Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals
Abstract
:1. Introduction
1.1. Major Depressive Disorder
1.2. Measurable Features of MDD
1.3. Introduction to Predictive Algorithms
2. Search Method
3. Results
3.1. Variation in Available Predictive Features
3.2. Feature Selection
3.3. Prediction Outcomes and Horizons
3.4. The Duration of Data Collection
3.5. Types of Machine Learning Models (Ensemble vs. Single Type)
3.6. Common Limitations
4. Discussion
Application of Wearables in Mental Health Care
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Omura, J.D.; Carlson, S.A.; Paul, P.; Watson, K.B.; Fulton, J.E. National physical activity surveillance: Users of wearable activity monitors as a potential data source. Prev. Med. Rep. 2017, 5, 124–126. [Google Scholar] [CrossRef] [PubMed]
- Thompson, W.R. Worldwide Survey Of Fitness Trends For 2019. ACSM’s Health Fit. J. 2018, 22, 10–17. [Google Scholar] [CrossRef]
- Wearables—Statistics & Facts. Available online: https://www.statista.com/topics/1556/wearable-technology/-topicOverview (accessed on 10 May 2023).
- Cruz, S.; Lu, C.; Ulloa, M.; Redding, A.; Hester, J.; Jacobs, M. Perceptions of Wearable Health Tools Post the COVID-19 Emergency in Low-Income Latin Communities: Qualitative Study. JMIR Mhealth Uhealth 2024, 12, e50826. [Google Scholar] [CrossRef] [PubMed]
- Schueller, S.M.; Neary, M.; Lai, J.; Epstein, D.A. Understanding People’s Use of and Perspectives on Mood-Tracking Apps: Interview Study. JMIR Ment. Health 2021, 8, e29368. [Google Scholar] [CrossRef]
- Saganowski, S.; Dutkowiak, A.; Dziadek, A.; Dzieżyc, M.; Komoszyńska, J.; Michalska, W.; Polak, A.; Ujma, M.; Kazienko, P. Emotion Recognition Using Wearables: A Systematic Literature Review—Work-in-progress. In Proceedings of the 2020 IEEE International Conference on Pervasive Computing and Communications Workshops (PerCom Workshops), Austin, TX, USA, 23–27 March 2020. [Google Scholar]
- Shu, L.; Yu, Y.; Chen, W.; Hua, H.; Li, Q.; Jin, J.; Xu, X. Wearable Emotion Recognition Using Heart Rate Data from a Smart Bracelet. Sensors 2020, 20, 718. [Google Scholar] [CrossRef]
- Abd-Alrazaq, A.; AlSaad, R.; Aziz, S.; Ahmed, A.; Denecke, K.; Househ, M.; Farooq, F.; Sheikh, J. Wearable Artificial Intelligence for Anxiety and Depression: Scoping Review. J. Med. Internet Res. 2023, 25, e42672. [Google Scholar] [CrossRef]
- Ahmed, A.; Aziz, S.; Alzubaidi, M.; Schneider, J.; Irshaidat, S.; Abu Serhan, H.; Abd-Alrazaq, A.; Solaiman, B.; Househ, M. Wearable devices for anxiety & depression: A scoping review. Comput. Methods Programs Biomed. Update 2023, 3, 100095. [Google Scholar] [CrossRef]
- Kang, M.; Chai, K. Wearable Sensing Systems for Monitoring Mental Health. Sensors 2022, 22, 994. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, H.; Park, M.J.; Jeon, H.J. Current Advances in Wearable Devices and Their Sensors in Patients with Depression. Front. Psychiatry 2021, 12, 672347. [Google Scholar] [CrossRef]
- Depressive Disorder (Depression). Available online: https://www.who.int/news-room/fact-sheets/detail/depression (accessed on 15 May 2023).
- Williams, S.Z.; Chung, G.S.; Muennig, P.A. Undiagnosed depression: A community diagnosis. SSM Popul. Health 2017, 3, 633–638. [Google Scholar] [CrossRef]
- Liu, Q.; He, H.; Yang, J.; Feng, X.; Zhao, F.; Lyu, J. Changes in the global burden of depression from 1990 to 2017: Findings from the Global Burden of Disease study. J. Psychiatr. Res. 2020, 126, 134–140. [Google Scholar] [CrossRef] [PubMed]
- Diagnostic and Statistical Manual of Mental Disorders: DSM-5™, 5th ed.; American Psychiatric Publishing, a Division of American Psychiatric Association: Washington, DC, USA, 2013.
