Vertex-Weighted Consensus-Based Formation Control with Area Constraints and Collision Avoidance
Abstract
:1. Introduction
- The proposed signed triangle area term avoids local minimum stagnation and mitigates ambiguities within the formation.
- The proposed approach does not require virtual relabeling and broadcasting algorithms. Then, formation control can be performed in a completely decentralized manner.
- The desired formation pattern is achieved for any initial agent positions, which is a drawback of edge-weighted formation [6].
2. Problem Formulation
2.1. Kinematic Model Formulation
2.2. Formation Control Design
3. Experimental Results
3.1. Simulation Experiments
3.2. Real-World Experiments
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ROS | Robot operating system |
Appendix A
References
- Oh, K.K.; Park, M.C.; Ahn, H.S. A survey of multi-agent formation control. Automatica 2015, 53, 424–440. [Google Scholar] [CrossRef]
- Gong, X.; Liu, J.J.; Wang, Y.; Cui, Y. Distributed finite-time bipartite consensus of multi-agent systems on directed graphs: Theory and experiment in nano-quadcopters formation. J. Frankl. Inst. 2020, 357, 11953–11973. [Google Scholar] [CrossRef]
- Xiong, T.; Pu, Z.; Yi, J.; Tao, X. Consensus Based Formation Control for Multi-UAV Systems with Time-varying Delays and Jointly Connected Topologies. In Proceedings of the 2018 IEEE 14th International Conference on Automation Science and Engineering (CASE), Munich, Germany, 20–24 August 2018; pp. 292–297. [Google Scholar] [CrossRef]
- Zhou, Y.; Liu, Y.; Zhao, Y. Prescribed-time Bipartite Consensus Formation Control for General Linear Multi-agent Systems. In Proceedings of the IECON 2020 The 46th Annual Conference of the IEEE Industrial Electronics Society, Singapore, 19–21 October 2020; pp. 3562–3567. [Google Scholar]
- Fax, J.; Murray, R. Information flow and cooperative control of vehicle formations. IEEE Trans. Autom. Control 2004, 49, 1465–1476. [Google Scholar] [CrossRef]
- Falconi, R.; Sabattini, L.; Secchi, C.; Fantuzzi, C.; Melchiorri, C. Edge-weighted consensus-based formation control strategy with collision avoidance. Robotica 2015, 33, 332–347. [Google Scholar] [CrossRef]
- Liu, Y.; Yu, H.; Shi, P.; Lim, C.C. Formation control and collision avoidance for a class of multi-agent systems. J. Frankl. Inst. 2019, 356, 5395–5420. [Google Scholar] [CrossRef]
- Cong, Y.; Du, H.; Jin, Q.; Zhu, W.; Lin, X. Formation control for multiquadrotor aircraft: Connectivity preserving and collision avoidance. Int. J. Robust Nonlinear Control 2020, 30, 2352–2366. [Google Scholar] [CrossRef]
- Hu, J.; Zhang, H.; Liu, L.; Zhu, X.; Zhao, C.; Pan, Q. Convergent Multiagent Formation Control With Collision Avoidance. IEEE Trans. Robot. 2020, 36, 1805–1818. [Google Scholar] [CrossRef]
- Nuño, E.; Loría, A.; Hernández, T.; Maghenem, M.; Panteley, E. Distributed consensus-formation of force-controlled nonholonomic robots with time-varying delays. Automatica 2020, 120, 109114. [Google Scholar] [CrossRef]
- Maghenem, M.; Loría, A.; Nuño, E.; Panteley, E. Consensus-Based Formation Control of Networked Nonholonomic Vehicles With Delayed Communications. IEEE Trans. Autom. Control 2021, 66, 2242–2249. [Google Scholar] [CrossRef]
- Wang, C.; He, P.; Li, H.; Tian, J.; Wang, K.; Li, Y. Noise-tolerance consensus formation control for multi-robotic networks. Trans. Inst. Meas. Control 2020, 42, 1569–1581. [Google Scholar] [CrossRef]
- Van, M.; Sun, Y.; Mcllvanna, S.; Nguyen, M.N.; Zocco, F.; Liu, Z.; Wang, H.C. Distributed Fixed-Time Consensus Control for Multiple AUV Systems with Input Saturations. arXiv 2023, arXiv:2302.14162. [Google Scholar]
- Romero, J.G.; Nuño, E.; Aldana, C.I. Robust PID consensus-based formation control of nonholonomic mobile robots affected by disturbances. Int. J. Control 2023, 96, 791–799. [Google Scholar] [CrossRef]
- Yu, H.; Shi, P.; Lim, C.C.; Wang, D. Formation control for multi-robot systems with collision avoidance. Int. J. Control 2019, 92, 2223–2234. [Google Scholar] [CrossRef]
- Shi, Q.; Li, T.; Li, J.; Chen, C.P.; Xiao, Y.; Shan, Q. Adaptive leader-following formation control with collision avoidance for a class of second-order nonlinear multi-agent systems. Neurocomputing 2019, 350, 282–290. [Google Scholar] [CrossRef]
- Sui, Z.; Pu, Z.; Yi, J.; Wu, S. Formation Control With Collision Avoidance Through Deep Reinforcement Learning Using Model-Guided Demonstration. IEEE Trans. Neural Networks Learn. Syst. 2021, 32, 2358–2372. [Google Scholar] [CrossRef] [PubMed]
