Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Database of Amyloid Brain PET Images
2.2. Image Scan
2.3. Images and Statistical Analysis
3. Results
4. Discussion
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Aschenbrenner, A.J.; Gordon, B.A.; Benzinger, T.L.; Morris, J.C.; Hassenstab, J.J. Influence of tau PET, amyloid PET, and hippocampal volume on cognition in Alzheimer disease. Neurology 2018, 91, 859–866. [Google Scholar] [CrossRef]
- Perani, D. FDG-PET and amyloid-PET imaging: The diverging paths. Curr. Opin. Neurol. 2014, 27, 405–413. [Google Scholar] [CrossRef]
- Yoon, H.-J.; Kim, B.S.; Jeong, J.H.; Kim, G.H.; Park, H.K.; Chun, M.Y.; Ha, S. Dual-phase 18F-florbetaben PET provides cerebral perfusion proxy along with beta-amyloid burden in Alzheimer’s disease. NeuroImage Clin. 2021, 31, 102773. [Google Scholar] [CrossRef] [PubMed]
- Catafau, A.M.; Bullich, S. Amyloid PET imaging: Applications beyond Alzheimer’s disease. Clin. Transl. Imaging 2015, 3, 39–55. [Google Scholar] [CrossRef]
- Matías-Guiu, J.A.; Oreja-Guevara, C.; Cabrera-Martín, M.N.; Moreno-Ramos, T.; Carreras, J.L.; Matías-Guiu, J. Amyloid proteins and their role in multiple sclerosis. Considerations in the use of amyloid-PET imaging. Front. Neurol. 2016, 7, 53. [Google Scholar] [CrossRef] [PubMed]
- Hatashita, S.; Wakebe, D.; Kikuchi, Y.; Ichijo, A. Longitudinal assessment of amyloid-β deposition by [18F]-flutemetamol PET imaging compared with [11C]-PIB across the spectrum of Alzheimer’s disease. Front. Aging Neurosci. 2019, 11, 251. [Google Scholar] [CrossRef]
- Li, J.; Antonecchia, E.; Camerlenghi, M.; Chiaravalloti, A.; Chu, Q.; Di Costanzo, A.; Li, Z.; Wan, L.; Zhang, X.; D’ascenzo, N.; et al. Correlation of [18F] florbetaben textural features and age of onset of Alzheimer’s disease: A principal components analysis approach. EJNMMI Res. 2021, 11, 40. [Google Scholar] [CrossRef] [PubMed]
- Jeon, S.; Kang, J.M.; Seo, S.; Jeong, H.J.; Funck, T.; Lee, S.Y.; Park, K.H.; Lee, Y.B.; Yeon, B.K.; Ido, T.; et al. Topographical heterogeneity of Alzheimer’s disease based on MR imaging, tau PET, and amyloid PET. Front. Aging Neurosci. 2019, 11, 211. [Google Scholar] [CrossRef]
- Tuszynski, T.; Rullmann, M.; Luthardt, J.; Butzke, D.; Tiepolt, S.; Gertz, H.-J.; Hesse, S.; Seese, A.; Lobsien, D.; Sabri, O.; et al. Evaluation of software tools for automated identification of neuroanatomical structures in quantitative β-amyloid PET imaging to diagnose Alzheimer’s disease. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 1077–1087. [Google Scholar] [CrossRef]