- Halfin, A. Depression: The benefits of early and appropriate treatment. Am. J. Manag. Care 2007, 13, S92–S97. [Google Scholar] [PubMed]
- Vitaterna, M.H.; Takahashi, J.S.; Turek, F.W. Overview of circadian rhythms. Alcohol Res. Health 2001, 25, 85–93. [Google Scholar] [PubMed]
- Boyce, P.; Barriball, E. Circadian rhythms and depression. Aust. Fam. Physician 2010, 39, 307–310. [Google Scholar]
- Soria, V.; Urretavizcaya, M. Circadian rhythms and depression. Actas Esp. Psiquiatr. 2009, 37, 222–232. [Google Scholar]
- Coppen, A.; Abou-Saleh, M.; Milln, P.; Metcalfe, M.; Harwood, J.; Bailey, J. Dexamethasone suppression test in depression and other psychiatric illness. Br. J. Psychiatry 1983, 142, 498–504. [Google Scholar] [CrossRef]
- Green, H.S.; Kane, J.M. The dexamethasone suppression test in depression. Clin. Neuropharmacol. 1983, 6, 7–24. [Google Scholar] [CrossRef]
- Tsigos, C.; Chrousos, G.P. Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. J. Psychosom. Res. 2002, 53, 865–871. [Google Scholar] [CrossRef]
- The Connection between Anxiety and Body Temperature. Available online: https://www.calmclinic.com/anxiety/symptoms/body-temperature (accessed on 22 June 2023).
- Cortisol. Available online: https://my.clevelandclinic.org/health/articles/22187-cortisol (accessed on 22 June 2023).
- Vedder, H. Physiology of the Hypothalamic-Pituitary-Adrenocortical Axis. In NeuroImmune Biology, 1st ed.; Rey, A.D., Chrousos, G., Besedovsky, H., Eds.; Elsevier: Amsterdam, The Netherlands, 2008; Volume 7, pp. 154–196. [Google Scholar]
- Helgadóttir, B.; Forsell, Y.; Ekblom, Ö. Physical activity patterns of people affected by depressive and anxiety disorders as measured by accelerometers: A cross-sectional study. PLoS ONE 2015, 10, e0115894. [Google Scholar] [CrossRef]
- De Mello, M.T.; de Aquino Lemos, V.; Antunes, H.K.M.; Bittencourt, L.; Santos-Silva, R.; Tufik, S. Relationship between physical activity and depression and anxiety symptoms: A population study. J. Affect. Disord. 2013, 149, 241–246. [Google Scholar] [CrossRef]
- Raoux, N.; Benoit, O.; Dantchev, N.; Denise, P.; Franc, B.; Alliale, J.-F.; Widlöcher, D. Circadian pattern of motor activity in major depressed patients undergoing antidepressant therapy: Relationship between actigraphic measures and clinical course. Psychiatry Res. 1994, 52, 85–98. [Google Scholar] [CrossRef] [PubMed]
- Todder, D.; Caliskan, S.; Baune, B.T. Longitudinal changes of day-time and night-time gross motor activity in clinical responders and non-responders of major depression. World J. Biol. Psychiatry 2009, 10, 276–284. [Google Scholar] [CrossRef] [PubMed]
- Minaeva, O.; Booij, S.H.; Lamers, F.; Antypa, N.; Schoevers, R.A.; Wichers, M.; Riese, H. Level and timing of physical activity during normal daily life in depressed and non-depressed individuals. Transl. Psychiatry 2020, 10, 259. [Google Scholar] [CrossRef] [PubMed]
- Balogh, S.; Booij, S.H.; Lamers, F.; Antypa, N.; Schoevers, R.A.; Wichers, M.; Riese, H. Increases in heart rate variability with successful treatment in patients with major depressive disorder. Psychopharmacol. Bull. 1993, 29, 201–206. [Google Scholar]
- da Estrela, C.; McGrath, J.; Booij, L.; Gouin, J.-P. Heart Rate Variability, Sleep Quality, and Depression in the Context of Chronic Stress. Ann. Behav. Med. 2021, 55, 155–164. [Google Scholar] [CrossRef]
