 542. [Google Scholar] [CrossRef]
- Al-Nefaie, A.H.; Aldhyani, T.H.H. Bitcoin Price Forecasting and Trading: Data Analytics Approaches. Electronics 2022, 11, 4088. [Google Scholar] [CrossRef]
- Chen, Y.; Hao, Y. A feature weighted support vector machine and K-nearest neighbor algorithm for stock market indices prediction. Expert Syst. Appl. 2017, 80, 340–355. [Google Scholar] [CrossRef]
- Patel, J.; Shah, S.; Thakkar, P.; Kotecha, K. Predicting stock and stock price index movement using Trend Deterministic Data Preparation and machine learning techniques. Expert Syst. Appl. 2015, 42, 259–268. [Google Scholar] [CrossRef]
- Athey, S.; Tibshirani, J.; Wager, S. Generalized random forests. Ann. Stat. 2019, 47, 1148–1178. [Google Scholar] [CrossRef]
- Scornet, E.; Biau, G.; Vert, J.-P. Consistency of random forests. Ann. Stat. 2015, 43, 1716–1741. [Google Scholar] [CrossRef]
- Fenghua, W.; Jihong, X.; Zhifang, H.; Xu, G. Stock Price Prediction based on SSA and SVM. Procedia Comput. Sci. 2014, 31, 625–631. [Google Scholar] [CrossRef]
- Babu, C.N.; Reddy, B.E. A moving-average filter based hybrid ARIMA–ANN model for forecasting time series data. Appl. Soft Comput. 2014, 23, 27–38. [Google Scholar] [CrossRef]
- Kumar, M.; Anand, M. An application of time series ARIMA forecasting model for predicting sugarcane production in India. Stud. Bus. Econ. 2014, 9, 81–94. [Google Scholar]
- Moghaddam, A.H.; Moghaddam, M.H.; Esfandyari, M. Stock market index prediction using artificial neural network. J. Econ. Financ. Adm. Sci. 2016, 21, 89–93. [Google Scholar] [CrossRef]
- Olah, C. Understanding lstm networks–colah’s blog. Colah. github. io. 2015. Available online: https://colah.github.io/posts/2015-08-Understanding-LSTMs/ (accessed on 3 March 2023).
- Bloomberg. Every Time Trump Tweets about the Stock Market. 2019. Available online: https://www.bloomberg.com/features/trump-tweets-market (accessed on 30 September 2023).
- Investopedia. Can Tweets and Facebook Posts Predict Stock Behavior? 2019. Available online: https://www.investopedia.com/articles/markets/031814/can-tweets-and-facebook-posts-predict-stock-behavior-and-rt-if-you-think-so.asp (accessed on 15 September 2023).
- Asteriou, D.; Pilbeam, K.; Sarantidis, A. The Behaviour of Banking Stocks During the Financial Crisis and Recessions. Evidence from Changes-in-Changes Panel Data Estimations. Scott. J. Political Econ. 2019, 66, 154–179. [Google Scholar] [CrossRef]
- Erdogan, O.; Bennett, P.; Ozyildirim, C. Recession Prediction Using Yield Curve and Stock Market Liquidity Deviation Measures. Rev. Financ. 2014, 19, 407–422. [Google Scholar] [CrossRef]
- Kleinnijenhuis, J.; Schultz, F.; Oegema, D.; van Atteveldt, W. Financial news and market panics in the age of high-frequency sentiment trading algorithms. J. Theory Pract. Crit. 2013, 14, 271–291. [Google Scholar] [CrossRef]
- Angelovska, J. Investors’ behaviour in regard to company earnings announcements during the recession period: Evidence from the Macedonian stock exchange. Econ. Res. Istraz. 2017, 30, 647–660. [Google Scholar] [CrossRef]
- Rath, S.; Das, N.R.; Pattanayak, B.K. An Analytic Review on Stock Market Price Prediction using Machine Learning and Deep Learning Techniques. Recent Patents Eng. 2024, 18, 88–104. [Google Scholar] [CrossRef]