- Initiative, F.T.A.D.N.; Cho, S.H.; Shin, J.-H.; Jang, H.; Park, S.; Kim, H.J.; Kim, S.E.; Kim, S.J.; Kim, Y.; Lee, J.S.; et al. Amyloid involvement in subcortical regions predicts cognitive decline. Eur. J. Nucl. Med. Mol. Imaging 2018, 45, 2368–2376. [Google Scholar]
- Ortner, M.; Drost, R.; Heddderich, D.; Goldhardt, O.; Müller-Sarnowski, F.; Diehl-Schmid, J.; Förstl, H.; Yakushev, I.; Grimmer, T. Amyloid PET, FDG-PET or MRI?-the power of different imaging biomarkers to detect progression of early Alzheimer’s disease. BMC Neurol. 2019, 19, 264. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.G.; Senjem, M.L.; Gunter, J.L.; Tosakulwong, N.; Weigand, S.D.; Kemp, B.J.; Spychalla, A.J.; Vemuri, P.; Petersen, R.C.; Lowe, V.J.; et al. Optimizing PiB-PET SUVR change-over-time measurement by a large-scale analysis of longitudinal reliability, plausibility, separability, and correlation with MMSE. Neuroimage 2017, 144, 113–127. [Google Scholar] [CrossRef]
- Morris, E.; Chalkidou, A.; Hammers, A.; Peacock, J.; Summers, J.; Keevil, S. Diagnostic accuracy of 18F amyloid PET tracers for the diagnosis of Alzheimer’s disease: A systematic review and meta-analysis. Eur. J. Nucl. Med. Mol. Imaging 2016, 43, 374–385. [Google Scholar] [CrossRef] [PubMed]
- Schwarz, C.G.; Gunter, J.L.; Lowe, V.J.; Weigand, S.; Vemuri, P.; Senjem, M.L.; Petersen, R.C.; Knopman, D.S.; Jack, C.R., Jr. A comparison of partial volume correction techniques for measuring change in serial amyloid PET SUVR. J. Alzheimer’s Dis. 2019, 67, 181–195. [Google Scholar] [CrossRef] [PubMed]
- Akamatsu, G.; Initiative, J.A.D.N.; Ikari, Y.; Ohnishi, A.; Matsumoto, K.; Nishida, H.; Yamamoto, Y.; Senda, M. Voxel-based statistical analysis and quantification of amyloid PET in the Japanese Alzheimer’s disease neuroimaging initiative (J-ADNI) multi-center study. EJNMMI Res. 2019, 9, 91. [Google Scholar] [CrossRef] [PubMed]
- Shimokawa, N.; Akamatsu, G.; Kadosaki, M.; Sasaki, M. Feasibility study of a PET-only amyloid quantification method: A comparison with visual interpretation. Ann. Nucl. Med. 2020, 34, 629–635. [Google Scholar] [CrossRef]
- Akamatsu, G.; Ikari, Y.; Ohnishi, A.; Nishida, H.; Aita, K.; Sasaki, M.; Yamamoto, Y.; Senda, M. Automated PET-only quantification of amyloid deposition with adaptive template and empirically pre-defined ROI. Phys. Med. Biol. 2016, 61, 5768. [Google Scholar] [CrossRef]
- Shimokawa, N.; Akamatsu, G.; Kadosaki, M.; Sasaki, M. Implementation and validation of an adaptive template registration method for 18F-flutemetamol imaging data. J. Nucl. Med. 2013, 54, 1472–1478. [Google Scholar]
- FreeSurfer. Available online: https://surfer.nmr.mgh.harvard.edu/ (accessed on 1 March 2022).
- PMOD. Available online: https://www.pmod.com/ (accessed on 1 March 2022).