- Agelink, M.W.; Boz, C.; Ullrich, H.; Andrich, J. Relationship between major depression and heart rate variability.: Clinical consequences and implications for antidepressive treatment. Psychiatry Res. 2002, 113, 139–149. [Google Scholar] [CrossRef]
- Kemp, A.H.; Quintana, D.S.; Gray, M.A.; Felmingham, K.L.; Brown, K.; Gatt, J.M. Impact of Depression and Antidepressant Treatment on Heart Rate Variability: A Review and Meta-Analysis. Biol. Psychiatry 2010, 67, 1067–1074. [Google Scholar] [CrossRef]
- Iacono, W.G.; Lykken, D.T.; Peloquin, L.J.; Lumry, A.E.; Valentine, R.H.; Tuason, V.B. Electrodermal activity in euthymic unipolar and bipolar affective disorders. A possible marker for depression. Arch. Gen. Psychiatry 1983, 40, 557–565. [Google Scholar] [CrossRef]
- Mestanikova, A.; Ondrejka, I.; Mestanik, M.; Hrtanek, I.; Snircova, E.; Tonhajzerova, I. Electrodermal Activity in Adolescent Depression. Adv. Exp. Med. Biol. 2016, 935, 83–88. [Google Scholar] [CrossRef]
- Storrie, M.C.; Doerr, H.O.; Johnson, M.H. Skin conductance characteristics of depressed subjects before and after therapeutic intervention. J. Nerv. Ment. Dis. 1981, 169, 176–179. [Google Scholar] [CrossRef]
- Ward, N.G.; Doerr, H.O. Skin conductance. A potentially sensitive and specific marker for depression. J. Nerv. Ment. Dis. 1986, 174, 553–559. [Google Scholar] [CrossRef] [PubMed]
- Avery, D.H.; Shah, S.H.; Eder, D.N.; Wildschindtz, G. Nocturnal sweating and temperature in depression. Acta Psychiatr. Scand. 1999, 100, 295–301. [Google Scholar] [CrossRef]
- Avery, D.H.; Wildschiødtz, G.; Rafaelsen, O.J. Nocturnal temperature in affective disorder. J. Affect. Disord. 1982, 4, 61–71. [Google Scholar] [CrossRef]
- Rausch, J.L.; Johnson, M.; Corley, K.; Hobby, H.; Shendarkar, N.; Fei, Y.; Ganapathy, V.; Leibach, F. Depressed patients have higher body temperature: 5-HT transporter long promoter region effects. Neuropsychobiology 2003, 47, 120–127. [Google Scholar] [CrossRef] [PubMed]
- Tocchetto, B.F.; Ramalho, L.; Zortea, M.; Bruck, S.M.; Tomedi, R.B.; Alves, R.L.; da Silva Torres, I.L.; Fregni, F.; Caumo, W. Peripheral body temperature rhythm as a marker of the severity of depression symptoms in fibromyalgia. Biol. Psychol. 2023, 177, 108494. [Google Scholar] [CrossRef] [PubMed]
- Molnar, C.; Freiesleben, T. Supervised Machine Learning for Science: How to Stop Worrying and Love Your Black Box, 1st ed.; Bookdown, 2024; Available online: https://ml-science-book.com/ (accessed on 24 April 2024).
- Breiman, L. Statistical Modeling: The Two Cultures (with comments and a rejoinder by the author). Stat. Sci. 2001, 16, 199–231. [Google Scholar] [CrossRef]
- Hernán, M.A.; Hsu, J.; Healy, B. A Second Chance to Get Causal Inference Right: A Classification of Data Science Tasks. CHANCE 2019, 32, 42–49. [Google Scholar] [CrossRef]
- Yarkoni, T.; Westfall, J. Choosing Prediction Over Explanation in Psychology: Lessons From Machine Learning. Perspect. Psychol. Sci. 2017, 12, 1100–1122. [Google Scholar] [CrossRef]
- Molnar, C. Interpretable Machine Learning: A Guide for Making Black Box Models Explainable, 2nd ed.; Bookdown, 2022; Available online: https://christophm.github.io/interpretable-ml-book (accessed on 24 April 2024).