- Nelson DM, Q.; Pereira AC, M.; De Oliveira, R.A. Stock market’s price movement prediction with LSTM neural networks. In Proceedings of the 2017 International Joint Conference on Neural Networks (IJCNN), Anchorage, AK, USA, 14–19 May 2017. [Google Scholar] [CrossRef]
- Yang, L.; Shami, A. On hyperparameter optimization of machine learning algorithms: Theory and practice. arXiv 2020, arXiv:2007.15745. [Google Scholar] [CrossRef]
- Guliyev, N.J.; Ismailov, V.E. A Single Hidden Layer Feedforward Network with Only One Neuron in the Hidden Layer Can Approximate Any Univariate Function. Neural Comput. 2016, 28, 1289–1304. [Google Scholar] [CrossRef]
- Stathakis, D. How many hidden layers and nodes? Int. J. Remote Sens. 2009, 30, 2133–2147. [Google Scholar] [CrossRef]
- Thomas, A.J.; Petridis, M.; Walters, S.D.; Gheytassi, S.M.; Morgan, R.E. Two Hidden Layers are Usually Better than One. In Engineering Applications of Neural Networks Communications in Computer and Information Science; Springer: Berlin/Heidelberg, Germany, 2017; pp. 279–290. [Google Scholar] [CrossRef]
- Saleem, N.; Khattak, M.I. Deep Neural Networks for Speech Enhancement in Complex-Noisy Environments. Int. J. Interact. Multimed. Artif. Intell. 2020, 6, 84. [Google Scholar] [CrossRef]
- Zhang, N.; Shen, S.-L.; Zhou, A.-N.; Xu, Y.-S. Investigation on Performance of Neural Networks Using Quadratic Relative Error Cost Function. IEEE Access 2019, 7, 106642–106652. [Google Scholar] [CrossRef]
- Hasan, M.M.; Rahman, M.S.; Bell, A. Deep Reinforcement Learning for Optimization. In Handbook of Research on Deep Learning Innovations and Trends; Research Anthology on Artificial Intelligence Applications in Security; IGI Global: Hershey, PA, USA, 2021. [Google Scholar]
- Fangasadha, E.F.; Soeroredjo, S.; Gunawan, A.A.S. Literature Review of OpenAI Five’s Mechanisms in Dota 2’s Bot Player. In Proceedings of the 2022 International Seminar on Application for Technology of Information and Communication (iSemantic), Semarang, Indonesia, 17–18 September 2022. [Google Scholar] [CrossRef]
- Jiang, S.; Chen, Y. Hand Gesture Recognition by Using 3DCNN and LSTM with Adam Optimizer. In Advances in Multimedia Information Processing—PCM 2017 Lecture Notes in Computer Science; Springer: Berlin/Heidelberg, Germany, 2018; pp. 743–753. [Google Scholar] [CrossRef]
- Chang, Z.; Zhang, Y.; Chen, W. Electricity price prediction based on hybrid model of adam optimized LSTM neural network and wavelet transform. Energy 2019, 187, 115804. [Google Scholar] [CrossRef]
- Skehin, T.; Crane, M.; Bezbradica, M. Day ahead forecasting of FAANG stocks using ARIMA, LSTM networks and wavelets. In Proceedings of the 26th AIAI Irish Conference on Artificial Intelligence and Cognitive Science, Dublin, Ireland, 6–7 December 2018. [Google Scholar]
- Johnson, A.; Reed, A. Tesla in Texas: A Showdown Over Showrooms. SAM Adv. Manag. J. 2019, 84, 47–56. [Google Scholar]
- Cuofano, G. Tesla Distribution Strategy—FourWeekMBA. Tesla-Distribution-Strategy. 2024. Available online: https://fourweekmba.com/tesla-distribution-strategy/ (accessed on 5 March 2024).