- Chang, Y.; Li, C.; Yang, H.; Wu, Y.; Xu, B.; Zhang, J.; Wang, R. 18F-Florbetaben Amyloid PET Imaging: A Chinese Study in Cognitive Normal Controls, Mild Cognitive Impairment, and Alzheimer’s Disease Patients. Front. Neurosci. 2020, 14, 745. [Google Scholar] [CrossRef]
- Cho, S.H.; Choe, Y.S.; Kim, Y.J.; Lee, B.; Kim, H.J.; Jang, H.; Kim, J.P.; Jung, Y.H.; Kim, S.-J.; Kim, B.C.; et al. Concordance in detecting amyloid positivity between 18F-florbetaben and 18F-flutemetamol amyloid PET using quantitative and qualitative assessments. Sci. Rep. 2020, 10, 19576. [Google Scholar] [CrossRef] [PubMed]
- Initiative, T.A.D.N.; Landau, S.M.; Thomas, B.A.; Thurfjell, L.; Schmidt, M.; Margolin, R.; Mintun, M.; Pontecorvo, M.; Baker, S.L.; Jagust, W.J. Amyloid PET imaging in Alzheimer’s disease: A comparison of three radiotracers. Eur. J. Nucl. Med. Mol. Imaging 2014, 41, 1398–1407. [Google Scholar]
- Schain, M.; Varnäs, K.; Cselényi, Z.; Halldin, C.; Farde, L.; Varrone, A. Evaluation of two automated methods for PET region of interest analysis. Neuroinformatics 2014, 12, 551–562. [Google Scholar] [CrossRef] [PubMed]
- Marcoux, A.; Burgos, N.; Bertrand, A.; Teichmann, M.; Routier, A.; Wen, J.; Samper-González, J.; Bottani, S.; Durrleman, S.; Habert, M.-O.; et al. An automated pipeline for the analysis of PET data on the cortical surface. Front. Neuroinform. 2018, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Landau, S.M.; Breault, C.; Joshi, A.D.; Pontecorvo, M.; Mathis, C.A.; Jagust, W.J.; Mintun, M.A. Amyloid-β imaging with Pittsburgh compound B and florbetapir: Comparing radiotracers and quantification methods. J. Nucl. Med. 2013, 54, 70–77. [Google Scholar] [CrossRef]
- Chawalparit, O.; Wontaneeporn, N.; Muangpaisan, W.; Thientunyakit, T.; Charnchaowanish, P. MRI hippocampal subfield volume analysis: Comparison between Alzheimer’s disease, mild cognitive impairment, and normal aging subjects in an amyloid PET project. J. Alzheimers Dis. Park. 2019, 9, 459. [Google Scholar] [CrossRef]
- Ouyang, J.; Chen, K.T.; Gong, E.; Pauly, J.; Zaharchuk, G. Ultra-low-dose PET reconstruction using generative adversarial network with feature matching and task-specific perceptual loss. Med. Phys. 2019, 46, 3555–3564. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.T.; Gong, E.; Macruz, F.B.d.C.; Xu, J.; Boumis, A.; Khalighi, M.; Poston, K.L.; Sha, S.J.; Greicius, M.D.; Mormino, E.; et al. Ultra–low-dose 18F-florbetaben amyloid PET imaging using deep learning with multi-contrast MRI inputs. Radiology 2019, 290, 649–656. [Google Scholar] [CrossRef] [PubMed]
- Okonkwo, D.O.; Puffer, R.C.; Minhas, D.S.; Beers, S.R.; Edelman, K.L.; Sharpless, J.; Laymon, C.M.; Lopresti, B.J.; Benso, S.; Puccio, A.M.; et al. [18F] FDG,[11C] PiB, and [18F] AV-1451 PET imaging of neurodegeneration in two subjects with a history of repetitive trauma and cognitive decline. Front. Neurol. 2019, 10, 831. [Google Scholar] [CrossRef]
