MRSO: Balancing Exploration and Exploitation through Modified Rat Swarm Optimization for Global Optimization
Abstract
:1. Introduction
- Development of MRSO: The proposed algorithm enhances the RSO by introducing mechanisms to better balance exploration and exploitation, thereby improving its overall search capabilities.
- Application to Engineering Problems: The MRSO is applied to seven real-world constrained engineering problems, demonstrating its effectiveness in addressing these complex challenges.
- Comprehensive Benchmarking: The MRSO’s performance is rigorously tested against classical benchmark functions, CEC 2019 test functions, and engineering problems, outperforming the RSO and showing competitive results compared to other optimization algorithms.
- Exploration and Exploitation Analysis: A detailed analysis of the MRSO’s ability to balance exploration and exploitation is presented, highlighting its effectiveness in avoiding local optima and achieving global solutions.
- Limitations and Future Work: The paper acknowledges the limitations of the MRSO and suggests future research directions, including testing on large-scale real-world problems and incorporating surrogate models to handle computationally expensive tasks.
2. Rat Swarm Optimizer (RSO)
2.1. Inspiration
2.2. Essential Steps in the RSO Algorithm
2.2.1. Chasing the Prey
2.2.2. Fighting the Prey
3. Related Work and Applications of RSO
4. The Proposed Modified Rat Swarm Optimizer (MRSO)
Algorithm 1: The pseudocode representation of the MRSO algorithm |
1: Initial the parameters of MRSO: , , , , , and 2: Initial of MRSO population 3: 4: Calculate 5: Select the rat with the best position 6: 7: while do 8: 9: 10: 11: for do 12: 13: 14: if Then 15: 16: end if 17: end for 18: 19: end while 20: Return the best solution |
5. Benchmark Testing and Performance Analysis of MRSO
5.1. Experimental Configuration and Evaluation Methods
- Average and Standard Deviation: The average and standard deviations were calculated to compare the performance of the standard RSO and several recent metaheuristic algorithms against the proposed MRSO approach.
- Box and Whisker Plot: A box and whisker plot was used to visually compare the performance of the RSO, recent metaheuristic algorithms, and the proposed MRSO approach.
5.1.1. Evaluating with Averages (Mean)
5.1.2. Assessing Stability with Standard Deviation
5.1.3. Comparative Analysis with Wilcoxon and Friedman Methods
5.2. Comparative Study of MRSO and RSO Using Standard Benchmarks
5.2.1. Unimodal Functions (F1–F7)
5.2.2. Multimodal Functions (F8–F16)
5.2.3. Fixed-Dimension Multimodal Functions (F17–F23)
5.3. Performance Comparison of MRSO and RSO with CEC 2019 Benchmark Functions
5.4. Statistical Analysis
5.5. Evaluating the MRSO Algorithm alongside Metaheuristic Methods with Classical Benchmark Functions
5.6. The MRSO Algorithm and Metaheuristic Approaches: Insights from the CEC-C06 2019 Benchmarking
6. Utilizing MRSO for Solving Engineering Design Issues
6.1. Overview of Constrained Engineering Design Problems
6.1.1. Pressure Vessel Design
- = shell thickness
- = head thickness
- = inner radius
6.1.2. Tension/Compression Spring Design (TCSD)
6.1.3. Three Bar Truss Design
6.1.4. Gear Train Design
6.1.5. Cantilever Beam Design
6.1.6. Welded Beam Design
6.1.7. Tire Design Problem
6.2. Comparative Analysis of MRSO and RSO in Engineering Applications
6.3. Performance Comparison of MRSO with SCA, LCA, TSA, and DOA on Seven Engineering Design Problems
7. Conclusions, Challenges, and Future Research
7.1. Conclusions
7.2. Limitations
7.3. Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Function | Dimension | Range | |
---|---|---|---|
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 |
Function | Dimension | Range | |
---|---|---|---|
10 | −418.9829 × n When n equals to dimensions | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
10 | 0 | ||
30 | 0 | ||
2 | 1 | ||
4 | 0.0003 | ||
2 | [−5,5] | −1.0316 |
Function | Dimension | Range | |
---|---|---|---|
2 | 0.398 | ||
2 | 3 | ||
3 | −3.86 | ||
6 | −3.32 | ||
4 | −10.1532 | ||
4 | −10.4028 | ||
4 | −10.536 |
References
- Wang, G.-G.; Zhao, X.; Li, K. Metaheuristic Algorithms: Theory and Practice; CRC Press: Boca Raton, FL, USA, 2024. [Google Scholar]
- Munciño, D.M.; Damian-Ramírez, E.A.; Cruz-Fernández, M.; Montoya-Santiyanes, L.A.; Rodríguez-Reséndiz, J. Metaheuristic and Heuristic Algorithms-Based Identification Parameters of a Direct Current Motor. Algorithms 2024, 17, 209. [Google Scholar] [CrossRef]
- Chen, L.; Zhao, Y.; Ma, Y.; Zhao, B.; Feng, C. Improving Wild Horse Optimizer: Integrating Multistrategy for Robust Performance across Multiple Engineering Problems and Evaluation Benchmarks. Mathematics 2023, 11, 3861. [Google Scholar] [CrossRef]
- Ameen, A.A.; Rashid, T.A. A Tutorial on Child Drawing Development Optimization; Springer International Publishing AG: Muscat, Oman, 2022; pp. 1–15. Available online: http://iciitb.mcbs.edu.om/en/iciitb-home (accessed on 30 January 2023).