- Dey, P.; Hossain, E.; Hossain, I.; Chowdhury, M.A.; Alam, S.; Hossain, M.S.; Andersson, K. Comparative Analysis of Recurrent Neural Networks in Stock Price Prediction for Different Frequency Domains. Algorithms 2021, 14, 251. [Google Scholar] [CrossRef]
- Kumar, R.; Kumar, P.; Kumar, Y. Time Series Data Prediction using IoT and Machine Learning Technique. Procedia Comput. Sci. 2020, 167, 373–381. [Google Scholar] [CrossRef]
- Thakkar, A.; Chaudhari, K. CREST: Cross-Reference to Exchange-based Stock Trend Prediction using Long Short-Term Memory. Procedia Comput. Sci. 2020, 167, 616–625. [Google Scholar] [CrossRef]
- Pallavi, D.; Mourani, S.; Prosenjit, P.; Sufia, Z.; Abhijit, M. Use of Non-Linear Autoregressive Model to Forecast the Future Health of Shrimp Farm. J. Mech. Contin. Math. Sci. 2021, 16, 59–64. [Google Scholar]
- Oyekale, J.; Oreko, B. Machine learning for design and optimization of organic Rankine cycle plants: A review of current status and future perspectives. WIREs Energy Environ. 2023, 12, e474. [Google Scholar] [CrossRef]
- Greff, K.; Srivastava, R.K.; Koutník, J.; Steunebrink, B.R.; Schmidhuber, J. LSTM: A Search Space Odyssey. IEEE Trans. Neural Netw. Learn. Syst. 2017, 28, 2222–2232. [Google Scholar] [CrossRef]
- Dong, J.; Chen, Y.; Guan, G. Cost Index Predictions for Construction Engineering Based on LSTM Neural Networks. Adv. Civ. Eng. 2020, 2020, 6518147. [Google Scholar] [CrossRef]
# | Reference | Appr. | Technique | # | Reference | Appr. | Technique | # | Reference | Appr. | Technique |
---|---|---|---|---|---|---|---|---|---|---|---|
1 | Armano et al. [8] | TECH | NN and EA | 37 | Leigh et al. [62] | TECH | NN and EA | 73 | Nie and Jin [98] | TECH | ML (SVM) |
2 | Wang et al. [9] | TECH | NN and STAT | 38 | Kim [63] | TECH | ML (SVM) | 74 | Chen and Pan [99] | TECH | ML (SVM) and EA |
3 | Kao et al. [10] | TECH | ML (SVM) | 39 | Wang [64] | TECH | STAT (FUZZY) | 75 | Lahmiri [100] | TECH | ML (SVM) and EA |
4 | Liu and Lv [11] | TECH | NN and EA | 40 | Chen and Leung [65] | TECH | NN | 76 | Qiu et al. [101] | T/F | NN |
5 | Guo et al. [12] | TECH | STAT | 41 | Pai and Lin [66] | TECH | STAT (ARIMA) | 77 | Qiu and Song [102] | TECH | NN |
6 | Mahmud and Meesad [13] | TECH | Fuzzy | 42 | Enke and Thawornwong [67] | FUND | NN | 78 | An and Chan [103] | TECH | EA |
7 | Wang et al. [14] | TECH | EA | 43 | Kim et al. [68] | TECH | Genetic Alg | 79 | Shynkevich et al. [104] | TECH | ML (KNN) |
8 | Zhang et al. [15] | TECH | ML (RF) | 44 | Schumaker and Chen [69] | SENT | ML (SVM) | 80 | Ouahilal et al. [105] | TECH | ML (SVM) |
9 | Zhang et al. [15] | TECH | NN | 45 | Huang and Tsai [70] | TECH | ML (SVM) | 81 | Rout et al. [106] | TECH | ML and EA |