- Bai, R.; Xiao, L.; Guo, Y.; Zhu, X.; Li, N.; Wang, Y.; Chen, Q.; Feng, L.; Wang, Y.; Yu, X.; et al. Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study. JMIR Mhealth Uhealth 2021, 9, e24365. [Google Scholar] [CrossRef]
- Chikersal, P.; Doryab, A.; Tumminia, M.; Villalba, D.K.; Dutcher, J.M.; Liu, X.; Cohen, S.; Creswell, K.G.; Mankoff, J.; Creswell, J.D.; et al. Detecting Depression and Predicting its Onset Using Longitudinal Symptoms Captured by Passive Sensing: A Machine Learning Approach with Robust Feature Selection. ACM Trans. Comput.-Hum. Interact. 2021, 28, 3. [Google Scholar] [CrossRef]
- Cho, C.H.; Lee, T.; Kim, M.-G.; In, H.P.; Kim, L.; Lee, H.-J. Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study. J. Med. Internet Res. 2019, 21, e11029. [Google Scholar] [CrossRef] [PubMed]
- Ghandeharioun, A.; Fedor, S.; Sangermano, L.; Ionescu, D.; Alpert, J.; Dale, C.; Sontag, D.; Picard, R. Objective assessment of depressive symptoms with machine learning and wearable sensors data. In Proceedings of the 2017 Seventh International Conference on Affective Computing and Intelligent Interaction (ACII), San Antonio, TX, USA, 23–26 October 2017. [Google Scholar]
- Griffiths, C.; da Silva, K.M.; Leathlean, C.; Jiang, H.; Ang, C.S.; Searle, R. Investigation of physical activity, sleep, and mental health recovery in treatment resistant depression (TRD) patients receiving repetitive transcranial magnetic stimulation (rTMS) treatment. J. Affect. Disord. Rep. 2022, 8, 100337. [Google Scholar] [CrossRef]
- Horwitz, A.G.; Kentopp, S.D.; Cleary, J.; Ross, K.; Wu, Z.; Sen, S.; Czyz, E.K. Using machine learning with intensive longitudinal data to predict depression and suicidal ideation among medical interns over time. Psychol. Med. 2022, 53, 5778–5785. [Google Scholar] [CrossRef]
- Kim, H.; Lee, S.; Lee, S.; Hong, S.; Kang, H.; Kim, N. Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone. JMIR Mhealth Uhealth 2019, 7, e14149. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.J.; Cho, C.-H.; Lee, T.; Jeong, J.; Yeom, J.W.; Kim, S.; Jeon, S.; Seo, J.Y.; Moon, E.; Baek, J.H.; et al. Prediction of impending mood episode recurrence using real-time digital phenotypes in major depression and bipolar disorders in South Korea: A prospective nationwide cohort study. Psychol. Med. 2022, 53, 5636–5644. [Google Scholar] [CrossRef]
- Lu, J.; Shang, C.; Yue, C.; Morillo, R.; Ware, S.; Kamath, J.; Bamis, A.; Russell, A.; Wang, B.; Bi, J. Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multi-task Learning. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2018, 2, 21. [Google Scholar] [CrossRef]
- Mahendran, N.; Vincent, D.R.; Srinivasan, K.; Chang, C.-Y.; Garg, A.; Gao, L.; Reina, D.G. Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder. Sensors 2019, 19, 4822. [Google Scholar] [CrossRef] [PubMed]
- Makhmutova, M.; Kainkaryam, R.; Ferreira, M.; Min, J.; Jaggi, M.; Clay, I. Predicting Changes in Depression Severity Using the PSYCHE-D (Prediction of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study. JMIR Mhealth Uhealth 2022, 10, e34148. [Google Scholar] [CrossRef]
- Mullick, T.; Radovic, A.; Shaaban, S.; Doryab, A. Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning-Based Exploratory Study. JMIR Form. Res. 2022, 6, e35807. [Google Scholar] [CrossRef]
- Pedrelli, P.; Fedor, S.; Ghandeharioun, A.; Howe, E.; Ionescu, D.F.; Bhathena, D.; Fisher, L.B.; Cusin, C.; Nyer, M.; Yeung, A.; et al. Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors. Front. Psychiatry 2020, 11, 584711. [Google Scholar] [CrossRef]