- Su, Y.; D’Angelo, G.M.; Vlassenko, A.G.; Zhou, G.; Snyder, A.Z.; Marcus, D.S.; Blazey, T.M.; Christensen, J.J.; Vora, S.; Morris, J.C.; et al. Quantitative analysis of PiB-PET with freesurfer ROIs. PLoS ONE 2013, 8, e73377. [Google Scholar] [CrossRef]
- Tsubaki, Y.; Akamatsu, G.; Shimokawa, N.; Katsube, S.; Takashima, A.; Sasaki, M. Development and evaluation of an automated quantification tool for amyloid PET images. EJNMMI Phys. 2020, 7, 59. [Google Scholar] [CrossRef] [PubMed]
- Battle, M.R.; Pillay, L.C.; Lowe, V.J.; Knopman, D.; Kemp, B.; Rowe, C.C.; Doré, V.; Villemagne, V.L.; Buckley, C.J. Centiloid scaling for quantification of brain amyloid with [18F] flutemetamol using multiple processing methods. EJNMMI Res. 2018, 8, 107. [Google Scholar] [CrossRef]
- Haller, S.; Montandon, M.-L.; Lilja, J.; Rodriguez, C.; Garibotto, V.; Herrmann, F.R.; Giannakopoulos, P. PET amyloid in normal aging: Direct comparison of visual and automatic processing methods. Sci. Rep. 2020, 10, 16665. [Google Scholar] [CrossRef]
- Oliveira, F.; Leuzy, A.; Castelhano, J.; Chiotis, K.; Hasselbalch, S.G.; Rinne, J.; Mendonca, A.; Otto, M.; Lleó, A.; Santana, I.; et al. Data driven diagnostic classification in Alzheimer’s disease based on different reference regions for normalization of PiB-PET images and correlation with CSF concentrations of Aβ species. NeuroImage Clin. 2018, 20, 603–610. [Google Scholar] [CrossRef]
- Yoon, H.J.; Cho, K.; Kim, W.G.; Jeong, Y.; Jeong, J.; Kang, D. Heterogeneity by global and textural feature analysis in F-18 FP-CIT brain PET images for diagnosis of Parkinson’s disease. Medicine 2021, 100, e26961. [Google Scholar] [CrossRef]
- Son, H.J.; Jeong, Y.J.; Yoon, H.J.; Kim, J.W.; Choi, G.E.; Park, J.H.; Kang, D.Y. Parkinson disease-related cortical and striatal cognitive patterns in dual time F-18 FP CIT: Evidence for neural correlates between the caudate and the frontal lobe. Q. J. Nucl. Med. Mol. Imaging Off. Publ. Ital. Assoc. Nucl. Med. (AIMN) Int. Assoc. Radiopharmacol. (IAR) Sect. Soc. 2017, 63, 379–386. [Google Scholar] [CrossRef] [PubMed]
- Yoon, H.J.; Jeong, Y.J.; Son, H.J.; Kang, D.; Hyun, K.; Lee, M. Optimization of the spatial resolution for the GE discovery PET/CT 710 by using NEMA NU 2-2007 standards. J. Korean Phys. Soc. 2015, 66, 287–294. [Google Scholar] [CrossRef]
- Jeong, Y.J.; Jeong, J.; Cheon, S.; Yoon, B.; Kim, J.W.; Kang, D. Relationship between the washout rate of I-123 MIBG scans and autonomic function in Parkinson’s disease. PLoS ONE 2020, 15, e0229860. [Google Scholar] [CrossRef]
- MedCalc. Available online: https://www.medcalc.org/ (accessed on 1 June 2022).
- Unal, I. Defining an optimal cut-point value in ROC analysis: An alternative approach. Comput. Math. Methods Med. 2017, 2017, 3762651. [Google Scholar] [CrossRef] [PubMed]