10 | Bisoi et al. [16] | TECH | ML(SVM) and EA | 46 | Kara et al. [71] | TECH | ML (SVM) | 82 | Castelli et al. [107] | TECH | Genetic Alg. |
11 | Ding and Qin [17] | TECH | Deep RNN | 47 | Groth and Muntermann [72] | SENT | STAT | 83 | Tao et al. [108] | TECH | STAT |
12 | Qiu et al. [18] | TECH | LSTM | 48 | Schumaker et al. [73] | SENT | STAT | 84 | Chong et al. [109] | TECH | ML (ARIMA) |
13 | Jin et al. [19] | SENT | NN (LSTM) | 49 | Yolcu et al. [74] | TECH | NN | 85 | Weng et al. [110] | TECH | ML (RF) |
14 | Vijh et al. [20] | TECH | ML-NN | 50 | Hagenau et al. [75] | SENT | STAT | 86 | Zhuge et al. [111] | SENT | NN |
15 | Lu et al. [21] | TECH | CNN-LSTM | 51 | Umoh and Udosen [76] | TECH | STAT (FUZZY) | 87 | Kraus and Feuerriegel [112] | SENT | NN |
16 | Pang et al. [35] | TECH | LSTM | 52 | Nayak et al. [77] | TECH | NN and EA | 88 | Jeon et al. [113] | TECH | NN and STAT |
17 | Bommareddy et al. [36] | TECH | STAT | 53 | Tsai and Hsiao [78] | FUND | NN and EA | 89 | Agustini et al. [114] | TECH | STAT |
18 | Hiransha et al. [37] | TECH | NN | 54 | Li et al. [79] | T/S | NN and STAT | 90 | Matsubara et al. [115] | SENT | NN |
19 | Nguyen et al. [39] | TECH | SVM and LSTM | 55 | Sun et al. [80] | TECH | NN | 91 | Ebadati and Mortazavi [116] | TECH | NN and EA |
20 | Kumar et al. [40] | TECH | LSTM | 56 | Dash et al. [81] | TECH | EA | 92 | Kooli et al. [117] | T/F | NN |
21 | Mittal et al. [41] | TECH | LSTM-SVM | 57 | Adebiyi et al. [82] | TECH | NN and STAT | 93 | Lahmiri [118] | TECH | ML (SVM) |
22 | Perdana and Rokhim [42] | TECH | LSTM | 58 | Lee et al. [83] | SENT | ML (RF) | 94 | Zhou et al. [119] | TECH | NN |
23 | Shirata and Harada [43] | TECH | LSTM | 59 | Junqué de Fortuny et al. [84] | SENT | ML (SVM) | 95 | Shah et al. [120] | TECH | NN and EA |
24 | 60 | Bisoi and Dash [85] | T/F | ML (SVM) | 96 | Gocken et al. [121] | TECH | NN and EA | |||
25 | Liu et al. [44] | T/S | LSTM-CNN | 61 | Mondal et al. [86] | TECH | STAT (ARIMA) | 97 | Vantstone et al. [122] | SENT | NN |
26 | Ammer and Aldhyani [45] | TECH | LSTM | 62 | Geva and Zahavi [87] | T/S | NN | 98 | Zheng et al. [123] | TECH | ANN-SVR |
27 | Yu and Yan [49] | TECH | NN | 63 | Jiang et al. [88] | SENT | STAT | 99 | Mehtab et al. [126] | TECH | LSTM |
28 | Cheng and Yang [50] | TECH | STAT (FUZZY) | 64 | Hafezi et al. [89] | TECH | NN and EA | 100 | Chen et al. [124] | TECH | ML (VAR) |
29 | Rundo et al. [52] | TECH | NN | 65 | Ballings et al. [90] | TECH | ML (RF) | 101 | Jiang et al. [125] | TECH | ML (DT, RF) |
30 | Khairi et al. [53] | T/F/S | ML and NN | 66 | Nguyen et al. [91] | SENT | ML (SVM) | 102 | Antad et al. [126] | TECH | ML (LR) |
31 | Ghorbani and Chong [54] | TECH | STAT (PCA) | 67 | Wang et al. [92] | FUND | STAT | 103 | Khan et al. [127] | SENT | Hybrid NNs |
