Detection of Subtle ECG Changes Despite Superimposed Artifacts by Different Machine Learning Algorithms
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthetic ECG Generation and Modification
2.2. Machine Learning Algorithms Used
2.3. Feature Importance
2.4. Proof-of-Concept Control Measurements
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Stracina, T.; Ronzhina, M.; Redina, R.; Novakova, M. Golden Standard or Obsolete Method? Review of ECG Applications in Clinical and Experimental Context. Front. Physiol. 2022, 13, 867033. [Google Scholar] [CrossRef]
- Davis, M.; Lewell, M.; McLeod, S.; Dukelow, A. A Prospective Evaluation of the Utility of the Prehospital 12-lead Electrocardiogram to Change Patient Management in the Emergency Department. Prehospital Emerg. Care 2014, 18, 9–14. [Google Scholar] [CrossRef]
- Van Mieghem, C.; Sabbe, M.; Knockaert, D. The Clinical Value of the ECG in Noncardiac Conditions. Chest 2004, 125, 1561–1576. [Google Scholar] [CrossRef]
- Marek, J.; Bufalino, V.; Davis, J.; Marek, K.; Gami, A.; Stephan, W.; Zimmerman, F. Feasibility and findings of large-scale electrocardiographic screening in young adults: Data from 32,561 subjects. Heart Rhythm. 2011, 8, 1555–1559. [Google Scholar] [CrossRef]
- Spatz, E.S.; Ginsburg, G.S.; Rumsfeld, J.S.; Turakhia, M.P. Wearable Digital Health Technologies for Monitoring in Cardiovascular Medicine. N. Engl. J. Med. 2024, 390, 346–356. [Google Scholar] [CrossRef]
- Böck, C.; Mörtl, C.; Mahringer, C.; Huemer, M.; Meier, J. Variability of expert assessments of ECG time domain parameters. Eur. J. Anaesthesiol. 2023, 2, e0020. [Google Scholar] [CrossRef]
- Peimankar, A.; Puthusserypady, S. DENS-ECG: A deep learning approach for ECG signal delineation. Expert Syst. Appl. 2021, 165, 113911. [Google Scholar] [CrossRef]
- Murat, F.; Yildirim, O.; Talo, M.; Baloglu, U.B.; Demir, Y.; Acharya, U.R. Application of deep learning techniques for heartbeats detection Using ECG signals—Analysis and review. Comput. Biol. Med. 2020, 120, 103726. [Google Scholar] [CrossRef]
- Al Hinai, G.; Jammoul, S.; Vajihi, Z.; Afilalo, J. Deep learning analysis of resting electrocardiograms for the detection of myocardial dysfunction, hypertrophy, and ischaemia: A systematic review. Eur. Heart J. Digit. Health 2021, 2, 416–423. [Google Scholar] [CrossRef]
- Smulyan, H. The computerized ECG: Friend and foe. Am. J. Med. 2019, 132, 153–160. [Google Scholar] [CrossRef]
- Breiman, L. Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Verikas, A.; Gelzinis, A.; Bacauskiene, M. Mining data with random forests: A survey and results of new tests. Pattern Recognit. 2011, 44, 330–349. [Google Scholar] [CrossRef]
- Kung, B.H.; Hu, P.Y.; Huang, C.C.; Lee, C.C.; Yao, C.Y.; Kuan, C.H. An efficient ECG classification system using resource-saving architecture and random Forest. IEEE J. Biomed. Health Inform. 2021, 25, 1904–1914. [Google Scholar] [CrossRef]
- Zou, C.; Muller, A.; Wolfgang, U.; Ruckert, D.; Muller, P.; Becker, M.; Steger, A.; Martens, E. Heartbeat Classification by Random Forest with a Novel Context Feature: A Segment Label. IEEE J. Transl. Eng. Health Med. 2022, 10, 1900508. [Google Scholar] [CrossRef]
- McSharry, P.E.; Clifford, G.D.; Tarassenko, L.; Smith, L.A. A dynamical model for generating synthetic electrocardiogram signals. IEEE Trans. Biomed. Eng. 2003, 50, 289–294. [Google Scholar] [CrossRef]
- Press, W.H.; Teukolsky, S.A.; Vetterling, W.T.; Flannery, B.P. Numerical Recipes in C, 2nd ed.; Cambridge University Press: Cambridge, MA, USA, 1992; pp. 710–714. [Google Scholar]
- Friedman, J.H.; Hall, P. On bagging and nonlinear estimation. J. Stat. Plan. Interf. 2007, 137, 669–683. [Google Scholar] [CrossRef]