- Rykov, Y.; Thach, T.-Q.; Bojic, I.; Christopoulos, G.; Car, J. Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling. JMIR Mhealth Uhealth 2021, 9, e24872. [Google Scholar] [CrossRef] [PubMed]
- Tazawa, Y.; Liang, K.-C.; Yoshimura, M.; Kitazawa, M.; Kaise, Y.; Takamiya, A.; Kishi, A.; Horigome, T.; Mitsukura, Y.; Mimura, M.; et al. Evaluating depression with multimodal wristband-type wearable device: Screening and assessing patient severity utilizing machine-learning. Heliyon 2020, 6, e03274. [Google Scholar] [CrossRef] [PubMed]
- Leaning, I.E.; Ikani, N.; Savage, H.S.; Leow, A.; Beckmann, C.; Ruhé, H.G.; Marquand, A.F. From smartphone data to clinically relevant predictions: A systematic review of digital phenotyping methods in depression. Neurosci. Biobehav. Rev. 2024, 158, 105541. [Google Scholar] [CrossRef]
- Depression and Older Adults. Available online: https://www.nia.nih.gov/health/depression-and-older-adults (accessed on 10 September 2023).
- Colvonen, P.J.; DeYoung, P.N.; Bosompra, N.-O.; Owens, R.L. Limiting racial disparities and bias for wearable devices in health science research. Sleep 2020, 43, zsaa159. [Google Scholar] [CrossRef]
- De Angel, V.; Lewis, S.; White, K.; Oetzmann, C.; Leightley, D.; Oprea, E.; Lavelle, G.; Matcham, F.; Pace, A.; Mohr, D.C.; et al. Digital health tools for the passive monitoring of depression: A systematic review of methods. NPJ Digit. Med. 2022, 5, 3. [Google Scholar] [CrossRef] [PubMed]
- Powell, D.; Godfrey, A. Considerations for integrating wearables into the everyday healthcare practice. npj Digit. Med. 2023, 6, 70. [Google Scholar] [CrossRef]
- Gerke, S.; Minssen, T.; Cohen, I.G. Ethical and Legal Challenges of Artificial Intelligence-Driven Healthcare. In Artificial Intelligence in Healthcare, 1st ed.; Bohr, A., Memarzadeh, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; ISBN 9780128184387. [Google Scholar] [CrossRef]
- Silva-Trujillo, A.G.; González, M.J.G.; Pérez, L.P.R.; Villalba, L.J.G. Cybersecurity Analysis of Wearable Devices: Smartwatches Passive Attack. Sensors 2023, 23, 5438. [Google Scholar] [CrossRef]
- Sui, A.; Sui, W.; Liu, S.; Rhodes, R. Ethical considerations for the use of consumer wearables in health research. Digit. Health 2023, 9, 20552076231153740. [Google Scholar] [CrossRef]
- Ford, E.; Curlewis, K.; Wongkoblap, A.; Curcin, V. Public Opinions on Using Social Media Content to Identify Users With Depression and Target Mental Health Care Advertising: Mixed Methods Survey. JMIR Ment. Health 2019, 6, e12942. [Google Scholar] [CrossRef]
- Essén, A.; Stern, A.D.; Haase, C.B.; Car, J.; Greaves, F.; Paparova, D.; Vandeput, S.; Wehrens, R.; Bates, D.W. Health app policy: International comparison of nine countries’ approaches. NPJ Digit. Med. 2022, 5, 31. [Google Scholar] [CrossRef]
- Smuck, M.; Odonkor, C.A.; Wilt, J.K.; Schmidt, N.; Swiernik, M.A. The emerging clinical role of wearables: Factors for successful implementation in healthcare. NPJ Digit. Med. 2021, 4, 45. [Google Scholar] [CrossRef] [PubMed]
- Food and Drug Administration (FDA). Artificial Intelligence & Medical Products: How CBER, CDER, CDRH, and OCP Are Working Together; FDA: Silver Spring, MD, USA, 2024. [Google Scholar]
- Zafar, F.; Alam, L.F.; Vivas, R.R.; Wang, J.; Whei, S.J.; Mehmood, S.; Sadeghzadegan, A.; Lakkimsetti, M.; Nazir, Z. The Role of Artificial Intelligence in Identifying Depression and Anxiety: A Comprehensive Literature Review. Cureus 2024, 16, e56472. [Google Scholar] [CrossRef] [PubMed]