- Zhou, S.; Shi, Y.; Wang, D.; Xu, X.; Xu, M.; Deng, Y. Election Optimizer Algorithm: A New Meta-Heuristic Optimization Algorithm for Solving Industrial Engineering Design Problems. Mathematics 2024, 12, 1513. [Google Scholar] [CrossRef]
- Bibri, S.E.; Krogstie, J.; Kaboli, A.; Alahi, A. Smarter eco-cities and their leading-edge artificial intelligence of things solutions for environmental sustainability: A comprehensive systematic review. Environ. Sci. Ecotechnol. 2024, 19, 100330. [Google Scholar] [CrossRef]
- Leiva, D.; Ramos-Tapia, B.; Crawford, B.; Soto, R.; Cisternas-Caneo, F. A Novel Approach to Combinatorial Problems: Binary Growth Optimizer Algorithm. Biomimetics 2024, 9, 283. [Google Scholar] [CrossRef]
- Dhiman, G.; Garg, M.; Nagar, A.; Kumar, V.; Dehghani, M. A novel algorithm for global optimization: Rat swarm optimizer. J. Ambient Intell. Humaniz. Comput. 2021, 12, 8457–8482. [Google Scholar] [CrossRef]
- Awadallah, M.A.; Al-Betar, M.A.; Braik, M.S.; Hammouri, A.I.; Doush, I.A.; Zitar, R.A. An enhanced binary Rat Swarm Optimizer based on local-best concepts of PSO and collaborative crossover operators for feature selection. Comput. Biol. Med. 2022, 147, 105675. [Google Scholar] [CrossRef]
- Houssein, E.H.; Hosney, M.E.; Oliva, D.; Younis, E.M.G.; Ali, A.A.; Mohamed, W.M. An efficient discrete rat swarm optimizer for global optimization and feature selection in chemoinformatics. Knowl.-Based Syst. 2023, 275, 110697. [Google Scholar] [CrossRef]
- Toolabi Moghadam, A.; Aghahadi, M.; Eslami, M.; Rashidi, S.; Arandian, B.; Nikolovski, S. Adaptive rat swarm optimization for optimum tuning of SVC and PSS in a power system. Int. Trans. Electr. Energy Syst. 2022, 2022, 4798029. [Google Scholar] [CrossRef]
- Sayed, G.I. A novel multi-objective rat swarm optimizer-based convolutional neural networks for the diagnosis of COVID-19 disease. Autom. Control Comput. Sci. 2022, 56, 198–208. [Google Scholar] [CrossRef]
- Zebiri, I.; Zeghida, D.; Redjimi, M. Rat swarm optimizer for data clustering. Jordanian J. Comput. Inf. Technol. 2022, 8, 1. [Google Scholar] [CrossRef]
- Eslami, M.; Akbari, E.; Seyed Sadr, S.T.; Ibrahim, B.F. A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 2022, 10, 2689–2713. [Google Scholar] [CrossRef]
- Manickam, P.; Girija, M.; Dutta, A.K.; Babu, P.R.; Arora, K.; Jeong, M.K.; Acharya, S. Empowering Cybersecurity Using Enhanced Rat Swarm Optimization with Deep Stack-Based Ensemble Learning Approach. IEEE Access 2024, 12, 62492–62501. [Google Scholar] [CrossRef]
- Rahab, H.; Haouassi, H.; Souidi, M.E.H.; Bakhouche, A.; Mahdaoui, R.; Bekhouche, M. A modified binary rat swarm optimization algorithm for feature selection in Arabic sentiment analysis. Arab. J. Sci. Eng. 2023, 48, 10125–10152. [Google Scholar] [CrossRef]
- Singla, M.K.; Gupta, J.; Alsharif, M.H.; Kim, M.-K. A modified particle swarm optimization rat search algorithm and its engineering application. PLoS ONE 2024, 19, e0296800. [Google Scholar] [CrossRef]
- Lou, T.; Guan, G.; Yue, Z.; Wang, Y.; Tong, S. A Hybrid K-means Method based on Modified Rat Swarm Optimization Algorithm for Data Clustering. Preprint 2024. [Google Scholar] [CrossRef]
- Mzili, T.; Riffi, M.E.; Mzili, I.; Dhiman, G. A novel discrete Rat swarm optimization (DRSO) algorithm for solving the traveling salesman problem. Decis. Mak. Appl. Manag. Eng. 2022, 5, 287–299. [Google Scholar] [CrossRef]
- Mzili, T.; Mzili, I.; Riffi, M.E. Artificial rat optimization with decision-making: A bio-inspired metaheuristic algorithm for solving the traveling salesman problem. Decis. Mak. Appl. Manag. Eng. 2023, 6, 150–176. [Google Scholar] [CrossRef]
- Mzili, T.; Mzili, I.; Riffi, M.E. Optimizing production scheduling with the Rat Swarm search algorithm: A novel approach to the flow shop problem for enhanced decision making. Decis. Mak. Appl. Manag. Eng. 2023, 6, 16–42. [Google Scholar] [CrossRef]
- Alruwais, N.; Alabdulkreem, E.; Khalid, M.; Negm, N.; Marzouk, R.; Al Duhayyim, M.; Balaji, P.; Ilayaraja, M.; Gupta, D. Modified rat swarm optimization with deep learning model for robust recycling object detection and classification. Sustain. Energy Technol. Assess. 2023, 59, 103397. [Google Scholar] [CrossRef]
- Gopi, P.; Alluraiah, N.C.; Kumar, P.H.; Bajaj, M.; Blazek, V.; Prokop, L. Improving load frequency controller tuning with rat swarm optimization and porpoising feature detection for enhanced power system stability. Sci. Rep. 2024, 14, 15209. [Google Scholar] [CrossRef]
- Ameen, A.A.; Rashid, T.A.; Askar, S. CDDO-HS: Child Drawing Development Optimization-Harmony Search Algorithm. Appl. Sci. 2023, 13, 5795. [Google Scholar] [CrossRef]
- Ameen, A.A.; Rashid, T.A.; Askar, S. MCDDO: Overcoming Challenges and Enhancing Performance in Search Optimization. 2023. Available online: https://ouci.dntb.gov.ua/works/7qjY8BB4/ (accessed on 16 September 2024).
- Mirjalili, S. SCA: A Sine Cosine Algorithm for solving optimization problems. Knowl.-Based Syst. 2016, 96, 120–133. [Google Scholar] [CrossRef]
- Desuky, A.S.; Cifci, M.A.; Kausar, S.; Hussain, S.; El Bakrawy, L.M. Mud Ring Algorithm: A new meta-heuristic optimization algorithm for solving mathematical and engineering challenges. IEEE Access 2022, 10, 50448–50466. [Google Scholar] [CrossRef]
- Houssein, E.H.; Oliva, D.; Samee, N.A.; Mahmoud, N.F.; Emam, M.M. Liver Cancer Algorithm: A novel bio-inspired optimizer. Comput. Biol. Med. 2023, 165, 107389. [Google Scholar] [CrossRef]
- Qais, M.H.; Hasanien, H.M.; Turky, R.A.; Alghuwainem, S.; Tostado-Véliz, M.; Jurado, F. Circle search algorithm: A geometry-based metaheuristic optimization algorithm. Mathematics 2022, 10, 1626. [Google Scholar] [CrossRef]
- Kaur, S.; Awasthi, L.K.; Sangal, A.L.; Dhiman, G. Tunicate Swarm Algorithm: A new bio-inspired based metaheuristic paradigm for global optimization. Eng. Appl. Artif. Intell. 2020, 90, 103541. [Google Scholar] [CrossRef]
- Bairwa, A.K.; Joshi, S.; Singh, D. Dingo optimizer: A nature-inspired metaheuristic approach for engineering problems. Math. Probl. Eng. 2021, 2021, 2571863. [Google Scholar] [CrossRef]
- Al-Betar, M.A.; Awadallah, M.A.; Braik, M.S.; Makhadmeh, S.; Doush, I.A. Elk herd optimizer: A novel nature-inspired metaheuristic algorithm. Artif. Intell. Rev. 2024, 57, 48. [Google Scholar] [CrossRef]
- Braik, M.; Hammouri, A.; Atwan, J.; Al-Betar, M.A.; Awadallah, M.A. White Shark Optimizer: A novel bio-inspired meta-heuristic algorithm for global optimization problems. Knowl.-Based Syst. 2022, 243, 108457. [Google Scholar] [CrossRef]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons: Hoboken, NJ, USA, 2017. [Google Scholar]
- Ameen, A.A. Metaheuristic Optimazation Algorithms in Applied Science and Engineering Applications.pdf, Erbil Polytechnic University, 2024. Available online: https://epu.edu.iq/2024/03/17/metaheuristic-optimization-algorithms-in-applied-science-and-engineering-applications-2/ (accessed on 16 September 2024).
