A Novel Model for Noninvasive Haemoglobin Detection Based on Visibility Network and Clustering Network for Multi-Wavelength PPG Signals
Abstract
:1. Introduction
2. Materials and Methods
2.1. MW-PPG Signal Collection and Hb Prediction System
2.2. Dataset
2.3. VG Feature Extraction
2.3.1. Transitivity in Complex Networks
2.3.2. Average Node Degree in Complex Networks
2.3.3. Average Density
2.3.4. Global Efficiency
2.3.5. Average Betweenness Centrality
2.3.6. Assortativity Coefficient
2.4. Preprocessing PPG Signal and Generation of Complex Networks
2.5. Model Prediction
3. Result
3.1. Complex Network Clustering Results
3.2. Comparison of Complex Network Features
3.3. Comparison of Predictive Model Performance
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alwabari, M.; Alhamad, F.; Alsahaf, F.; Al Amer, F.; Alniniya, F.; Alherz, I.; Omer, N.; Bushehab, A.; Yassen, K. Can non-invasive spectrophotometric haemoglobin replace laboratory haemoglobin concentrations for preoperative anemia screening? A diagnostic test accuracy study. J. Clin. Med. 2023, 12, 5733. [Google Scholar] [CrossRef] [PubMed]
- Marengo-Rowe, A.J. Structure-function relations of human haemoglobins. In Baylor University Medical Center Proceedings; Taylor & Francis: Abingdon, UK, 2006; Volume 19, pp. 239–245. [Google Scholar]
- Kumar, Y.; Dogra, A.; Kaushik, A.; Kumar, S. Progressive evaluation in spectroscopic sensors for non-invasive blood haemoglobin analysis—A review. Physiol. Meas. 2022, 43, 2TR02. [Google Scholar] [CrossRef]
- Appiahene, P.; Asare, J.W.; Donkoh, E.T.; Dimauro, G.; Maglietta, R. Detection of iron deficiency anemia by medical images: A comparative study of machine learning algorithms. BioData Min. 2023, 16, 2. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Chen, Y.; Lu, S.; Zhong, K.; Li, Y.; Yi, B. A self-supervised causal feature reinforcement learning method for non-invasive haemoglobin prediction. IET Image Process. 2024, 18, 22–33. [Google Scholar] [CrossRef]
- Huo, Y.; Liu, G.; Jing, R.; Zhao, P. Non-invasive detection of the content of white blood cells in the blood of humans based on dynamic spectrum. Physiol. Meas. 2023, 44, 55003. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Li, G.; Kong, L.; Lin, L. High-precision non-invasive RBC and HGB detection system based on spectral analysis. Anal. Bioanal. Chem. 2023, 415, 6733–6742. [Google Scholar] [CrossRef]
- Bardadin, I.; Petrov, V.; Denisenko, G.; Armaganov, A.; Rubekina, A.; Kopytina, D.; Panov, V.; Shatalov, P.; Khoronenko, V.; Shegai, P.; et al. Non-invasive haemoglobin assessment with NIR imaging of blood vessels in transmittance geometry: Monte Carlo and experimental evaluation. Photonics 2024, 11, 49. [Google Scholar] [CrossRef]
- Ahsan, G.M.; Gani, M.O.; Hasan, M.K.; Ahamed, S.I.; Chu, W.; Adibuzzaman, M.; Field, J. A novel real-time non-invasive haemoglobin level detection using video images from a smartphone camera. In Proceedings of the IEEE 41st Annual Computer Software and Applications Conference (COMPSAC), Turin, Italy, 4–8 July 2017; Volume 1, pp. 967–972. [Google Scholar]