- Blomqvist, S.; Högnäs, R.S.; Virtanen, M.; LaMontagne, A.D.; Hanson, L.L.M. Job loss and job instability during the COVID-19 pandemic and the risk of depression and anxiety among Swedish employees. SSM Popul. Health 2023, 22, 101424. [Google Scholar] [CrossRef]
- Zisook, S.; Shear, K. Grief and bereavement: What psychiatrists need to know. World Psychiatry 2009, 8, 67–74. [Google Scholar] [CrossRef] [PubMed]
Reference | Title | Population (Baseline) | Duration of Study Period |
---|---|---|---|
Bai et al., 2021 [48] | Tracking and Monitoring Mood Stability of Patients With Major Depressive Disorder by Machine Learning Models Using Passive Digital Data: Prospective Naturalistic Multicenter Study | 261 outpatients with MDD | 12 weeks |
Chikersal et al., 2021 [49] | Detecting Depression And Predicting Its Onset Using Longitudinal Symptoms Captured By Passive Sensing: A Machine Learning Approach With Robust Feature Selection | 138 college students (20 ≥ mild MDD, 118 HC at baseline) | 16 weeks (1 semester) |
Cho et al., 2019 [50] | Mood Prediction of Patients With Mood Disorders by Machine Learning Using Passive Digital Phenotypes Based on the Circadian Rhythm: Prospective Observational Cohort Study | 55 (18 MDD, 18 BD-I, 19 BD-II) | 2003 days total, over a 2-year study period |
Ghandeharioun et al., 2017 [51] | Objective Assessment of Depressive Symptoms with Machine Learning and Wearable Sensors Data | 12 patients with MDD | 8 weeks |
Griffiths et al., 2022 [52] | Investigation Of Physical Activity, Sleep, And Mental Health Recovery In Treatment Resistant Depression (TRD) Patients Receiving Repetitive Transcranial Magnetic Stimulation (rTMS) Treatment | 17 patients with TRD | 5 weeks |
Horowitz et al., 2022 [53] | Using Machine Learning With Intensive Longitudinal Data To Predict Depression And Suicidal Ideation Among Medical Interns Over Time | 2459 first-year training physicians (7.9% MDD, 3.6% suicidal ideation at baseline) | 92 days |
Kim et al., 2019 [54] | Depression Prediction by Using Ecological Momentary Assessment, Actiwatch Data, and Machine Learning: Observational Study on Older Adults Living Alone | 47 elderly (≥mild symptoms of MDD, baseline SGDS ≥ 5) | 14 days |
Lee et al., 2022 [55] | Prediction Of Impending Mood Episode Recurrence Using Real-Time Digital Phenotypes In Major Depression And Bipolar Disorders In South Korea: A Prospective Nationwide Cohort Study | 95 patients with MDD | 23,459 days total over a 4 year study period. |
Lu et al., 2018 [56] | Joint Modeling of Heterogeneous Sensing Data for Depression Assessment via Multitask Learning | 103 college students (39, 64 HC) | 3 months |
Mahendran et al., 2019 [57] | Sensor-Assisted Weighted Average Ensemble Model for Detecting Major Depressive Disorder | 450 (with complaints of mood swings) | 7 days |
Makhmutova et al., 2022 [58] | Predicting Changes In Depression Severity Using The PSYCHE-D (Prediction Of Severity Change-Depression) Model Involving Person-Generated Health Data: Longitudinal Case-Control Observational Study | 4036 (38.7% HC/minimal symptoms, 61.3% ≥ mild symptoms; 20.7% with severity change after 3 months) | 3 months |
Mullick et al., 2022 [59] | Predicting Depression in Adolescents Using Mobile and Wearable Sensors: Multimodal Machine Learning–Based Exploratory Study | 55 adolescents (≥mild MDD) | 24 weeks |
Pedrelli et al., 2020 [60] | Monitoring Changes in Depression Severity Using Wearable and Mobile Sensors | 31 (with MDD) | 8 weeks |