- Hollander, M.; Wolfe, D.A.; Chicken, E. Nonparametric Statistical Methods; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Iruthayarajan, M.W.; Baskar, S. Covariance matrix adaptation evolution strategy-based design of centralized PID controller. Expert Syst. Appl. 2010, 37, 5775–5781. [Google Scholar] [CrossRef]
- Abualigah, L.; Diabat, A. Advances in sine cosine algorithm: A comprehensive survey. Artif. Intell. Rev. 2021, 54, 2567–2608. [Google Scholar] [CrossRef]
- Eisinga, R.; Heskes, T.; Pelzer, B.; Te Grotenhuis, M. Exact p-values for pairwise comparison of Friedman rank sums, with application to comparing classifiers. BMC Bioinform. 2017, 18, 68. [Google Scholar] [CrossRef]
- Kannan, B.K.; Kramer, S.N. An Augmented Lagrange Multiplier-Based Method for Mixed Integer Discrete Continuous Optimization and Its Applications to Mechanical Design. 1994. Available online: https://asmedigitalcollection.asme.org/mechanicaldesign/article-abstract/116/2/405/454458/An-Augmented-Lagrange-Multiplier-Based-Method-for?redirectedFrom=fulltext (accessed on 16 September 2024).
- Çelik, Y.; Kutucu, H. Solving the Tension/Compression Spring Design Problem by an Improved Firefly Algorithm. IDDM 2018, 1, 1–7. [Google Scholar]
- Dhiman, G. SSC: A hybrid nature-inspired meta-heuristic optimization algorithm for engineering applications. Knowl.-Based Syst. 2021, 222, 106926. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.S.; Talatahari, S.; Alavi, A.H. Metaheuristic Algorithms in Modeling and Optimization. Metaheuristic Appl. Struct. Infrastruct. 2013, 1, 1–24. [Google Scholar] [CrossRef]
- Fauzi, H.; Batool, U. A three-bar truss design using single-solution simulated Kalman filter optimizer. Mekatronika J. Intell. Manuf. Mechatron. 2019, 1, 98–102. [Google Scholar] [CrossRef]
- Sandgren, E. Nonlinear integer and discrete programming in mechanical design optimization. J. Mech. Des. 1990, 112, 223–229. [Google Scholar] [CrossRef]
- Gandomi, A.H.; Yang, X.-S.; Alavi, A.H. Cuckoo search algorithm: A metaheuristic approach to solve structural optimization problems. Eng. Comput. 2013, 29, 17–35. [Google Scholar] [CrossRef]
- Nakajima, Y. Application of computational mechanics to tire design—Yesterday, today, and tomorrow. Tire Sci. Technol. 2011, 39, 223–244. [Google Scholar] [CrossRef]
- Nakajima, Y.; Kadowaki, H.; Kamegawa, T.; Ueno, K. Application of a neural network for the optimization of tire design. Tire Sci. Technol. 1999, 27, 62–83. [Google Scholar] [CrossRef]
- Ghasri, M. Benchmark Problems. MathWorks: R2022b. 2023. Available online: https://www.mathworks.com/matlabcentral/fileexchange/124810-benchmark-problems#version_history_tab (accessed on 16 September 2024).
Fun | MRSO | RSO | Statistical Significance | ||
---|---|---|---|---|---|
Avg. | Std. | Avg. | Std. | p-Value | |
F1 | 1.12 × 10−6 | 4.765 × 10−6 | 1.537 × 10−256 | 0 | 2.03 × 10−1 |
F2 | 4.515 × 10−34 | 2.228 × 10−33 | 2.942 × 10−134 | 1.612 × 10−133 | 2.716 × 10−1 |
F3 | 5.092 × 10+3 | 2.754 × 10+4 | 2.205 × 10−264 | 2.205 × 10−264 | 0 |
F4 | 3.486 × 10−16 | 1.91 × 10−15 | 2.868 × 10−86 | 1.571 × 10−85 | 3.215 × 10−1 |
F5 | 2.885 × 10+1 | 1.323 × 10−1 | 2.882 × 10+1 | 2.635 × 10−1 | 5.945 × 10−1 |
F6 | 8.16 × 10−1 | 4.033 × 10−1 | 3.415 | 4.748 × 10−1 | 1.099 × 10−30 |
F7 | 1.981 × 10−4 | 1.438 × 10−4 | 4.861 × 10−4 | 5.636 × 10−4 | 8.792 × 10−3 |
F8 | −8.613 × 10+3 | 1.835 × 10+3 | −5.709 × 10+3 | 1.073 × 10+3 | 4.498 × 10−10 |
F9 | 0 | 0 | 0 | 0 | 0 |
F10 | 2.189 × 10−5 | 8.528 × 10−5 | 1.007 × 10−15 | 6.486 × 10−16 | 1.651 × 10−1 |
F11 | 0 | 0 | 0 | 0 | 0 |
F12 | 5.646 × 10−2 | 4.465 × 10−2 | 3.366 × 10−1 | 1.055 × 10−1 | 2.127 × 10−19 |
F13 | 2.824 | 9.216 × 10−2 | 2.862 | 4.32 × 10−2 | 4.514 × 10−2 |
F14 | 1.395 | 8.072 × 10−1 | 2.646 | 1.787 | 9.131 × 10−4 |
F15 | 8.071 × 10−4 | 4.068 × 10−4 | 1.178 × 10−3 | 6.153 × 10−4 | 7.839 × 10−3 |