Number | Age (Mean ± SD) | ||||
---|---|---|---|---|---|
Total | M:F * | 70≥:70< ** | |||
FBB | Negative | 12 | 6:6 | 6:6 | 62.42 ± 10.21 |
Positive | 24 | 12:12 | 12:12 | 67.25 ± 6.63 | |
FMM | Negative | 40 | 19:21 | 24:16 | 71.78 ± 8.37 |
Positive | 38 | 20:18 | 22:16 | 71.89 ± 7.52 | |
FPN | Negative | 33 | 7:16 | 8:15 | 67.57 ± 7.27 |
Positive | 42 | 14:28 | 30:12 | 73.67 ± 6.67 |
FC * | Frontal cortex (r/l) * |
LTC * | Lateral temporal cortex (r/l) * |
MTC | Mesial temporal cortex (r/l) |
PC * | Parietal cortex (r/l) * |
OC * | Occipital cortex (r/l) * |
GCA * | Anterior cingulate cortex (r/l) * |
GCP * | Posterior cingulate cortex (r/l) * |
CN | Caudate nucleus (r/l) |
PUT | Putamen (r/l) |
THA | Thalamus (r/l) |
PQ | precuneus (r/l) |
CBLCTX ** | cerebellum (r/l) ** |
Composite | Sum of regions marked with * |
FBB-FS * | FBB-PMOD | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Threshold | p-Value | Sensitivity | Specificity | Threshold | p-Value | ||
FC | 100.00 | 91.67 | 1.099 | 1.14 × 10−8 | 91.67 | 100.00 | 1.182 | 2.20 × 10−8 | 0.96 |
LTC | 95.83 | 91.67 | 1.140 | 1.22 × 10−9 | 87.50 | 100.00 | 1.225 | 2.37 × 10−9 | 0.97 |
MTC | 75.00 | 100.00 | 1.207 | 9.43 × 10−5 | 70.83 | 100.00 | 1.218 | 2.43 × 10−4 | 0.95 |
PC | 95.83 | 100.00 | 1.210 | 1.07 × 10−9 | 91.67 | 100.00 | 1.182 | 2.28 × 10−9 | 0.96 |
OC | 95.83 | 100.00 | 1.250 | 6.82 × 10−9 | 91.67 | 100.00 | 1.275 | 3.80 × 10−8 | 0.97 |
GCA | 87.50 | 100.00 | 1.237 | 4.95 × 10−9 | 87.50 | 100.00 | 1.359 | 1.45 × 10−8 | 0.99 |
GCP | 95.83 | 100.00 | 1.232 | 3.06 × 10−9 | 95.83 | 91.67 | 1.341 | 1.52 × 10−9 | 0.95 |
CN | 91.67 | 91.67 | 1.174 | 1.70 × 10−7 | 87.50 | 100.00 | 1.373 | 1.52 × 10−8 | 0.44 |
PUT | 95.83 | 83.33 | 1.471 | 1.24 × 10−7 | 100.00 | 75.00 | 1.466 | 7.76 × 10−9 | 0.76 |
THA | 87.50 | 75.00 | 1.371 | 2.92 × 10−3 | 87.50 | 100.00 | 1.206 | 2.72 × 10−8 | 0.45 |
PQ | 100.00 | 91.67 | 1.160 | 1.98 × 10−9 | 100.00 | 91.67 | 1.173 | 1.39 × 10−9 | 0.98 |
Composite | 95.83 | 100.00 | 1.189 | 1.43 × 10−9 | 91.67 | 100.00 | 1.210 | 3.15 × 10−9 | 0.97 |
FMM-FS * | FMM-PMOD | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Threshold | p-Value | Sensitivity | Specificity | Threshold | p-Value | ||
FC | 97.37 | 100.00 | 1.268 | 1.33 × 10−17 | 100.00 | 95.00 | 1.242 | 5.04 × 10−17 | 0.98 |
LTC | 94.74 | 95.00 | 1.264 | 5.33 × 10−15 | 97.37 | 97.50 | 1.258 | 9.00 × 10−15 | 0.98 |
MTC | 26.32 | 92.50 | 1.399 | 3.18 × 10−1 | 97.37 | 20.00 | 1.093 | 2.38 × 10−1 | 0.94 |
PC | 97.37 | 97.50 | 1.283 | 1.37 × 10−15 | 97.37 | 100.00 | 1.282 | 9.45 × 10−18 | 0.95 |
OC | 84.21 | 100.00 | 1.347 | 1.38 × 10−13 | 84.21 | 97.50 | 1.353 | 2.36 × 10−12 | 0.96 |
GCA | 97.37 | 90.00 | 1.323 | 6.68 × 10−17 | 92.11 | 97.50 | 1.395 | 3.63 × 10−16 | 0.99 |
GCP | 100.00 | 95.00 | 1.391 | 4.94 × 10−19 | 97.37 | 100.00 | 1.598 | 1.30 × 10−17 | 0.97 |