- Pang, Z.H.; Zheng, C.B.; Sun, J.; Han, Q.L.; Liu, G.P. Distance- and Velocity-Based Collision Avoidance for Time-Varying Formation Control of Second-Order Multi-Agent Systems. IEEE Trans. Circuits Syst. II Express Briefs 2021, 68, 1253–1257. [Google Scholar] [CrossRef]
- Hu, J.; Wang, M.; Zhao, C.; Pan, Q.; Du, C. Formation control and collision avoidance for multi-UAV systems based on Voronoi partition. Sci. China Technol. Sci. 2020, 63, 65–72. [Google Scholar] [CrossRef]
- Xia, G.; Zhang, Y.; Yang, Y. Control Method of Multi-AUV Circular Formation Combining Consensus Theory and Artificial Potential Field Method. In Proceedings of the 2020 Chinese Control And Decision Conference (CCDC), Hefei, China, 22–24 August 2020; pp. 3055–3061. [Google Scholar] [CrossRef]
- Secchi, C.; Fantuzzi, C. Formation control over delayed communication networks. In Proceedings of the 2008 IEEE International Conference on Robotics and Automation, Pasadena, CA, USA, 19–23 May 2008; pp. 563–568. [Google Scholar] [CrossRef]
- Falconi, R.; Gowal, S.; Martinoli, A. Graph based distributed control of non-holonomic vehicles endowed with local positioning information engaged in escorting missions. In Proceedings of the 2010 IEEE International Conference on Robotics and Automation, Anchorage, AK, USA, 3–7 May 2010; pp. 3207–3214. [Google Scholar]
- Falconi, R.; Sabattini, L.; Secchi, C.; Fantuzzi, C.; Melchiorri, C. A graph–based collision–free distributed formation control strategy. IFAC Proc. Vol. 2011, 44, 6011–6016. [Google Scholar] [CrossRef]
- Anderson, B.D.; Sun, Z.; Sugie, T.; Azuma, S.i.; Sakurama, K. Formation shape control with distance and area constraints. IFAC J. Syst. Control 2017, 1, 2–12. [Google Scholar] [CrossRef]
- Sugie, T.; Anderson, B.D.; Sun, Z.; Dong, H. On a hierarchical control strategy for multi-agent formation without reflection. In Proceedings of the 2018 IEEE Conference on Decision and Control (CDC), Miami Beach, FL, USA, 17–19 December 2018; pp. 2023–2028. [Google Scholar]
- Siciliano, B.; Sciavicco, L.; Villani, L.; Oriolo, G. Force Control; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Amsters, R.; Slaets, P. Turtlebot 3 as a robotics education platform. In Robotics in Education: Current Research and Innovations 10; Springer: Berlin/Heidelberg, Germany, 2020; pp. 170–181. [Google Scholar]
- Tanner, H.G.; Kumar, A. Formation stabilization of multiple agents using decentralized navigation functions. In Proceedings of the Robotics: Science and Systems, Cambridge, MA, USA, 8–11 June 2005; Volume 1, pp. 49–56. [Google Scholar]
- Ferreira Vázquez, E.D.; Hernández Martínez, E.G.; Flores Godoy, J.J. Formation control of multiple robots avoiding local minima. In Proceedings of the CLCA 2014, Cancun, Mexico, 14–17 October 2014. [Google Scholar]
- Dang, A.D.; La, H.M.; Nguyen, T.; Horn, J. Formation control for autonomous robots with collision and obstacle avoidance using a rotational and repulsive force–based approach. Int. J. Adv. Robot. Syst. 2019, 16, 1729881419847897. [Google Scholar] [CrossRef]
- Martinez, J.B.; Becerra, H.M.; Gomez-Gutierrez, D. Formation tracking control and obstacle avoidance of unicycle-type robots guaranteeing continuous velocities. Sensors 2021, 21, 4374. [Google Scholar] [CrossRef]
- Aranda-Bricaire, E.; González-Sierra, J. Formation with non-collision control strategies for second-order multi-agent systems. Entropy 2023, 25, 904. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.S.; Ma, Y.A.; Yuan, B.; Ao, P. Lyapunov function as potential function: A dynamical equivalence. Chin. Phys. B 2013, 23, 010505. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernandez-Venegas, U.; Hernandez-Barragan, J.; Gomez Jimenez, I.; Martinez-Soltero, G.; Alanis, A.Y. Vertex-Weighted Consensus-Based Formation Control with Area Constraints and Collision Avoidance. Algorithms 2025, 18, 45. https://doi.org/10.3390/a18010045
Hernandez-Venegas U, Hernandez-Barragan J, Gomez Jimenez I, Martinez-Soltero G, Alanis AY. Vertex-Weighted Consensus-Based Formation Control with Area Constraints and Collision Avoidance. Algorithms. 2025; 18(1):45. https://doi.org/10.3390/a18010045
Chicago/Turabian StyleHernandez-Venegas, Ulises, Jesus Hernandez-Barragan, Irene Gomez Jimenez, Gabriel Martinez-Soltero, and Alma Y. Alanis. 2025. "Vertex-Weighted Consensus-Based Formation Control with Area Constraints and Collision Avoidance" Algorithms 18, no. 1: 45. https://doi.org/10.3390/a18010045
APA StyleHernandez-Venegas, U., Hernandez-Barragan, J., Gomez Jimenez, I., Martinez-Soltero, G., & Alanis, A. Y. (2025). Vertex-Weighted Consensus-Based Formation Control with Area Constraints and Collision Avoidance. Algorithms, 18(1), 45. https://doi.org/10.3390/a18010045