F16 | −1.032 | 1.463 × 10−5 | −1.031 | 2.045 × 10−4 | 2.719 × 10−4 |
F17 | 3.99 × 10−1 | 3.303 × 10−3 | 4.076 × 10−1 | 9.812 × 10−3 | 2.831 × 10−5 |
F18 | 3.000 | 4.028 × 10−6 | 3.000 | 5.206 × 10−5 | 1.119 × 10−2 |
F19 | −3.856 | 1.807 × 10−3 | −3.426 | 2.942 × 10−1 | 6.275 × 10−11 |
F20 | −2.775 | 3.885 × 10−1 | −1.723 | 3.772 × 10−1 | 2.919 × 10−15 |
F21 | −2.634 | 2.536 | −7.08 × 10−1 | 3.728 × 10−1 | 1.236 × 10−4 |
F22 | −3.719 | 2.774 | −1.035 | 6.255 × 10−1 | 3.033 × 10−6 |
F23 | −2.360 | 2.440 | −1.353 | 7.529 × 10−1 | 3.504 × 10−2 |
Fun | MRSO | RSO | Statistical Significance | ||
---|---|---|---|---|---|
Avg. | Std. | Avg. | Std. | p-Value | |
F1 | 1.588 × 10+5 | 3.199 × 10+5 | 6.263 × 10+4 | 1.392 × 10+4 | 1.053 × 10−1 |
F2 | 1.835 × 10+1 | 7.231 × 10−3 | 1.848 × 10+1 | 1.981 × 10−1 | 3.797 × 10−4 |
F3 | 1.370 × 10+1 | 1.337 × 10−6 | 1.370 × 10+1 | 1.828 × 10−4 | 2.256 × 10−2 |
F4 | 9.205 × 10+3 | 3.203 × 10+3 | 8.861 × 10+3 | 2.152 × 10+3 | 6.275 × 10−1 |
F5 | 4.574 | 4.133 × 10−1 | 4.631 | 4.290 × 10−1 | 6.076 × 10−1 |
F6 | 1.095 × 10+1 | 1.011 | 1.165 × 10+1 | 8.597 × 10−1 | 4.905 × 10−3 |
F7 | 6.113 × 10+2 | 2.291 × 10+2 | 7.898 × 10+2 | 2.154 × 10+2 | 2.915 × 10−3 |
F8 | 6.311 | 4.138 × 10−1 | 6.321 | 4.334 × 10−1 | 9.215 × 10−1 |
F9 | 4.967 × 10+2 | 1.493 × 10+2 | 5.866 × 10+2 | 1.362 × 10+2 | 1.791 × 10−2 |
F10 | 2.130 × 10+1 | 1.490 × 10−1 | 2.147 × 10+1 | 1.116 × 10−1 | 5.316 × 10−6 |
Algorithm | Metric/Function | F1 | F2 | F3 | F4 | F5 | F6 | F7 |
---|---|---|---|---|---|---|---|---|
MRSO | Average | 1.12 × 10−6 | 4.52 × 10−34 | 5.09 × 10+3 | 3.49 × 10−16 | 2.89 × 10+1 | 8.16 × 10−1 | 1.98 × 10−4 |
Std. | 4.76 × 10−6 | 2.23 × 10−33 | 2.75 × 10+4 | 1.91 × 10−15 | 1.32 × 10−1 | 4.03 × 10−1 | 1.44 × 10−4 | |
Ranking | 6 | 5 | 9 | 5 | 5 | 6 | 3 | |
SCA | Average | 3.31 × 10−12 | 5.82 × 10−10 | 6.55 × 10−3 | 3.21 × 10−3 | 2.90 × 10+1 | 4.34 × 10−1 | 2.66 × 10−3 |
Std. | 8.39 × 10−12 | 7.97 × 10−10 | 6.55 × 10−3 | 1.42 × 10−2 | 1.19 × 10+2 | 1.49 × 10−1 | 2.81 × 10−3 | |
p_value | 2.03 × 10−1 | 1.83 × 10−4 | 1.77 × 10−2 | 2.2 × 10−1 | 9.93 × 10−1 | 9.06 × 10−6 | 1.18 × 10−5 | |
Ranking | 5 | 6 | 5 | 6 | 7 | 5 | 7 | |
MRA | Average | 0 | 0 | 0 | 0 | 0 | 6.41 × 10−7 | 1.01 × 10−4 |
Std. | 0 | 0 | 0 | 0 | 0 | 1.46 × 10−6 | 1.07 × 10−4 | |
p_value | 2.03 × 10−1 | 2.72 × 10−1 | 0 | 3.21 × 10−1 | 4.69 × 10−129 | 5.97 × 10-16 | 4.57 × 10−3 | |
Ranking | 1 | 1 | 1 | 1 | 1 | 2 | 2 | |
LCA | Average | 2.42 × 10−1 | 1.87 × 10−1 | 4.1 × 10+1 | 7.3 × 10−2 | 1.25 | 2.35 × 10−1 | 6.39 × 10−4 |
Std. | 2.99 × 10−1 | 1.1 × 10−1 | 4.1 × 10+1 | 4.68 × 10−2 | 2.07 | 5.69 × 10−1 | 6.41 × 10−4 | |
p_value | 4.24 × 10−5 | 4.34 × 10−13 | 5.86 × 10+1 | 7.54 × 10−12 | 1 × 10−58 | 2.65 × 10−5 | 5.18 × 10−4 | |
Ranking | 8 | 8 | 6 | 7 | 3 | 4 | 6 | |
CSA | Average | 9.27 × 10−185 | 1.59 × 10−97 | 1.82 × 10−214 | 1.92 × 10−113 | 0 | 0 | 4.34 × 10−4 |
Std. | 0 | 6.15 × 10−97 | 1.82 × 10−214 | 1.05 × 10−112 | 0 | 0 | 6.18 × 10−4 | |
p_value | 2.03 × 10−1 | 2.72 × 10−1 | 0 | 3.21 × 10−1 | 4.69 × 10−129 | 5.97 × 10−16 | 4.64 × 10−2 | |
Ranking | 3 | 3 | 2 | 2 | 1 | 1 | 5 | |
TSA | Average | 2.9 × 10−196 | 6.51 × 10−101 | 1.03 × 10−181 | 3.77 × 10−92 | 2.87 × 10+1 | 6.21 | 7.43 × 10−5 |
Std. | 0 | 2.27 × 10−100 | 1.03 × 10−181 | 9.37 × 10−92 | 3.07 × 10−1 | 8.22 × 10−1 | 5.81 × 10−5 | |
p_value | 2.03 × 10−1 | 2.72 × 10−1 | 0 | 3.21 × 10−1 | 5.44 × 10−3 | 9.52 × 10−39 | 5.16 × 10−5 | |
Ranking | 2 | 2 | 3 | 3 | 4 | 8 | 1 | |
DOA | Average | 3.09 × 10−54 | 1.85 × 10−38 | 1.88 × 10−58 | 4.06 × 10−43 | 2.89 × 10+1 | 5.58 | 2.71 × 10−4 |
Std. | 1.63 × 10−53 | 1.01 × 10−37 | 1.88 × 10−58 | 2.22 × 10−42 | 4.17 × 10−2 | 1.09 | 2.8 × 10−4 | |
p_value | 2.19 × 10−1 | 2.72 × 10−1 | 1.03 × 10−57 | 3.21 × 10−1 | 7.87 × 10−3 | 2.61 × 10−30 | 2.08 × 10−1 | |