32 | Zhong and Hitchcock [55] | SENT | LSTM | 68 | Sun et al. [93] | TECH | STAT (FUZZY) | 104 | Shaban et al. [128] | SENT | Hybrid |
33 | Gupta and Chen [58] | SENT | ML (TF-IDF) | 69 | Gocken et al. [94] | TECH | NN and EA | 105 | Belcastro et al. [129] | T/S | LSTM |
34 | Jing et al. [59] | SENT | CNN-LSTM | 70 | Dash and Dash [95] | TECH | NN and EA | 106 | Al-Nefaie et al. [130] | TECH | MLP and GRU |
35 | Wu et al. [60] | SENT | CNN-LSTM | 71 | Zhou et al. [96] | TECH | NN | 107 | Current Study | T/S | LSTM and MLP |
36 | Wang [61] | TECH | STAT (FUZZY) | 72 | Shynkevich et al. [97] | SENT | ML (KNN) |
No | Reference | OP | CP | HP | LP | TV | 30MA | BB | TB | MACD |
---|---|---|---|---|---|---|---|---|---|---|
1 | Zhang et al. [15] | ■ | ■ | ■ | ■ | ■ | ||||
2 | Ding and Qin [17] | ■ | ■ | ■ | ||||||
Hiransha et al. [37] | ■ | |||||||||
3 | Rundo et al. [52] | ■ | ■ | ■ | ■ | |||||
4 | Wu et al. [60] | ■ | ■ | ■ | ■ | ■ | ||||
5 | Hafezi et al. [89] | ■ | ■ | ■ | ||||||
6 | Gocken et al. [94] | ■ | ■ | ■ | ||||||
7 | Zhou et al. [96] | ■ | ||||||||
8 | Qiu and Song [102] | ■ | ■ | |||||||
9 | Jeon et al. [113] | ■ | ■ | ■ | ■ | |||||
10 | Ebadati and Mortazavi [116] | ■ | ||||||||
11 | Zhou et al. [119] | ■ | ■ | ■ | ■ | ■ | ■ | ■ | ■ | |
12 | ||||||||||
13 | Gocken et al. [121] | ■ | ■ | ■ | ■ | ■ | ■ | |||
14 | Moghaddam et al. [138] | ■ | ||||||||
15 | Nelson et al. [147] | ■ | ■ | ■ | ■ | |||||
16 | Dey et al. [161] | ■ | ■ | ■ | ■ | ■ |
Variable Name | Definition |
---|---|
Open Price | The dollar value of the first trade since the market opened |
High Price | The highest dollar value trade of the day |
Low Price | The lowest dollar value trade of the day |
Close Price | The dollar value of the last trade before the market closed |
30-Day Moving Average | The average dollar value of one share in the last 30 days |
Trade Volume | The total quantity of shares traded all day. |
Twitter Count (TC) | Represents the difference between the number of tweets expressing positive sentiment and those expressing negative sentiment towards the parent company over a 24-h period. |
News Publication Count (NC) | Represents the total number of news publications mentioning the parent company over a 24-h period. |
TC | NC | Price | ||
---|---|---|---|---|
Train vs. Pan-Set | Train vs. Pan-Set | Train vs. Pan-Set | ||
CV | −7% | −15% | −14% | |
Mean | −46% | 23% | −49% | |
Amazon | CV | −19% | −7% | −37% |
Mean | −55% | −17% | 114% | |
Walmart | CV | −27% | −35% | 6% |
Mean | −26% | 132% | 129% | |
CV | −48% | −46% | −16% | |
Mean | −10% | −71% | 47% | |
Netflix | CV | 22% | 38% | −45% |
Mean | −69% | −53% | 117% | |
Apple | CV | −59% | −20% | −16% |
Mean | −71% | 0% | 105% | |