- Munadi, R.; Sussi, S.; Fitriyanti, N.; Ramadan, D.N. Non-invasive haemoglobin monitoring device using K-Nearest neighbor and artificial neural network backpropagation algorithms. Int. J. Electron. Telecommun. 2022, 68, 13–18. [Google Scholar]
- Pinto, C.; Parab, J.; Naik, G. Non-invasive haemoglobin measurement using embedded platform. Sens. Bio-Sens. Res. 2020, 9, 100370. [Google Scholar]
- Fu, Z.; Song, X.; Qin, T.; Chen, Y.; Ding, X. The influence of heart rate on the relationship between pulse transit time and systolic blood pressure. Physiol. Meas. 2024, 45, 105007. [Google Scholar] [CrossRef]
- Liu, J.; Yan, B.P.-Y.; Dai, W.-X.; Ding, X.-R.; Zhang, Y.-T.; Zhao, N. Multi-wavelength photoplethysmography method for skin arterial pulse extraction. Bio-Med. Opt. Express. 2016, 7, 4313–4326. [Google Scholar] [CrossRef] [PubMed]
- Kavsaoğlu, A.R.; Polat, K.; Hariharan, M. Non-invasive prediction of haemoglobin level using machine learning techniques with the PPG signal’s characteristics features. Appl. Soft Comput. 2015, 37, 983–991. [Google Scholar] [CrossRef]
- Acharya, S.; Swaminathan, D.; Das, S.; Kansara, K.; Chakraborty, S.; Kumar, D.; Francis, T.; Aatre, K.R. Non-invasive estimation of haemoglobin using a multi-model stacking regressor. IEEE J. Biomed. Health Inform. 2019, 24, 1717–1726. [Google Scholar] [CrossRef]
- Liu, H.; Peng, F.; Hu, M.; Shi, J.; Wang, G.; Ai, H.; Wang, W. Development and validation of a photoplethysmography system for noninvasive monitoring of Haemoglobin concentration. J. Electr. Comput. Eng. 2020, 2020, 3034260. [Google Scholar]
- Lychagov, V.V.; Semenov, V.M.; Volkova, E.K.; Chernakov, D.I.; Ahn, J.; Kim, J.Y. Noninvasive Haemoglobin Measurements with Photoplethysmography in Wrist. IEEE Access 2023, 11, 79636–79647. [Google Scholar] [CrossRef]
- Abiramee, R.; Priyadarshini, S.; Suriya, G.J. Non-invasive haemoglobin measurement using an optical method. Heliyon 2024, 10, e35777. [Google Scholar]
- Chen, S.H.; Chuang, Y.C.; Chang, C.C. Development of a portable all-wavelength PPG sensing device for robust adaptive-depth measurement: A spectrometer approach with a hydrostatic measurement example. Sensors 2020, 20, 6556. [Google Scholar] [CrossRef] [PubMed]
- Strogatz, S.H. Exploring complex networks. Nature 2001, 410, 268–276. [Google Scholar] [CrossRef]
- Diykh, M.; Li, Y.; Wen, P.; Li, T. Complex networks approach for depth of anesthesia assessment. Measurement 2018, 119, 178–189. [Google Scholar] [CrossRef]
- Wang, W.; Mohseni, P.; Kilgore, K.L.; Najafizadeh, L. Cuff-less blood pressure estimation from photoplethysmography via visibility graph and transfer learning. IEEE J. Biomed. Health Inform. 2021, 26, 2075–2085. [Google Scholar] [CrossRef]
- Raj, K.D.; Lal, G.J.; Gopalakrishnan, E.A.; Sowmya, V.; Orozco-Arroyave, J.R. A visibility graph approach for multi-stage classification of parkinson’s disease using multimodal data. IEEE Access 2024, 12, 87077–87096. [Google Scholar] [CrossRef]