- Aria, M.; Cuccurullo, C.; Gnasso, A. A comparison among interpretative proposals for Random Forests. Mach. Learn. Appl. 2021, 6, 100094. [Google Scholar] [CrossRef]
- Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Statist. 2001, 29, 1189–1232. [Google Scholar] [CrossRef]
- Natekin, A.; Knoll, A. Gradient boosting machines, a tutorial. Front. Neurorobot. 2013, 7, 21. [Google Scholar] [CrossRef]
- Sarker, I.H. Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. SN Comput. Sci. 2021, 2, 420. [Google Scholar] [CrossRef]
- Abdou, M.A. Literature review: Efficient deep neural networks techniques for medical image analysis. Neural Comput. Appl. 2022, 34, 5791–5812. [Google Scholar] [CrossRef]
- Mohammed, A.; Kora, R. A comprehensive review on ensemble deep learning: Opportunities and challenges. J. King Univ. Comput. Inf. Sci. 2023, 35, 757–774. [Google Scholar] [CrossRef]
- Boateng, E.; Abaye, D.A. A Review of the Logistic Regression Model with Emphasis on Medical Research. J. Data Anal. Inf. Process. 2019, 7, 190–207. [Google Scholar] [CrossRef]
- Kursa, M.B.; Rudnicki, W.R. Feature selection with the Boruta package. J. Stat. Soft. 2010, 36, 1–13. [Google Scholar] [CrossRef]
- Touw, W.G.; Bayjanov, J.R.; Overmars, L.; Backus, L.; Boekhorst, J.; Wels, M.; van Hijum, S.A. Data mining in the life sciences with random forest: A walk in the park or lost in the jungle? Brief. Bioinform. 2013, 14, 315–326. [Google Scholar] [CrossRef]
- Mavrogiorgou, A.; Kiourtis, A.; Kleftakis, S.; Mavrogiorgos, K.; Zafeiropoulos, N.; Kyriazis, D. A Catalogue of Machine Learning Algorithms for Healthcare Risk Predictions. Sensors 2022, 22, 8615. [Google Scholar] [CrossRef]
- Kiranyaz, S.; Avci, O.; Abdeljaber, O.; Ince, T.; Gabbouj, M.; Inman, D.J. 1D convolutional neural networks and applications: A survey. Mech. Syst. Signal Process. 2021, 151, 107398. [Google Scholar] [CrossRef]
- Zhang, Y.; Li, Q.; Xin, Y. Research on eight machine learning algorithms applicability on different characteristics data sets in medical classification tasks. Front. Comput. Neurosci. 2024, 18, 1345575. [Google Scholar] [CrossRef]
- Do Vale Madeiro, J.P.; Cortez, P.C.; da Silva Monteiro Filho, J.M.; Rodrigues, P.R.F. Techniques for Noise Suppression for ECG Signal Processing. In Developments and Applications for ECG Signal Processing, 1st ed.; Do Vale Madeiro, J.P., Cortez, P.C., da Silva Monteiro Filho, P.C., Brayner, A.R.A., Eds.; Academic Press: London, UK, 2019; Chapter 3; pp. 53–87. [Google Scholar]
- Sörnmo, L.; Laguna, P. Bioelectrical Signal Processing in Cardiac and Neurological Applications, 1st ed.; Elsevier: Amsterdam, The Netherlands, 2005; pp. 453–567. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Noitz, M.; Mörtl, C.; Böck, C.; Mahringer, C.; Bodenhofer, U.; Dünser, M.W.; Meier, J. Detection of Subtle ECG Changes Despite Superimposed Artifacts by Different Machine Learning Algorithms. Algorithms 2024, 17, 360. https://doi.org/10.3390/a17080360
Noitz M, Mörtl C, Böck C, Mahringer C, Bodenhofer U, Dünser MW, Meier J. Detection of Subtle ECG Changes Despite Superimposed Artifacts by Different Machine Learning Algorithms. Algorithms. 2024; 17(8):360. https://doi.org/10.3390/a17080360
Chicago/Turabian StyleNoitz, Matthias, Christoph Mörtl, Carl Böck, Christoph Mahringer, Ulrich Bodenhofer, Martin W. Dünser, and Jens Meier. 2024. "Detection of Subtle ECG Changes Despite Superimposed Artifacts by Different Machine Learning Algorithms" Algorithms 17, no. 8: 360. https://doi.org/10.3390/a17080360
APA StyleNoitz, M., Mörtl, C., Böck, C., Mahringer, C., Bodenhofer, U., Dünser, M. W., & Meier, J. (2024). Detection of Subtle ECG Changes Despite Superimposed Artifacts by Different Machine Learning Algorithms. Algorithms, 17(8), 360. https://doi.org/10.3390/a17080360