Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier
Abstract
:1. Introduction
2. Analytical Quasi-Static Modeling
3. Analytical Dynamic Modeling
3.1 Dynamic Modeling
3.2 The Derivation of Matrix C
4. Multi-Objective Optimal Structural Design of the Mechanical Amplifier
5. Conclusions
Author Contributions
Conflicts of Interest
References
- Henein, S.; Aymon, C.; Bottinelli, S.; Clavel, R. Articulated structures with flexible joints dedicated to high precision robotics. In Proceedings of the International Advanced Robotics Programme: Workshop on Microrobots, Micromachines and Systems, Moscow, Russia, 24–25 November 1999; pp. 135–140.
- Kim, D.; Kang, D.; Shim, J.; Song, I.; Gweon, D. Optimal design of a flexure hinge-based XYZ atomic force microscopy scanner for minimizing Abbe errors. Rev. Sci. Instrum. 2005, 76. [Google Scholar] [CrossRef]
- Hopkins, J.B.; Culpeper, M.L. Synthesis of multi-degree of freedom, parallel flexure system via freedom and constraint topology (FACT)—Part II: Practice. Precis. Eng. 2010, 34, 271–278. [Google Scholar] [CrossRef]
- Xu, Q. Design and development of flexure-based dual-stage nanopositioning system with minimum interference behavior. IEEE Trans. Autom. Sci. Eng. 2012, 9, 554–563. [Google Scholar] [CrossRef]
- Liaw, H.C.; Shirinaadeh, B.; Simith, J. Robust motion tracking control of piezo-driven flexure-based four-bar mechanism for micro/nano manipulation. Mechatronics 2008, 18, 111–120. [Google Scholar] [CrossRef]
- Xu, W.; King, T. Flexure hinges for piezoactuator displacement amplifiers: Flexibility, accuracy, and stress considerations. Precis. Eng. 1996, 19, 4–10. [Google Scholar] [CrossRef]
- Jouaneh, M.; Yang, R. Modeling of flexure-hinge type lever mechanisms. Precis. Eng. 2003, 27, 407–418. [Google Scholar] [CrossRef]
- Bhagat, U.; Shirinzadeh, B.; Clark, L. Design and analysis of a novel flexure-based 3-DOF mechanism. Mech. Mach. Theory 2014, 74, 173–187. [Google Scholar] [CrossRef]
- Choi, K.; Kim, D. Monolithic parallel linear compliant mechanism for two axes ultraprecision linear motion. Rev. Sci. Instrum. 2006, 77. [Google Scholar] [CrossRef]
- Chao, D.; Zong, G.; Liu, R. Design of a 6-DOF compliant manipulator based on serial-parallel architecture. In Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Monterey, CA, USA, 24–28 July 2005; pp. 765–770.
- Choi, Y.J.; Sreenivasan, S.V.; Choi, B.J. Kinematic design of large displacement precision XY positioning stage by using cross strip flexure joints and over-constrained mechanism. Mech. Mach. Theory 2008, 43, 724–737. [Google Scholar] [CrossRef]
- Yuen, Y.; Sumeet, S. Design, Identification, and Control of a Flexure-Based XY Stage for Fast Nanoscale Positioning. IEEE Trans. Nanotechnol. 2009, 8, 46–54. [Google Scholar] [CrossRef]
- Xu, Q. New Flexure Parallel-Kinematic Micropositioning System with Large Workspace. IEEE Trans. Robot. 2012, 28, 478–491. [Google Scholar] [CrossRef]
- Teo, T.J.; Yang, G.L.; Chen, I.M. A large deflection and high payload flexure-based parallel manipulator for UV nanoimprint lithography: Part I. Modeling and analyses. Precis. Eng. 2014, 38, 861–871. [Google Scholar] [CrossRef]
- Lobontiu, N.; Garcia, E. Analytical model of displacement amplification and stiffness optimization for a class of flexure-based compliant mechanism. Comput. Struct. 2003, 81, 2797–2810. [Google Scholar] [CrossRef]
- Ma, H.W.; Yao, S.M.; Wang, L.Q.; Zhong, Z. Analysis of the displacement amplification ratio of bridge-type flexure hinge. Sens. Actuators A Phys. 2006, 132, 730–736. [Google Scholar] [CrossRef]
- Xu, Q.; Li, Y. Analytical modeling, optimization and testing of a compound bridge-type compliant displacement amplifier. Mech. Mach. Theory 2011, 46, 183–200. [Google Scholar] [CrossRef]
- Koseki, Y.; Tanikawa, T.; Koyachi, N.; Arai, T. Kinematic analysis of translational 3-DOF micro parallel mechanism using matrix method. In Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 31 October–5 November 2000; pp. 786–792.