- Chen, Z.; Qin, H.; Ge, W.; Li, S.; Liang, Y. Research on a non-invasive haemoglobin measurement system based on four-wavelength photoplethysmography. Electronics 2023, 12, 1346. [Google Scholar] [CrossRef]
- Bezsudnov, I.V.; Snarskii, A.A. From the time series to the complex networks: The parametric natural visibility graph. Physica A: Statistical Mechanics and its Applications. Phys. A Stat. Mech. Appl. 2014, 414, 53–60. [Google Scholar] [CrossRef]
- Kong, T.; Shao, J.; Hu, J.; Yang, X.; Yang, S.; Malekian, R. EEG-based emotion recognition using an improved weighted horizontal visibility graph. Sensors 2021, 21, 187. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.-K.; Ren, J.; Song, C.; Jia, J.; Zhang, Q. Label propagation algorithm for community detection based on node importance and label influence. Phys. Lett. A 2017, 381, 2691–2698. [Google Scholar] [CrossRef]
- Sirkiä, J.P.; Panula, T.; Kaisti, M. The effects of external pressure on multi-wavelength photoplethysmography signal. Comput. Cardiol. (CinC) 2021, 48, 1–4. [Google Scholar]
- Goshvarpour, A.; Goshvarpour, A. Evaluation of eye-blinking dynamics in human emotion recognition using weighted visibility graph. Front. Biomed. Technol. 2024, 11, 265–277. [Google Scholar] [CrossRef]
- Chen, S.; Qin, F.; Ma, X.; Wei, J.; Zhang, Y.-T.; Jovanov, E. Multi-view cross-fusion transformer based on kinetic features for non-invasive blood glucose measurement using PPG signal. IEEE J. Biomed. Health Inform. 2024, 28, 1982–1992. [Google Scholar] [CrossRef]
- Hoang, T.M.; Vu, D.D.; Hoang, M.H. Classification of electroencephalography signals with auditory stimuli using complex network. In Proceedings of the Tenth International Conference on Communications and Electronics (ICCE), Danang, Vietnam, 31 July–2 August 2024; pp. 567–572. [Google Scholar]
- Warren, K.M.; Harvey, J.R.; Chon, K.H.; Mendelson, Y. Improving pulse rate measurements during random motion using a wearable multichannel reflectance photoplethysmograph. Sensors 2016, 16, 342. [Google Scholar] [CrossRef]
- Zhou, Y.; Cheng, H.; Yu, J.X. Graph clustering based on structural/attribute similarities. Proc. VLDB Endow. 2009, 2, 718–729. [Google Scholar] [CrossRef]
- Narayan, S.S.; Arif, I.; Shalu, H.; Kadiwala, J. A smartphone-based multi-input workflow for non-invasive estimation of haemoglobin levels using machine learning techniques. arXiv 2020, arXiv:2011.14370. [Google Scholar]
- Turja, M.S.; Kwon, T.H.; Kim, H.; Kim, K.D. Noninvasive in-vivo estimation of glycated haemoglobin using digital volume pulse signal based on modified Beer-Lambert law. In Proceedings of the IEEE International Conference on Consumer Electronics (ICCE), Las Vegas, NV, USA, 6–8 January 2024; pp. 1–4. [Google Scholar]
- Abdulla, S.; Diykh, M.; Laft, R.L.; Saleh, K.; Deo, R.C. Sleep EEG signal analysis based on correlation graph similarity coupled with an ensemble extreme machine learning algorithm. Expert Syst. Appl. 2019, 138, 112790. [Google Scholar] [CrossRef]