CN | 84.21 | 95.00 | 1.27 | 9.15 × 10−12 | 92.11 | 95.00 | 1.392 | 2.43 × 10−12 | 0.74 |
PUT | 89.47 | 82.50 | 1.704 | 8.71 × 10−12 | 97.37 | 85.00 | 1.256 | 7.65 × 10−13 | 0.80 |
THA | 89.47 | 70.00 | 1.725 | 1.36 × 10−7 | 97.37 | 95.00 | 1.178 | 8.85 × 10−19 | 0.60 |
PQ | 94.74 | 100.00 | 1.391 | 2.05 × 10−18 | 97.37 | 100.00 | 1.332 | 2.51 × 10−19 | 0.99 |
Composite | 97.37 | 97.50 | 1.272 | 4.90 × 10−17 | 97.37 | 100.00 | 1.285 | 5.60 × 10−17 | 0.98 |
FPN-FS * | FPN-PMOD | R | |||||||
---|---|---|---|---|---|---|---|---|---|
Sensitivity | Specificity | Threshold | p-Value | Sensitivity | Specificity | Threshold | p-Value | ||
FC | 83.33 | 86.96 | 1.208 | 2.27 × 10−9 | 80.95 | 100.00 | 1.231 | 5.49 × 10−12 | 0.91 |
LTC | 80.95 | 100.00 | 1.310 | 8.55 × 10−12 | 85.71 | 95.65 | 1.278 | 4.10 × 10−12 | 0.93 |
MTC | 71.43 | 82.61 | 1.705 | 5.13 × 10−6 | 69.05 | 82.61 | 1.564 | 6.34 × 10−5 | 0.93 |
PC | 80.95 | 95.65 | 1.286 | 1.08 × 10−11 | 78.57 | 95.65 | 1.218 | 3.64 × 10−12 | 0.94 |
OC | 73.81 | 100.00 | 1.237 | 2.22 × 10−10 | 90.48 | 86.96 | 1.219 | 2.49 × 10−9 | 0.93 |
GCA | 64.29 | 100.00 | 1.517 | 3.35 × 10−8 | 71.43 | 100.00 | 1.492 | 2.04 × 10−9 | 0.96 |
GCP | 83.33 | 86.96 | 1.411 | 1.97 × 10−10 | 73.81 | 100.00 | 1.520 | 3.12 × 10−10 | 0.91 |
CN | 95.24 | 26.09 | 1.276 | 2.08 × 10−1 | 88.1 | 86.96 | 1.245 | 1.33 × 10−8 | 0.26 |
PUT | 76.19 | 73.91 | 1.838 | 1.85 × 10−2 | 90.48 | 87.50 | 1.354 | 5.71 × 10−12 | 0.41 |
THA | 88.10 | 26.09 | 1.558 | 4.30 × 10−1 | 76.19 | 95.65 | 1.164 | 2.44 × 10−10 | 0.25 |
PQ | 73.81 | 100.00 | 1.371 | 1.60 × 10−11 | 90.48 | 86.96 | 1.229 | 1.37 × 10−12 | 0.96 |
Composite | 88.10 | 86.96 | 1.237 | 9.41 × 10−12 | 83.33 | 95.65 | 1.234 | 6.70 × 10−13 | 0.95 |
Comparison of ROC | Composite | FC | LTC | PC | OC | GCA | GCP |
---|---|---|---|---|---|---|---|
FPN~FBB, PMOD | * | * | * | * | * | * | * |
FPN~FMM, PMOD | * | * | |||||
FBB~FMM, PMOD | * | * | * | * | * | * | * |
FPN~FBB, FS ** | * | * | |||||
FPN~FMM, FS ** | * | * | * | ||||
FBB~FMM, FS ** | * | * | * | * | * | * |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yoon, H.J.; Yoon, D.; Jun, S.; Jeong, Y.J.; Kang, D.-Y. Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis. Algorithms 2025, 18, 57. https://doi.org/10.3390/a18020057
Yoon HJ, Yoon D, Jun S, Jeong YJ, Kang D-Y. Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis. Algorithms. 2025; 18(2):57. https://doi.org/10.3390/a18020057
Chicago/Turabian StyleYoon, Hyun Jin, Daye Yoon, Sungmin Jun, Young Jin Jeong, and Do-Young Kang. 2025. "Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis" Algorithms 18, no. 2: 57. https://doi.org/10.3390/a18020057
APA StyleYoon, H. J., Yoon, D., Jun, S., Jeong, Y. J., & Kang, D.-Y. (2025). Quantitative Analysis Using PMOD and FreeSurfer for Three Types of Radiopharmaceuticals for Alzheimer’s Disease Diagnosis. Algorithms, 18(2), 57. https://doi.org/10.3390/a18020057