Ranking | 4 | 4 | 4 | 4 | 6 | 7 | 4 | |
EHO | Average | 7.47 × 10−3 | 2.04 × 10−2 | 1.39 × 10+3 | 2.41 × 10+1 | 1.19 × 10+2 | 5.13 × 10−3 | 8.74 × 10−2 |
Std. | 1.76 × 10−2 | 4.59 × 10−2 | 1.39 × 10+3 | 5.89 | 9.99 × 10+1 | 2.6 × 10−2 | 5.74 × 10−2 | |
p_value | 2.34 × 10−2 | 1.8 × 10−2 | 8.86 × 10+2 | 3.15 × 10−30 | 7 × 10−6 | 8.32 × 10−16 | 1.8 × 10−11 | |
Ranking | 7 | 7 | 8 | 9 | 8 | 3 | 8 | |
WSO | Average | 2.85 × 10+2 | 4.05 | 1.34 × 10+3 | 1.3 × 10+1 | 2.13 × 10+4 | 2.17 × 10+2 | 1.45 × 10−1 |
Std. | 1.75 × 10+2 | 1.32 | 1.34 × 10+3 | 2.41 | 2.58 × 10+4 | 1.32 × 10+2 | 6.61 × 10−2 | |
p_value | 1.84 × 10−12 | 5.58 × 10−24 | 6.35 × 10+2 | 1.06 × 10−36 | 3.22 × 10−5 | 1.33 × 10−12 | 2.59 × 10−17 | |
Ranking | 9 | 9 | 7 | 8 | 9 | 9 | 9 |
Algorithm | Metric/Function | F8 | F9 | F10 | F11 | F12 | F13 | F14 | F15 | F16 |
---|---|---|---|---|---|---|---|---|---|---|
MRSO | Average | −8.61 × 10+3 | 0 | 2.19 × 10−5 | 0 | 5.65 × 10−2 | 2.82 | 1.39 | 8.07 × 10−4 | −1.03 |
Std. | 1.83 × 10+3 | 0 | 8.53 × 10−5 | 0 | 4.46 × 10−2 | 9.22 × 10−2 | 8.07 × 10−1 | 4.07 × 10−4 | 1.46 × 10−5 | |
Ranking | 3 | 1 | 5 | 1 | 4 | 6 | 3 | 1 | 1 | |
SCA | Average | −2.16 × 10+3 | 2.19 | 2.8 × 10−5 | 5.19 × 10−2 | 9.33 × 10−2 | 3.24 × 10−1 | 1.59 | 9.19 × 10−4 | −1.03 |
Std. | 1.47 × 10+2 | 6.69 | 1.51 × 10−4 | 9.63 × 10−2 | 3.83 × 10−2 | 8.92 × 10−2 | 9.24 × 10−1 | 3.46 × 10−4 | 6.76 × 10−5 | |
p_value | 8.15 × 10−27 | 7.76 × 10−2 | 8.49 × 10−1 | 4.55 × 10−3 | 1.12 × 10−3 | 2.80 × 10−68 | 3.77 × 10−1 | 2.57 × 10−1 | 9.85 × 10−5 | |
Ranking | 9 | 6 | 6 | 6 | 5 | 4 | 4 | 3 | 4 | |
MRA | Average | −7.34 × 10+3 | 0 | 8.88 × 10−16 | 0 | 5.92 × 10−9 | 1.15 × 10−7 | 5.28 | 9.24 × 10−4 | −1.03 |
Std. | 2.57 × 10+3 | 0 | 1 × 10−31 | 0 | 1.08 × 10−8 | 1.74 × 10−7 | 5.72 | 3.33 × 10−4 | 5.8 × 10−3 | |
p_value | 3.17 × 10−2 | 1.65 × 10−1 | 3.88 × 10−9 | 1.23 × 10−79 | 5.11 × 10−4 | 2.3 × 10−1 | 5.9 × 10−6 | |||
Ranking | 5 | 1 | 1 | 1 | 2 | 2 | 7 | 5 | 7 | |
LCA | Average | −8.4 × 10+3 | 1.14 × 10−1 | 9.56 × 10−2 | 2.96 × 10−1 | 1.22 × 10−3 | 2 × 10−2 | 1.69 × 10+1 | 1.56 × 10−2 | −6.9 × 10−1 |
Std. | 4.7 × 10+3 | 2.02 × 10−1 | 7.48 × 10−2 | 2.45 × 10−1 | 2.19 × 10−3 | 3.23 × 10−2 | 4.25 × 10+1 | 3.33 × 10−2 | 2.16 × 10−1 | |
p_value | 8.16 × 10−1 | 2.93 × 10−3 | 2.95 × 10−9 | 1.27 × 10−8 | 7.15 × 10−9 | 5.35 × 10−78 | 4.99 × 10−2 | 1.81 × 10−2 | 4.58 × 10−12 | |
Ranking | 4 | 5 | 7 | 8 | 3 | 3 | 9 | 9 | 8 | |
CSA | Average | −1.26 × 10+4 | 0 | 8.88 × 10−16 | 0 | 1.57 × 10−32 | 1.35 × 10−32 | 9.98 × 10−1 | 1.67 × 10−3 | 6.47 × 10−233 |
Std. | 1.85 × 10−12 | 0 | 1 × 10−31 | 0 | 1.11 × 10−47 | 5.57 × 10−48 | 3.39 × 10−16 | 1.1 × 10−18 | 0 | |
p_value | 4.54 × 10−17 | 0 | 1.65 × 10−1 | 0 | 3.88 × 10−9 | 1.23 × 10−79 | 9.25 × 10−3 | 7.28 × 10−17 | 1.34 × 10−274 | |
Ranking | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 6 | 9 | |
TSA | Average | −3.64 × 10+3 | 1.94 × 10+1 | 4.56 × 10−15 | 1.77 × 10−3 | 1.13 | 2.63 | 1.14 × 10+1 | 3.27 × 10−3 | −1.03 |
Std. | 5.64 × 10+2 | 3.5 × 10+1 | 6.49 × 10−16 | 4.11 × 10−3 | 3.81 × 10−1 | 2.68 × 10−1 | 5.4 | 7 × 10−3 | 1.19 × 10−2 | |
p_value | 1.58 × 10−20 | 3.63 × 10−3 | 1.65 × 10−1 | 2.17 × 10−2 | 3.94 × 10−22 | 4.52 × 10−4 | 2.27 × 10−14 | 5.94 × 10−2 | 1.92 × 10−2 | |
Ranking | 8 | 7 | 4 | 5 | 7 | 5 | 8 | 7 | 6 | |
DOA | Average | −4.67 × 10+3 | 0 | 1.13 × 10−15 | 0 | 6.52 × 10−1 | 2.91 | 3.53 | 6.09 × 10−3 | -1.03 |
Std. | 8.28 × 10+2 | 0 | 9.01 × 10−16 | 0 | 2.32 × 10−1 | 2.04 × 10−1 | 2.88 | 8.9 × 10−3 | 3.61 × 10−5 | |
p_value | 2.19 × 10−15 | 0 | 1.65 × 10−1 | 0 | 5.25 × 10−20 | 3.48 × 10−02 | 2.5 × 10−4 | 1.94 × 10−3 | 1.19 × 10−3 | |
Ranking | 7 | 1 | 3 | 1 | 6 | 7 | 5 | 8 | 2 | |
EHO | Average | −7.2 × 10+127 | 4.71 × 10+1 | 4.32 | 8.11 × 10−2 | 1.28 | 3.38 | 4.05 | 8.49 × 10−4 | −1.03 |