Ford | CV | −103% | −2% | 12% |
Mean | −14% | 34% | −44% | |
Tesla | CV | −35% | −13% | −10% |
Mean | −57% | 13% | 52% | |
CV | Top 50% | −25% | −26% | −15% |
Bottom 50% | −44% | 1% | −15% | |
Mean | Top 50% | −35% | 17% | 60% |
Bottom 50% | −53% | −2% | 57% |
NN | Test Set | Company | T RMSE | T+ RMSE | RMSE ± | RMSE% ± |
---|---|---|---|---|---|---|
LSTM | PANIC | Amazon | 0.06246 | 0.06018 | 0.00228 | 4.0% |
Apple | 0.12860 | 0.12711 | 0.00149 | 1.0% | ||
0.07699 | 0.07392 | 0.00306 | 4.0% | |||
Ford | 0.13641 | 0.07553 | 0.06087 | 45.0% | ||
0.06271 | 0.04938 | 0.01333 | 21.0% | |||
Netflix | 0.11226 | 0.09216 | 0.02010 | 18.0% | ||
Tesla | 0.17632 | 0.18758 | −0.01126 | −6.0% | ||
Walmart | 0.05845 | 0.07278 | −0.01434 | −25.0% | ||
NORMAL | Amazon | 0.04672 | 0.04210 | 0.00462 | 10.0% | |
Apple | 0.05848 | 0.05299 | 0.00549 | 9.0% | ||
0.04404 | 0.03668 | 0.00737 | 17.0% | |||
Ford | 0.04024 | 0.03007 | 0.01017 | 25.0% | ||
0.03487 | 0.02874 | 0.00613 | 18.0% | |||
Netflix | 0.04211 | 0.03706 | 0.00505 | 12.0% | ||
Tesla | 0.05344 | 0.10091 | −0.04748 | −89.0% | ||
Walmart | 0.04021 | 0.04251 | −0.00231 | −6.0% | ||
MLP | PANIC | Amazon | 0.01950 | 0.01928 | 0.00022 | 1.0% |
Apple | 0.02188 | 0.02141 | 0.00047 | 2.0% | ||
0.02746 | 0.02407 | 0.00339 | 12.0% | |||
Ford | 0.16027 | 0.03661 | 0.12366 | 77.0% | ||
0.02388 | 0.02069 | 0.00320 | 13.0% | |||
Netflix | 0.02553 | 0.02399 | 0.00154 | 6.0% | ||
Tesla | 0.08409 | 0.04863 | 0.03546 | 42.0% | ||
Walmart | 0.01753 | 0.01814 | −0.00062 | −4.0% | ||
NORMAL | Amazon | 0.02602 | 0.02426 | 0.00176 | 7.0% | |
Apple | 0.02002 | 0.01995 | 0.00007 | 0.0% | ||
0.02070 | 0.02193 | −0.00123 | −6.0% | |||
Ford | 0.04886 | 0.02047 | 0.02839 | 58.0% | ||
0.02355 | 0.02147 | 0.00209 | 9.0% | |||
Netflix | 0.02954 | 0.02842 | 0.00113 | 4.0% | ||
Tesla | 0.03610 | 0.03531 | 0.00079 | 2.0% | ||
Walmart | 0.01278 | 0.01362 | −0.00085 | −7.0% |
Rank | Company | Average Improvement via T+ |
---|---|---|
1 | Ford | 51% |
2 | 15% | |
3 | Netflix | 10% |
4 | 7% | |
5 | Amazon | 5% |
6 | Apple | 3% |
7 | Walmart | −10% |
8 | Tesla | −13% |
Mean | 9% |
Company | Avg TC | Avg NC | TC/NC | |
---|---|---|---|---|
Top 50% | Ford | 195.8240 | 274.7395 | 0.7128 |
4005.3400 | 1213.2782 | 3.3013 | ||
Netflix | 1587.4800 | 647.8841 | 2.4503 | |
710.2050 | 3983.5188 | 0.1783 | ||
Bottom 50% | Amazon | 3058.1700 | 769.4627 | 3.9744 |
Apple | 5060.5100 | 2545.8502 | 1.9877 | |
Walmart | 754.8970 | 380.7387 | 1.9827 | |
Tesla | 2254.9500 | 600.7312 | 3.7537 | |
Top 50% Avg | 1624.7100 | 1529.8552 | 1.6606 | |
Bottom 50% Avg | 2782.1300 | 1074.1957 | 2.9246 |
Rank by RMSE% +/- | Company | % ± in CV of Training TC vs Nor-Set TC | % ± in CV of Training TC vs Pan-Set TC | % ± in CV of Training NC vs Nor-Set NC | % ± in CV of Training NC vs Pan-Set NC |
