Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation
Abstract
:1. Introduction
2. Iterative Method with Fifth-Order Convergence for Solving Multiple Roots
3. Numerical Results
4. Comparison with Previous Methods
5. Efficiency of Iterative Methods
Method | Reference | r | θ | EFF |
---|---|---|---|---|
[8] (49) | 2.732 | 2 | 1.653 | |
[8] (51) | 2.732 | 2 | 1.653 | |
[10] | 4 | 3 | 1.587 | |
[8] (39) | 3 | 3 | 1.442 | |
[8] (29) | 3 | 3 | 1.442 | |
[7] (22) | 3 | 3 | 1.442 | |
, | [9] (14) | 3 | 3 | 1.442 |
[4] (3) | 3 | 3 | 1.442 | |
[2] (8.1) | 3 | 3 | 1.442 | |
[12] | 3 | 3 | 1.442 | |
[13] | 3 | 3 | 1.442 | |
[14] (7), (8) | 3 | 3 | 1.442 | |
[5] (9), (10) | 3 | 3 | 1.442 | |
[6] | 3 | 3 | 1.442 | |
[1] | 2 | 2 | 1.414 | |
[10] | 4 | 4 | 1.414 | |
[11] | 4 | 4 | 1.414 | |
[8] (32) | 2 | 3 | 1.259 | |
[15] (16) | 1.5 | 3 | 1.145 | |
[17] | 1.618 | 2 | 1.272 | |
This paper | 5 | 8 | 1.223 | |
[18] | 2 | 4 | 1.190 | |
[19] | 2 | 4 | 1.190 | |
[22] | 2 | 4 | 1.190 | |
[23] | 2 | 4 | 1.190 | |
[24] | 2 | 4 | 1.190 |
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Schröder, E. Über unendlich viele Algorithmen zur Auflösung der Gleichungen. Math. Ann. 1870, 2, 317–365. [Google Scholar] [CrossRef]
- Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [Google Scholar] [CrossRef]
- Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for Multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math. 1983, 12, 329–335. [Google Scholar] [CrossRef]
- Dong, C. A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 1987, 21, 363–367. [Google Scholar] [CrossRef]
- Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [Google Scholar] [CrossRef]
- Chun, C.; Neta, B. A third-order modification of Newtonąŕs method for multiple roots. Appl. Math. Comput. 2009, 211, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Bae, H.J.; Neta, B. New families of nonlinear third-order solvers for finding multiple roots. Comput. Math. Appl. 2009, 57, 1574–1582. [Google Scholar] [CrossRef]
- Neta, B.; Johnson, A.N. High-order nonlinear solver for multiple roots. Comput. Math. Appl. 2008, 55, 2012–2017. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. Extension of Murakami’s High order nonlinear solver to multiple roots. Int. J. Comput. Math. 2010, 87, 1023–1031. [Google Scholar] [CrossRef]
- Halley, E. A new, exact and easy method of finding the roots of equations generally and that without any previous reduction. Philos. Trans. R. Soc. Lond. 1694, 18, 136–148. [Google Scholar] [CrossRef]
- Laguerre, E.N. Sur une méthode pour obtener par approximation les racines d’une équation algébrique qui a toutes ses racines réelles. 2e séries. Nouv. Ann. Math. 1880, 19, 88–103. [Google Scholar]
- Dong, C. A basic theorem of constructing an iterative formula of the higher order for computing multiple roots of an equation. Math. Numer. Sin. 1982, 11, 445–450. [Google Scholar]
- Werner, W. Iterationsverfahren höherer Ordnung zur Lösung nicht linearer Gleichungen. Z. Angew. Math. Mech. 1981, 61, T322–T324. [Google Scholar]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall: Englewood, IL, USA, 1964. [Google Scholar]
- King, R.F. A secant method for multiple roots. BIT 1977, 17, 321–328. [Google Scholar] [CrossRef]
- Wu, X.Y.; Fu, D.S. New higher-order convergence iteration methods without employing derivatives for solving nonlinear equations. Comput. Math. Appl. 2001, 41, 489–495. [Google Scholar] [CrossRef]
- Wu, X.Y.; Xia, J.L.; Shao, R. Quadratically convergent multiple roots finding method without derivatives. Comput. Math. Appl. 2001, 42, 115–119. [Google Scholar] [CrossRef]
- Steffensen, I.F. Remark on Iteration. Skand. Aktuarietidskr 1933, 16, 64–72. [Google Scholar] [CrossRef]
- Wu, X.Y. A new continuation Newton-like method and its deformation. Appl. Math. Comput. 2000, 112, 75–78. [Google Scholar] [CrossRef]
- Parida, P.K.; Gupta, D.K. An improved method for finding multiple roots and it’s multiplicity of nonlinear equations in R. Appl. Math. Comput. 2008, 202, 498–503. [Google Scholar] [CrossRef]
- Yun, B.I. A derivative free iterative method for finding multiple roots of nonlinear equations. Appl. Math. Lett. 2009, 22, 1859–1863. [Google Scholar] [CrossRef]
- Yun, B.I. Transformation methods for finding multiple roots of nonlinear equations. Appl. Math. Comput. 2010, 217, 599–606. [Google Scholar] [CrossRef]
- Kioustelidis, J.B. A derivative-free transformation preserving the order of convergence of iteration methods in case of multiple zeros. Numer. Math. 1979, 33, 385–389. [Google Scholar] [CrossRef]
- Wang, X.; Liu, L. Modified Ostrowski’s method with eighth-order convergence and high efficiency index. Appl. Math. Lett. 2010, 23, 549–554. [Google Scholar] [CrossRef]
- Bi, W.; Ren, H.; Wu, Q. New family of seventh-order methods for nonlinear equations. Appl. Math. Comput. 2008, 203, 408–412. [Google Scholar] [CrossRef]
- Bi, W.; Ren, H.; Wu, Q. Three-step iterative methods with eighth-order convergence for solving nonlinear equations. J. Comput. Appl. Math. 2009, 225, 105–112. [Google Scholar] [CrossRef]
- Gautschi, W. Numerical Analysis: An Introduction; Birkhäuser: Boston, MA, USA, 1997. [Google Scholar]
- Neta, B. On a family of multipoint methods for non-linear equations. Int. J. Comput. Math. 1981, 9, 353–361. [Google Scholar] [CrossRef]
- Li, X.; Mu, C.; Ma, J.; Wang, C. Sixteenth-order method for nonlinear equations. Appl. Math. Comput. 2010, 215, 3754–3758. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Li, X.; Wu, Z.; Zhang, M.; Wang, L.; Pan, F. Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation. Algorithms 2015, 8, 656-668. https://doi.org/10.3390/a8030656
Liang J, Li X, Wu Z, Zhang M, Wang L, Pan F. Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation. Algorithms. 2015; 8(3):656-668. https://doi.org/10.3390/a8030656
Chicago/Turabian StyleLiang, Juan, Xiaowu Li, Zhinan Wu, Mingsheng Zhang, Lin Wang, and Feng Pan. 2015. "Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation" Algorithms 8, no. 3: 656-668. https://doi.org/10.3390/a8030656
APA StyleLiang, J., Li, X., Wu, Z., Zhang, M., Wang, L., & Pan, F. (2015). Fifth-Order Iterative Method for Solving Multiple Roots of the Highest Multiplicity of Nonlinear Equation. Algorithms, 8(3), 656-668. https://doi.org/10.3390/a8030656