Std. | 2.31 × 10+128 | 1.91 × 10+1 | 1.96 | 2.26 × 10−1 | 1.62 | 4.990 | 4.91 | 2.98 × 10−4 | 7.77 × 10−5 | |
p_value | 8.99 × 10−2 | 1.45 × 10−19 | 1.93 × 10−17 | 5.39 × 10−2 | 1.24 × 10−4 | 5.41 × 10−1 | 4.88 × 10−3 | 6.52 × 10−1 | 8.35 × 10−5 | |
Ranking | 1 | 8 | 8 | 7 | 8 | 8 | 6 | 2 | 4 | |
WSO | Average | −4.77 × 10+3 | 5.46 × 10+1 | 5.88 | 3.44 | 4.48 | 1.43 × 10+3 | 9.98 × 10−1 | 9.19 × 10−4 | -1.03 |
Std. | 1.42 × 10+3 | 2.96 × 10+1 | 9.11 × 10−1 | 1.40 | 2.05 | 4.9 × 10+3 | 3.06 × 10−10 | 3.45 × 10−5 | 2.13 × 10−5 | |
p_value | 1.01 × 10−12 | 2.28 × 10−14 | 6.03 × 10−41 | 1.72 × 10−19 | 4.37 × 10−17 | 1.15 × 10−1 | 9.25 × 10−3 | 2.68 × 10−1 | 1.18 × 10−3 | |
Ranking | 6 | 9 | 9 | 9 | 9 | 9 | 2 | 3 | 2 |
Algorithm | Metric/Function | F17 | F18 | F19 | F20 | F21 | F22 | F23 |
---|---|---|---|---|---|---|---|---|
MRSO | Average | 3.99 × 10−1 | 3 | −3.86 | −2.78 | −2.63 | −3.72 | −2.36 |
Std. | 3.3 × 10−3 | 4.03 × 10−6 | 1.81 × 10−3 | 3.89 × 10−1 | 2.54 | 2.77 | 2.44 | |
Ranking | 1 | 1 | 4 | 6 | 9 | 8 | 9 | |
SCA | Average | 4 × 10−1 | 3 | −3.85 | −2.92 | −2.9 | −3.1 | −4.03 |
Std. | 2.56 × 10−3 | 9.16 × 10−5 | 3 × 10−3 | 2.72 × 10−1 | 1.89 | 1.77 | 1.40 | |
p_value | 2.9 × 10−1 | 3.36 × 10−4 | 8.21 × 10−3 | 1.05 × 10−1 | 6.44 × 10−1 | 3.11 × 10−1 | 1.89 × 10−3 | |
Ranking | 3 | 2 | 5 | 5 | 8 | 9 | 8 | |
MRA | Average | 4.26 × 10−1 | 7.62 | −3.7 | −2.73 | −1.02 × 10+1 | −1.04 × 10+1 | −1.05 × 10+1 |
Std. | 2.8 × 10−2 | 4.46 | 7.3 × 10−2 | 1.86 × 10−1 | 2.85 × 10−3 | 1.27 × 10−3 | 4.9 × 10−3 | |
p_value | 2.77 × 10−6 | 4.68 × 10−7 | 3.53 × 10−17 | 5.38 × 10−1 | 3.08 × 10−23 | 4.1 × 10−19 | 7.97 × 10−26 | |
Ranking | 7 | 6 | 7 | 7 | 2 | 3 | 3 | |
LCA | Average | 7.7 × 10−1 | 2.35 × 10+1 | −3.21 | −1.78 | -5.02 | −4.97 | −4.45 |
Std. | 6.82 × 10−1 | 1.03 × 10+1 | 4.2 × 10−1 | 3.84 × 10−1 | 9.63 × 10−1 | 6.89 × 10−1 | 1.59 | |
p_value | 4.24 × 10−3 | 1.23 × 10−15 | 1.01 × 10−11 | 3.73 × 10−14 | 1.11 × 10−5 | 1.95 × 10−2 | 2.28 × 10−4 | |
Ranking | 8 | 8 | 8 | 8 | 7 | 7 | 7 | |
CSA | Average | 8.45 × 10−1 | 3.27 × 10+1 | −1.9 | −1.17 | −1.02 × 10+1 | −1.04 × 10+1 | −1.05 × 10+1 |
Std. | 8.82 × 10−16 | 1.45 × 10−14 | 6.78 × 10−16 | 2.26 × 10−16 | 3.61 × 10−15 | 0 | 3.61 × 10−15 | |
p_value | 5.97 × 10−117 | 0 | 2.12 × 10−169 | 1.81 × 10−30 | 3.05 × 10−23 | 4.08 × 10−19 | 7.88 × 10−26 | |
Ranking | 9 | 9 | 9 | 9 | 1 | 2 | 2 | |
TSA | Average | 3.99 × 10−1 | 1.23 × 10+1 | −3.86 | −3.16 | −7.15 | −5.84 | −4.72 |
Std. | 1.81 × 10−3 | 2.26 × 10+1 | 3.25 × 10−3 | 1.31 × 10−1 | 1.27 | 2.17 | 2.77 | |
p_value | 8.34 × 10−1 | 2.86 × 10−2 | 8.41 × 10−9 | 3.15 × 10−6 | 3.99 × 10−12 | 1.69 × 10−3 | 8.99 × 10−4 | |
Ranking | 2 | 7 | 3 | 4 | 5 | 6 | 6 | |
DOA | Average | 4 × 10−1 | 3.9 | −3.83 | −3.25 | −8.5 | −7.97 | −7.22 |
Std. | 1.27 × 10−2 | 4.93 | 1.41 × 10−1 | 7.07 × 10+2 | 2.63 | 2.78 | 3.58 | |
p_value | 6.26 × 10−1 | 3.21 × 10−1 | 3.61 × 10−1 | 1.31 × 10−8 | 2.91 × 10−12 | 1.76 × 10−7 | 7.82 × 10−8 | |
Ranking | 6 | 4 | 6 | 3 | 4 | 5 | 5 | |
EHO | Average | 4 × 10−1 | 3 | −3.86 | −3.27 | −6.65 | −8.15 | −7.46 |
Std. | 2.65 × 10−4 | 8.22 × 10−5 | 2.71 × 10−15 | 5.92 × 10−2 | 3.45 | 3.29 | 3.86 | |
p_value | 1.47 × 10−2 | 4.11 × 10−4 | 9.88 × 10−30 | 3.43 × 10−09 | 3.45 × 10−09 | 5.17 × 10−07 | 8.65 × 10−08 | |
Ranking | 3 | 2 | 1 | 2 | 6 | 4 | 4 | |
WSO | Average | 4 × 10−1 | 3.9 | −3.86 | −3.3 | −9.49 | −1.04 × 10+1 | −1.05 × 10+1 |
Std. | 2.71 × 10−4 | 3.12 × 10+1 | 2.71 × 10−15 | 4.84 × 10−02 | 2.07 | 0.00 | 9.03 × 10−15 | |
p_value | 1.12 × 10−1 | 3.25 × 10−1 | 9.88 × 10−30 | 8.54 × 10−10 | 1.49 × 10−16 | 4.08 × 10−19 | 2.88 × 10−26 | |
Ranking | 3 | 4 | 1 | 1 | 3 | 1 | 1 |
Algorithm | MRSO | SCA | MRA | LCA | CSA | TSA | DOA | EHO | WSO |
---|---|---|---|---|---|---|---|---|---|
Ranking | 10.2 | 12.8 | 7.5 | 15.1 | 8.1 | 11.3 | 10.6 | 12.4 | 13.2 |
Algorithm | Metric/Function | F1 | F2 | F3 | F4 | F5 | F6 | F7 | F8 | F9 | F10 |