- Lakshmi, M.; Manimegalai, P.; Bhavani, S. Non-invasive Haemoglobin measurement among pregnant women using photoplethysmography and machine learning. J. Phys. Conf. Ser. 2020, 1432, 12089. [Google Scholar] [CrossRef]
- Kumar, R.D.; Guruprasad, S.; Kansara, K.; Rao, K.R.; Mohan, M.; Reddy, M.R.; Prabhu, U.H.; Prakash, P.; Chakraborty, S.; Das, S.; et al. A novel noninvasive haemoglobin sensing device for anemia screening. Inst. Electr. Electron. Eng. (IEEE) Sens. J. 2021, 21, 15318–15329. [Google Scholar]
- Zhao, X.; Meng, L.; Su, H.; Lv, B.; Lv, C.; Xie, G.; Chen, Y. Deep-learning-based haemoglobin concentration prediction and anemia screening using ultra-widefield fundus images. Front. Cell Dev. Biol. 2022, 10, 888268. [Google Scholar] [CrossRef]
- Lychagov, V.; Semenov, V.; Volkova, E.; Chernakov, D.; Ahn, J.; Kim, J.Y. Non-invasive haemoglobin concentration measurements with multi-wavelength reflectance mode PPG sensor and CNN data processing. In Proceedings of the 45th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC), Sydney, Australia, 24–27 July 2023; pp. 1–4. [Google Scholar]
Feature Type | Abbreviations for Features | Feature Description |
---|---|---|
Height of PPG | Iso | Height of the peak of the PPG signal |
Info | Height of the dicrotic notch in the PPG signal | |
Ido | Height of the dicrotic peak in the PPG signal | |
Conduction time of the PPG | To2o | Total conduction time of the PPG signal |
Tso | Conduction time from the start of the PPG signal to its peak | |
Tno | Conduction time from the start of the PPG signal to the dicrotic notch | |
Tdo | Conduction time from the start of the PPG signal to the dicrotic peak | |
Tsd | Conduction time from the peak of the PPG signal to the dicrotic peak. | |
Tnn’ | The period from N’ to N in the PPG signal | |
Different equipment of PPG | R25 | Widths at 3/4, 1/2, and 1/4 points between the rising contour and the peak of the PPG signal |
R50 | ||
R75 | ||
D25 | Widths at 3/4, 1/2, and 1/4 points between the falling contour and the peak of the PPG signal | |
D50 | ||
D75 | ||
Different areas of PPG | V1 | Area of different regions in the PPG signal |
V2 | ||
A1 | ||
A2 | ||
Different slopes of PPG | S1 | Total slope of the rising branch of the PPG signal |
S2 | Total slope of the falling branch of the PPG signal | |
S3 | The slope from the dicrotic peak to the end of the PPG signal | |
S4 | The rising slope before the w-point of the PPG signal | |
S5 | The rising slope after the w-point on the rising branch of the PPG signal |
Modular Parameter | Cluster Index |
---|---|
0.1 | 0.9 |
0.2 | 0.8 |
0.3 | 0.7001 |
0.4 | 0.6001 |
0.5 | 0.5073 |
0.6 | 0.420 |
0.7 | 0.352 |
0.8 | 0.315 |
0.9 | 0.283 |
1.0 | 0.259 |
Feature Input | Feature Selection Method | Classifier | Number of Features | Accuracy | Precision |
---|---|---|---|---|---|
NVG—Clustering Features | reliefF | SVM | 10 | 90.71% | 75.00% |
15 | 93.35% | 88.28% | |||
20 | 91.00% | 76.08% | |||
NVG | reliefF | SVM | 10 | 87.98% | 75.66% |
15 | 87.62% | 73.34% | |||
20 | 85.97% | 74.64% | |||
HVG—Clustering Features | reliefF | SVM | 10 | 68.00% | 65.37% |