Rykov et al., 2021 [61] | Digital Biomarkers for Depression Screening With Wearable Devices: Cross-sectional Study With Machine Learning Modeling | 267 (110 ≥ mild MDD/157 HC) | 14 days, consecutive |
Tazawa et al., 2020 [62] | Evaluating Depression With Multimodal Wristband-Type Wearable Device: Screening And Assessing Patient Severity Utilizing Machine-Learning | 86 (30 ≥ mild MDD, 15 BD, 41 HC) | 5250 days |
Reference | Wearable Specifications | Predictive Features | Prediction Outcome | Ground Truth Determination | Quality Measures (Best Model) |
---|---|---|---|---|---|
Bai et al., 2021 [48] | Mi band-2 Smartphone: OS n.s. | Activity Sleep Heart rate Phone usage | Detect current mood state (stable/swinging) | Change in PHQ-9 score over time more or less than 5 points, and score above the cut-off of 11 (≥moderate depression) or below 5 (remission) | Accuracy ranges 1 = 75.64–84.27% Sensitivity ranges 1 = 85.33–93.33% |
Chikersal et al., 2021 [49] | FitBit Flex 2 Smartphone: Android, iOS | Activity Sleep Location Phone use | Predict post-semester depression (depression yes/no) | BDI-II above or below the cut-off of 14 for ≥mild depression | Accuracy = 81.3% F1 = 0.75 |
Predict post-semester change in severity (symptoms worsened, yes/no) | Did the BDI-II level (minimal, mild, moderate, severe) change, yes or no | Accuracy = 88.1% F1 = 0.81 | |||
Cho et al., 2019 [50] | FitBit Charge HR or 2 Smartphone: Android, OS n.s. | Activity Sleep Heart rate Light exposure | Predict future mood state (stable/biased) | Mood state classification based on mood score distribution within the study population. ‘Biased’ for the highest 30%, ‘stable’ for the lowest 70%. | Accuracy = 67% Sensitivity = 39% Specificity = 74% AUC = 0.67 |
Predict future mood episodes (occurs yes/no) | Mood episodes were identified retrospectively by the clinician based on interview and eMoodchart app data (app developed by research group) | Accuracy = 73.1% Sensitivity = 67.2% Specificity = 63.7% AUC = 0.79 | |||
Ghandeharioun et al., 2017 [51] | Empatica E4 wristband (both wrists) Smartphone: Android | EDA Temperature Sleep Activity Phone use Location | Predict the current HDRS-17 score | Biweekly HDRS-17 | RMSE = 4.5 |
Griffiths et al., 2022 [52] | FitBit: model n.s. | Activity Sleep | Detect current depression severity (severe yes/no) | PHQ-9 above or below the clinical cut-off of 20 for severe depression | Accuracy = 82% Sensitivity = 82% Specificity = 81% F1 = 0.81 |
Horowitz et al., 2022 [53] | FitBit Charge 4 | Daily mood Activity Sleep Heart rate | Predict end-of-quarter depression (yes/no) | PHQ-9 above or below the cut-off of 10 for ≥moderate depression | AUC = 0.749 All variables: AUC = 0.750 |
Predict end-of-quarter suicidal ideation (present yes/no) | Based on the final question of PHQ-9, yes or no | AUC = 0.736 All variables: AUC = 0.699 | |||
Kim et al., 2019 [54] | Actiwatch Spectrum PRO | Activity Sleep Light exposure EMA | Detect current depression (depressed yes/no) | Classified as depressed if HDRS ≥ 8 (mild) and SGDS ≥ 7 (mild or worse) | Accuracy = 91% Sensitivity = 88% Specificity = 94% F1 = 0.90 AUC = 0.96 |
Lee et al., 2022 [55] | FitBit Charge HR, or 2, or 3 Smartphone: Android, iOS, possibly other OS n.s. | Activity Sleep Heart rate Light exposure | Predict future mood episodes (occurs yes/no) | Mood episodes were identified retrospectively by the clinician based on interview and eMoodchart app data (app developed by research group) | Accuracy = 93.8% Sensitivity = 91.5% Specificity = 94.3% AUC = 97.3% |