---|---|---|---|---|---|---|---|---|---|---|---|
MRSO | Average | 1.59 × 10+5 | 1.83 × 10+1 | 1.37 × 10+1 | 9.20 × 10+3 | 4.57 | 1.09 × 10+1 | 6.11 × 10+2 | 6.31 | 4.97 × 10+2 | 2.13 × 10+1 |
Std. | 3.20 × 10+5 | 7.23 × 10−3 | 1.34 × 10−6 | 3.20 × 10+3 | 4.13 × 10−1 | 1.01 | 2.29 × 10+2 | 4.14 × 10−1 | 1.49 × 10+2 | 1.49 × 10−1 | |
Ranking | 4 | 1 | 3 | 6 | 6 | 1 | 1 | 3 | 4 | 1 | |
SCA | Average | 1.22 × 10+10 | 1.85 × 10+1 | 1.37 × 10+1 | 1.68 × 10+3 | 3.22 | 1.21 × 10+1 | 7.9 × 10+2 | 6.06 | 1.13 × 10+2 | 2.15 × 10+1 |
Std. | 1.79 × 10+10 | 9.51 × 10−2 | 1.05 × 10−4 | 7.12 × 10+2 | 7.84 × 10−2 | 6.76 × 10−1 | 1.47 × 10+2 | 4.17 × 10−1 | 8.31 × 10+1 | 7.81 × 10−2 | |
p_value | 4.31 × 10−4 | 1.95 × 10−10 | 2.74 × 10−9 | 3.52 × 10−18 | 5.34 × 10−25 | 3.06 × 10−6 | 6.55 × 10−4 | 2.48 × 10−2 | 8.56 × 10−18 | 8.12 × 10−8 | |
Ranking | 9 | 3 | 4 | 2 | 2 | 4 | 2 | 2 | 3 | 4 | |
MRA | Average | 1.00 | 1.58 × 10+4 | 1.37 × 10+1 | 2.53 × 10+4 | 8.13 | 1.35 × 10+1 | 2 × 10+3 | 7.83 | 4.39 × 10+3 | 2.17 × 10+1 |
Std. | 0 | 4.3 × 10+3 | 9.52 × 10−4 | 8.93 × 10+3 | 1.21 | 6.77 × 10−1 | 2.26 × 10+2 | 3.83 × 10−1 | 7.03 × 10+2 | 1.17 × 10−1 | |
p_value | 8.62 × 10−3 | 8.77 × 10−28 | 1.19 × 10−16 | 4.84 × 10−13 | 6.38 × 10−22 | 8.34 × 10−17 | 1.73 × 10−31 | 2.29 × 10−21 | 9.66 × 10−37 | 1.05 × 10−16 | |
Ranking | 1 | 9 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 7 | |
LCA | Average | 2.46 × 10+8 | 5.08 × 10+1 | 1.37 × 10+1 | 2.19 × 10+4 | 6.74 | 1.39 × 10+1 | 1.68 × 10+3 | 7.25 | 3.04 × 10+3 | 2.18 × 10+1 |
Std. | 3.16 × 10+8 | 3.26 × 10+1 | 1.41 × 10−3 | 7.83 × 103 | 1.04 | 7.35 × 10−1 | 2.94 × 10+2 | 4.07 × 10−1 | 8.43 × 10+2 | 1.37 × 10−1 | |
p_value | 7.56 × 10−5 | 1.08 × 10−6 | 2.75 × 10−21 | 2.91 × 10−11 | 3.61 × 10−15 | 5.34 × 10−19 | 1.48 × 10−22 | 2.63 × 10−12 | 3 × 10−23 | 8.42 × 10−19 | |
Ranking | 7 | 8 | 8 | 7 | 7 | 9 | 7 | 7 | 7 | 8 | |
CSA | Average | 6.48 × 10+5 | 1.95 × 10+1 | 1.37 × 10+1 | 4.41 × 10+4 | 9.13 | 1.25 × 10+1 | 2.1 × 10+3 | 7.89 | 4.71 × 10+3 | 2.19 × 10+1 |
Std. | 5.44 × 10−10 | 3.61 × 10−15 | 9.03 × 10−15 | 1.16 × 10−1 | 3.85 × 10−7 | 4.11 × 10−1 | 5.88 × 10−2 | 2.9 × 10−2 | 4.15 × 10−5 | 2.34 × 10−2 | |
p_value | 1.49 × 10−11 | 4.3 × 10−120 | 6 × 10−215 | 8.9 × 10−54 | 4.59 × 10−54 | 2.94 × 10−10 | 4.48 × 10−41 | 1.18 × 10−28 | 1.43 × 10−77 | 4.5 × 10−30 | |
Ranking | 5 | 6 | 9 | 9 | 9 | 5 | 9 | 9 | 9 | 9 | |
TSA | Average | 6.05 × 10+4 | 1.95 × 10+1 | 1.37 × 10+1 | 6.55 × 10+3 | 4.31 | 1.19 × 10+1 | 8.49 × 10+2 | 6.55 | 6.67 × 10+2 | 2.15 × 10+1 |
Std. | 1.66 × 10+4 | 6.46 × 10−1 | 1.5 × 10−3 | 4.21 × 10+3 | 8.13 × 10−1 | 8.1 × 10−1 | 2.43 × 10+2 | 3.97 × 10−1 | 5.79 × 10+2 | 1.01 × 10−1 | |
p_value | 9.8 × 10−2 | 2.06 × 10−13 | 2.04 × 10−3 | 7.9 × 10−3 | 1.15 × 10−1 | 2.17 × 10−4 | 2.55 × 10−4 | 2.77 × 10−2 | 1.24 × 10−1 | 1.67 × 10−6 | |
Ranking | 2 | 7 | 6 | 5 | 5 | 2 | 4 | 4 | 6 | 3 | |
DOA | Average | 1.16 × 10+5 | 1.84 × 10+1 | 1.37 × 10+1 | 4.37 × 10+3 | 3.65 | 1.32 × 10+1 | 1.02 × 10+3 | 6.6 | 5.62 × 10+2 | 2.16 × 10+1 |
Std. | 1.88 × 10+5 | 1.89 × 10−1 | 8.11 × 10−4 | 3.72 × 10+3 | 6.37 × 10−1 | 8.09 × 10−1 | 3.08 × 10+2 | 3.66 × 10−1 | 3.17 × 10+2 | 1.56 × 10−1 | |
p_value | 5.06 × 10−1 | 7.13 × 10−2 | 1.18 × 10−2 | 1.33 × 10−6 | 1.16 × 10−8 | 1.22 × 10−13 | 2.74 × 10−7 | 5.48 × 10−3 | 3.14 × 10−1 | 7.1 × 10−12 | |
Ranking | 3 | 2 | 5 | 3 | 4 | 6 | 6 | 5 | 5 | 5 | |
EHO | Average | 2.42 × 10+9 | 1.85 × 10+1 | 1.37 × 10+1 | 3.22 × 10+1 | 3.22 | 1.21 × 10+1 | 9.35 × 10+2 | 6.74 | 3.62 | 2.14 × 10+1 |
Std. | 4.12 × 10+9 | 9.67 × 10−2 | 9.03 × 10−15 | 1.66 × 10+1 | 1.52 × 10−2 | 2.71 | 4.71 × 10+2 | 6.06 × 10−1 | 3.52 × 10−1 | 2.08 × 10−1 | |
p_value | 2.13 × 10−3 | 1.95 × 10−11 | 1.33 × 10−3 | 1.57 × 10−22 | 3.11 × 10−18 | 3.98 × 10−2 | 1.25 × 10−3 | 2.28 × 10−3 | 1.62 × 10−25 | 4.78 × 10−2 | |