15 | 75.29% | 68.26% | |||
20 | 63.14% | 62.7% | |||
HVG | reliefF | SVM | 10 | 53.13% | 58.12% |
15 | 62.76% | 60.15% | |||
20 | 52.27% | 51.70% |
Model Type | Feature Selection Method | Number of Features | MAE (g/L) | RMSE (g/L) | R2 (0–1) |
---|---|---|---|---|---|
RF | mRMR | 10 | 8.44 | 12.04 | 0.22 |
20 | 8.60 | 11.57 | 0.28 | ||
30 | 8.18 | 11.06 | 0.37 | ||
SVM | mRMR | 10 | 8.92 | 11.87 | 0.24 |
20 | 10.06 | 13.41 | 0.11 | ||
30 | 11.72 | 15.32 | 0.05 | ||
XGB | mRMR | 10 | 9.51 | 13.02 | 0.14 |
20 | 10.72 | 13.32 | 0.11 | ||
30 | 11.01 | 13.85 | 0.06 | ||
SVM-XGB | mRMR | 10 | 7.06 | 9.28 | 0.63 |
20 | 7.94 | 10.15 | 0.54 | ||
30 | 8.25 | 10.92 | 0.49 | ||
SVM-LGBM | mRMR | 10 | 6.70 | 8.21 | 0.64 |
20 | 7.00 | 8.66 | 0.58 | ||
30 | 7.30 | 8.83 | 0.57 |
Research | Input Features | Model Use | Subject | MAE (g/L) | RMSE (g/L) | R2 (0–1) |
---|---|---|---|---|---|---|
Acharya S, Swaminathan D, Das S et al., 2019 [15] | MW-PPG (4 channel) | Stacked Regressor | 1583 | - | 13.53 | - |
Lakshmi M, Manimegalai P, Bhavani S 2020 [37] | PPG 7 features | Linear regression | 47 | 7.3 | 9.5 | 0.53 |
Kumar, R. D., Guruprasad, S., Kansara, K et al., 2021 [38] | MW-PPG (4 channel) | Stacked Regressor | 1005 | - | 14.7 | - |
Zhao X, Meng L, Su H et al., 2022 [39] | Image | ASModel _UWF | 4512 | 8.3 | - | - |
Lychagov V, Semenov V, Volkova E, et al., 2023 [40] | MW-PPG (6 channel) | CNN | 170 | 13.6 | - | 0.43 |
Xu L, Chen Y, Lu S et al., 2024 [5] | Image | ResNet101 | 1244 | 11.9 | 14.8 | 0.12 |
Previous Studies | MW-PPG (4 channel) | XGboost | 58 | 7.56 | 10.22 | 0.53 |
This work | MW-PPG (4 channel) | SVM-LGBM | 152 | 6.7 | 8.21 | 0.64 |
Equipment Type | Measuring Range (g/L) |
Relative Error (g/L) | Confidence Upper Interval (95%) | Confidence Lower Interval (95%) |
---|---|---|---|---|
Masimo Rad-67 | 80–170 | - | 20.7 | −18.2 |
NBM200 | 110–170 | 9.9 | - | - |
Masimo Pronto | 60–180 | 10 | - | - |
Our Equipment | 110–170 | 8.21 | 18.7 | −15.25 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Wang, Z.; Zhang, X.; Zhuang, Y.; Liang, Y. A Novel Model for Noninvasive Haemoglobin Detection Based on Visibility Network and Clustering Network for Multi-Wavelength PPG Signals. Algorithms 2025, 18, 75. https://doi.org/10.3390/a18020075
Liu L, Wang Z, Zhang X, Zhuang Y, Liang Y. A Novel Model for Noninvasive Haemoglobin Detection Based on Visibility Network and Clustering Network for Multi-Wavelength PPG Signals. Algorithms. 2025; 18(2):75. https://doi.org/10.3390/a18020075
Chicago/Turabian StyleLiu, Lei, Ziyi Wang, Xiaohan Zhang, Yan Zhuang, and Yongbo Liang. 2025. "A Novel Model for Noninvasive Haemoglobin Detection Based on Visibility Network and Clustering Network for Multi-Wavelength PPG Signals" Algorithms 18, no. 2: 75. https://doi.org/10.3390/a18020075
APA StyleLiu, L., Wang, Z., Zhang, X., Zhuang, Y., & Liang, Y. (2025). A Novel Model for Noninvasive Haemoglobin Detection Based on Visibility Network and Clustering Network for Multi-Wavelength PPG Signals. Algorithms, 18(2), 75. https://doi.org/10.3390/a18020075