---|---|---|---|---|---|
1 | Ford | −90% | −93% | −6% | −4% |
2 | 22% | 21% | −2% | −5% | |
3 | Netflix | −9% | 2% | −14% | 9% |
4 | −42% | −41% | −37% | −36% | |
5 | Amazon | −19% | −18% | −14% | −7% |
6 | Apple | −18% | −31% | 0% | −5% |
7 | Walmart | −31% | −32% | 7% | 2% |
8 | Tesla | −39% | −31% | −29% | −29% |
Top 50% Avg | −30% | −28% | −15% | −9% | |
Bottom 50% Avg | −27% | −28% | −9% | −10% |
Company | Mean TC | Mean NC | |||||
---|---|---|---|---|---|---|---|
Train | Nor-Test | Pan-Test | Train | Nor-Test | Pan-Test | ||
1 | Ford | 212 | 131 | 149 | 253 | 334 | 336 |
2 | 4320 | 3560 | 3140 | 1206 | 1109 | 1237 | |
3 | Netflix | 1823 | 1077 | 907 | 620 | 956 | 730 |
4 | 686 | 866 | 780 | 4758 | 1914 | 1741 | |
5 | Amazon | 3515 | 1816 | 1734 | 727 | 1035 | 890 |
6 | Apple | 6229 | 1612 | 1675 | 2479 | 2864 | 2735 |
7 | Walmart | 881 | 394 | 388 | 364 | 439 | 429 |
8 | Tesla | 2499 | 1395 | 1548 | 488 | 823 | 930 |
Top 50% | 1760 | 1408 | 1244 | 1709 | 1078 | 1011 | |
Bottom 50% | 3281 | 1304 | 1337 | 1015 | 1290 | 1246 | |
Top 50% | Train vs. Avg Test | 75% | Top 50% | Train vs. Avg Test | 61% | ||
Bottom 50% | Train vs. Avg Test | 40% | Bottom 50% | Train vs. Avg Test | 125% |
T Vars | T+ Vars | Nor-Set | Pan-Set | |||
---|---|---|---|---|---|---|
Mean | MLP | 0.073395 | 0.069357 | 0.045699 | 0.097053 | |
Range | 0.141446 | 0.158834 | 0.072171 | 0.138198 | ||
ST.Dev | 0.040658 | 0.040633 | 0.016259 | 0.041585 | ||
CV | 0.554 | 0.586 | 0.356 | 0.428 | ||
Mean | LSTM | 0.037357 | 0.024891 | 0.025188 | 0.037060 | |
Range | 0.147494 | 0.035011 | 0.036088 | 0.142744 | ||
ST.Dev | 0.035671 | 0.008374 | 0.008748 | 0.035683 | ||
CV | 0.955 | 0.336 | 0.347 | 0.963 | ||
MLP vs. LSTM | Average | |||||
+/−Mean | −0.036038 | −0.044466 | −0.020511 | −0.059993 | −0.0403 | |
+/−CV | −0.401 | 0.249 | 0.008 | −0.534 | −0.1693 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zolfagharinia, H.; Najafi, M.; Rizvi, S.; Haghighi, A. Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques. Algorithms 2024, 17, 234. https://doi.org/10.3390/a17060234
Zolfagharinia H, Najafi M, Rizvi S, Haghighi A. Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques. Algorithms. 2024; 17(6):234. https://doi.org/10.3390/a17060234
Chicago/Turabian StyleZolfagharinia, Hossein, Mehdi Najafi, Shamir Rizvi, and Aida Haghighi. 2024. "Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques" Algorithms 17, no. 6: 234. https://doi.org/10.3390/a17060234
APA StyleZolfagharinia, H., Najafi, M., Rizvi, S., & Haghighi, A. (2024). Unleashing the Power of Tweets and News in Stock-Price Prediction Using Machine-Learning Techniques. Algorithms, 17(6), 234. https://doi.org/10.3390/a17060234