Ranking | 8 | 3 | 1 | 1 | 2 | 3 | 5 | 6 | 1 | 2 | |
WSO | Average | 2.92 × 10+7 | 1.85 × 10+1 | 1.37 × 10+1 | 4.37 × 10+3 | 2.27 | 1.32 × 10+1 | 8.16 × 10+2 | 5.5 | 3.62 × 10+1 | 2.16 × 10+1 |
Std. | 6.88 × 10+7 | 7.66 × 10−2 | 8.23 × 10−11 | 4.11 × 10+3 | 2.29 × 10−1 | 7.41 × 10−1 | 1.58 × 10+2 | 6.61 × 10−1 | 1.04 × 10+2 | 1.56 × 10−1 | |
p_value | 2.43 × 10−2 | 2.71 × 10−13 | 5.9 × 10−4 | 2.57 × 10−8 | 2.92 × 10−34 | 2.11 × 10−15 | 1.69 × 10−4 | 3.93 × 10−7 | 4.85 × 10−20 | 7.1 × 10−12 | |
Ranking | 6 | 3 | 1 | 3 | 1 | 6 | 3 | 1 | 2 | 5 |
Algorithm | MRSO | SCA | MRA | LCA | CSA | TSA | DOA | EHO | WSO |
---|---|---|---|---|---|---|---|---|---|
Ranking | 3 | 3.5 | 7.2 | 7.5 | 7.9 | 4.4 | 4.4 | 3.2 | 3.1 |
Engineering Application | MRSO | RSO | ||
---|---|---|---|---|
Avg. | Std. | Avg. | Std. | |
Pressure Vessel Design | 6.956 × 10+3 | 4.479 × 10+2 | 1.72 × 10+4 | 1.031 × 10+4 |
String Design | 1.417 × 10−2 | 9.721 × 10−4 | 3.954 × 10+8 | 4.217 × 10+8 |
Three Bar Truss | 2.665 × 10+2 | 6.522 | 2.705 × 10+2 | 4.829 |
Gear Train Design | 1.106 × 10−12 | 2.739 × 10−12 | 4.792 × 10−3 | 6.392 × 10−3 |
Cantilever Beam | 1.343 | 2.932 × 10−3 | 2.382 | 8.673 × 10−1 |
Welded Beam | 1.552 | 2.052 × 10−1 | 7.253 × 10+7 | 1.629 × 10+8 |
Tire Design | 4.683 × 10−3 | 1.764 × 10−18 | 1.74 | 1.162 |
Engineering Problems | Metrics | Algorithms | ||||
---|---|---|---|---|---|---|
MRSO | SCA | LCA | TSA | DOA | ||
Pressure Vessel Design | Avg. | 6.83 × 10+3 | 7.28 × 10+3 | 1.64 × 10+4 | 7.24 × 10+3 | 5.98 × 10+3 |
Std. | 5.21 × 10+2 | 7.80 × 10+2 | 2.02 × 10+3 | 7.18 × 10+2 | 3.32 × 10+3 | |
Rank | 2 | 4 | 5 | 3 | 1 | |
String Design | Avg. | 1.38 × 10−2 | 1.31 × 10−2 | 2.86 × 10+8 | 1.45 × 10−2 | 6.37 × 10+7 |
Std. | 8.98 × 10−4 | 2.42 × 10−4 | 3.19 × 10+8 | 1.72 × 10−3 | 1.65 × 10+8 | |
Rank | 2 | 1 | 5 | 3 | 4 | |
Three Bar Truss | Avg. | 2.51 × 10+2 | 2.67 × 10+2 | 2.79 × 10+2 | 2.64 × 10+2 | 2.64 × 10+2 |
Std. | 6.12 × 10+1 | 6.44 | 1.13 × 10+1 | 3.53 × 10−1 | 3.59 × 10−1 | |
Rank | 1 | 4 | 5 | 3 | 2 | |
Gear Train Design | Avg. | 1.75 × 10−13 | 2.01 × 10−9 | 5.28 × 10−3 | 5.44 × 10−10 | 1.27 × 10−13 |
Std. | 2.08 × 10−13 | 4.63 × 10−9 | 7.29 × 10−3 | 9.02 × 10−10 | 5.87 × 10−13 | |
Rank | 2 | 4 | 5 | 3 | 1 | |
Cantilever Beam | Avg. | 1.34 | 1.41 | 1.57 | 1.36 | 1.4 |
Std. | 2.93 × 10−3 | 2.75 × 10−2 | 4.63 × 10−2 | 1.13 × 10−2 | 9.62 × 10−2 | |
Rank | 1 | 4 | 5 | 2 | 3 | |
Welded Beam | Avg. | 1.55 | 1.59 | 4.94 × 10+7 | 1.56 | 1.95 |
Std. | 2.05 × 10−1 | 4 × 10−2 | 1.36 × 10+8 | 3.64 × 10−2 | 6.13 × 10−1 | |
Rank | 1 | 3 | 5 | 2 | 4 | |
Tire Design | Avg. | 4.68 × 10−3 | 4.68 × 10−3 | 2.15 | 4.68 × 10−3 | 8.24 × 10−3 |
Std. | 1.76 × 10−18 | 1.11 × 10−17 | 1.31 | 8.82 × 10−19 | 1.36 × 10−2 | |
Rank | 1 | 2 | 5 | 3 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abdulla, H.S.; Ameen, A.A.; Saeed, S.I.; Mohammed, I.A.; Rashid, T.A. MRSO: Balancing Exploration and Exploitation through Modified Rat Swarm Optimization for Global Optimization. Algorithms 2024, 17, 423. https://doi.org/10.3390/a17090423
Abdulla HS, Ameen AA, Saeed SI, Mohammed IA, Rashid TA. MRSO: Balancing Exploration and Exploitation through Modified Rat Swarm Optimization for Global Optimization. Algorithms. 2024; 17(9):423. https://doi.org/10.3390/a17090423
Chicago/Turabian StyleAbdulla, Hemin Sardar, Azad A. Ameen, Sarwar Ibrahim Saeed, Ismail Asaad Mohammed, and Tarik A. Rashid. 2024. "MRSO: Balancing Exploration and Exploitation through Modified Rat Swarm Optimization for Global Optimization" Algorithms 17, no. 9: 423. https://doi.org/10.3390/a17090423
APA StyleAbdulla, H. S., Ameen, A. A., Saeed, S. I., Mohammed, I. A., & Rashid, T. A. (2024). MRSO: Balancing Exploration and Exploitation through Modified Rat Swarm Optimization for Global Optimization. Algorithms, 17(9), 423. https://doi.org/10.3390/a17090423