Lu et al., 2018 [56] | FitBit Charge HR Smartphone: Android, iOS | Heart rate Activity Sleep Location | Predict the current QIDS score | Self-reported QIDS score | 4-task model: R2 = 0.36 F1 = 0.77 |
Predict current symptom severity level (which category as rated by a clinician) | Only if diagnosed by the clinician at baseline through interview per DSM-5 and QIDS: severity categorized by the clinician (stable, mild, moderate, severe) | ||||
Mahendran et al., 2019 [57] | Mi band-3 | Selected 9 questions of the HDRS-21 Activity | Detect current depression (depressed yes/no) | HDRS-21 | Accuracy = 99.01% Sensitivity = 98.4% Specificity = 98.87% F1 = 0.98 PPV = 97.54% |
Makhmutova et al., 2022 [58] | FitBit: model n.s. | PHQ-9 (true and predicted) Lifestyle Changes Activity Sleep | Predict current PHQ-9 score | PHQ-9 measured at three-month intervals | Quadratic weighted Cohen κ = 0.476 Adjacent accuracy = 77.6% |
Detect change in severity (change since three months ago yes/no) | PHQ-9 severity level is categorized according to clinical cut-offs (minimal, mild, moderate, moderately severe, severe) | Sensitivity = 55.4% Specificity = 65.3% AUPRC = 0.31 | |||
Mullick et al., 2022 [59] | FitBit Inspire HR; software version 1.84.5 Smartphone: Android, iOS | Heart rate Sleep Steps Phone use Location | Predict current PHQ-9 score | Weekly PHQ-9 | MAE = 2.39 MSE = 10.28 MAPE = 0.27 RMSE = 2.83 |
Detect change in severity level (how many PHQ-9 points up/down) | PHQ-9 severity levels determined with clinical cut-offs (minimal, mild, moderate, moderately severe, severe) | MAE = 3.12 MSE = 20.14 MAPE = 7.16 RMSE = 4.48 | |||
Pedrelli et al., 2020 [60] | Empatica E4 wristbands (both wrists) Smartphone: Android | EDA Heart rate Activity Phone use | Predict the current HDRS-17 score | HDRS-17 score derived from biweekly HDRS-28 measurements | MAE = 4.08 RMSE = 5.35 R = 0.56 |
Rykov et al., 2021 [61] | FitBit Charge 2 | Activity Sleep Circadian rhythms | Detect current depression (depressed yes/no) | Depression is classified based on PHQ-9 with a cut-off of 8 (mild or worse) | Accuracy = 80% Sensitivity = 82% Specificity = 78% |
Tazawa et al., 2020 [62] | Silmee W20 wristband | Activity Sleep Heart rate Skin temperature UV light exposure | Detect current depression | Assessed by a clinician using HDRS-17, MADRS, or YMRS, and self-reported BDI-II and PSQI. | Accuracy = 76% Sensitivity = 73% Specificity = 79% |
Predict the current HDRS-17 score | HDRS-17 by clinician | R = 0.61 R2 = 0.37 MAE = 4.94 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Walschots, Q.; Zarchev, M.; Unkel, M.; Kamperman, A. Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals. Algorithms 2024, 17, 408. https://doi.org/10.3390/a17090408
Walschots Q, Zarchev M, Unkel M, Kamperman A. Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals. Algorithms. 2024; 17(9):408. https://doi.org/10.3390/a17090408
Chicago/Turabian StyleWalschots, Quinty, Milan Zarchev, Maurits Unkel, and Astrid Kamperman. 2024. "Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals" Algorithms 17, no. 9: 408. https://doi.org/10.3390/a17090408
APA StyleWalschots, Q., Zarchev, M., Unkel, M., & Kamperman, A. (2024). Using Wearable Technology to Detect, Monitor, and Predict Major Depressive Disorder—A Scoping Review and Introductory Text for Clinical Professionals. Algorithms, 17(9), 408. https://doi.org/10.3390/a17090408