- Ye, G.; Li, W.; Wang, Y.; Yang, X.; Yu, L. Kinematics analysis of Bridge-type micro-displacement mechanism based on Flexure hinge. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June 2010; pp. 66–70.
- Yang, R.; Jouaneh, M.; Schweizer, R. Design and character of a low-profile micropositioning stage. Precis. Eng. 1996, 18, 20–29. [Google Scholar] [CrossRef]
- Choi, S.B.; Han, S.S.; Han, Y.M.; Thompson, B.S. A magnification device for precision mechanisms featuring piezoactuators and flexure hinges: Design and experimental validation. Mech. Mach. Theory 2007, 42, 1184–1198. [Google Scholar] [CrossRef]
- Zhang, S.; Fasse, E.D. A Finite-Element-Based Method to Determine the Spatial Stiffness Properties of a Notch Hinge. J. Mech. Des. 2001, 123, 141–147. [Google Scholar] [CrossRef]
- Lobontiu, N.; Garcia, E. Circular-Hinge Line Element for Finite Element Analysis of Compliant Mechanisms. J. Mech. Des. 2005, 127, 766–773. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, X. Input coupling analysis and optimal design of a3-DOF compliant micro-positioning stage. Mech. Mach. Theory 2008, 43, 400–410. [Google Scholar] [CrossRef]
- Zhang, X.; Hou, W. Dynamic analysis of the precision compliant mechanisms considering thermal effect. Precis. Eng. 2010, 34, 592–606. [Google Scholar] [CrossRef]
- Filippo, R.; Gaetano, Z. Deflections of beams with varying rectangular cross section. J. Eng. Mech. 1992, 118, 2128–2134. [Google Scholar]
- Yildiz, A.R. A new hybrid particle swarm optimization approach for structural design optimization in the automotive industry. J. Automob. Eng. 2012, 226, 1340–1351. [Google Scholar] [CrossRef]
- Yildiz, A.R.; Solanki, K.N. Multi-objective optimization of vehicle crashworthiness using a new particle swarm based approach. Int. J. Adv. Manuf. Technol. 2012, 59, 367–376. [Google Scholar] [CrossRef]
- Yildiz, A.R. A novel particle swarm optimization approach for product design and manufacturing. Int. J. Adv. Manuf. Technol. 2009, 40, 617–628. [Google Scholar] [CrossRef]
- Yildiz, A.R. Cuckoo search algorithm for the selection of optimal machining parameters in milling operations. Int. J. Adv. Manuf. Technol. 2013, 64, 55–61. [Google Scholar] [CrossRef]
- Shirazi, A.; Najafi, B.; Aminyavari, M.; Rinaldi, F.; Taylor, R.A. Thermal-Economic-Environmental Analysis and Multi-objective Optimization of an Ice Thermal Energy Storage System for Gas Turbine Cycle Inlet Air Cooling. Energy 2014, 69, 212–216. [Google Scholar] [CrossRef]
- Mamaghani, A.H.; Najafi, B.; Shirazi, A. 4E analysis and multi-objective optimization of an integrated MCFC (molten carbonate fuel cell) and ORC (organic Rankine cycle) system. Energy 2015, 82, 650–663. [Google Scholar] [CrossRef]
- Ni, Y.; Deng, Z.; Wu, X. Modeling and analysis of an over-constrained flexure-based compliant mechanism. Measurement 2014, 50, 270–278. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, Y.; Deng, Z.; Li, J.; Wu, X.; Li, L. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier. Algorithms 2015, 8, 424-434. https://doi.org/10.3390/a8030424
Ni Y, Deng Z, Li J, Wu X, Li L. Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier. Algorithms. 2015; 8(3):424-434. https://doi.org/10.3390/a8030424
Chicago/Turabian StyleNi, Yuan, Zongquan Deng, Junbao Li, Xiang Wu, and Long Li. 2015. "Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier" Algorithms 8, no. 3: 424-434. https://doi.org/10.3390/a8030424
APA StyleNi, Y., Deng, Z., Li, J., Wu, X., & Li, L. (2015). Multi-Objective Design Optimization of an Over-Constrained Flexure-Based Amplifier. Algorithms, 8(3), 424-434. https://doi.org/10.3390/a8030424