An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity
Abstract
:1. Introduction
2. Scheme and Analysis of the Local Convergence Rate
3. Numerical Testing with the Conclusion
f | n | |||
---|---|---|---|---|
1 | 3.0654e−4 | 7.6640e−4 | 1.1458e+0 | |
2 | 4.4333e−32 | 1.1083e−32 | 2.9976e−4 | |
3 | 8.4937e−255 | 2.1234e−255 | 4.3356e−32 | |
1 | 2.1643e−3 | 2.7085e−4 | 3.5724e−1 | |
2 | 3.9285e−23 | 4.9107e−24 | 9.1312e−3 | |
3 | 4.6110e−181 | 5.7638e−182 | 1.6577e−22 | |
1 | 5.7113e−9 | 7.1391e−10 | 1.4907e−1 | |
2 | 2.4732e−77 | 3.0916e−78 | 4.5992e−10 | |
3 | 3.0587e−624 | 3.8234e−625 | 1.9917e−78 | |
1 | 4.4515e−5 | 1.1129e−5 | 1.0345e+0 | |
2 | 1.6081e−38 | 4.0203e−39 | 4.45154e−5 | |
3 | 4.6651e−306 | 1.1663e−306 | 1.6081e−38 | |
1 | 4.7605e−4 | 6.8015e−5 | 1.7797e+0 | |
2 | 2.7073e−30 | 3.8675e−31 | 8.3970e−4 | |
3 | 2.9694e−240 | 4.2420e−241 | 4.7766e−30 |
f | n | |||
---|---|---|---|---|
1 | 7.6409e−3 | 1.9138e−3 | 1.1487e+0 | |
2 | 1.7779e−15 | 4.4447e−16 | 7.4627e−3 | |
3 | 2.8524e−92 | 7.1310e−92 | 1.7387e−15 | |
1 | 4.8261e−3 | 6.0480e−4 | 3.5708e−1 | |
2 | 3.1700e−15 | 3.9625e−16 | 2.0356e−2 | |
3 | 2.5528e−88 | 3.1910e−89 | 1.3377e−14 | |
1 | 1.2583e−7 | 1.5729e−8 | 1.4907e−1 | |
2 | 1.6225e−50 | 2.0282e−51 | 1.0133e−8 | |
3 | 7.4567e−308 | 9.3209e−309 | 1.3066e−51 | |
1 | 4.1460e−3 | 1.0376e−3 | 1.0366e+0 | |
2 | 3.9308e−17 | 9.8270e−18 | 4.1460e−3 | |
3 | 2.8495e−101 | 7.1237e−102 | 3.9308e−17 | |
1 | 4.4860e−3 | 6.4158e−4 | 1.7819e+0 | |
2 | 9.8136e−17 | 1.4019e−17 | 7.8955e−3 | |
3 | 1.0975e−98 | 1.5679e−99 | 1.7315e−16 |
f | n | |||
---|---|---|---|---|
1 | 7.1979e−3 | 1.8026e−3 | 1.1485e+0 | |
2 | 5.9419e−14 | 1.4855e−14 | 70306e−3 | |
3 | 2.3260e−69 | 5.8149e−70 | 5.8109e−14 | |
1 | 4.7520e−3 | 5.9550e−4 | 3.5708e−1 | |
2 | 6.2369e−14 | 7.7961e−15 | 2.0043e−2 | |
3 | 2.4558e−68 | 3.0697e−69 | 2.6318e−13 | |
1 | 2.2101e−7 | 2.7627e−8 | 1.4907e−1 | |
2 | 1.8202e−42 | 2.2753e−43 | 1.7798e−8 | |
3 | 6.8964e−218 | 8.6205e−219 | 1.4658e−42 | |
1 | 3.5022e−3 | 8.7632e−4 | 1.0363e+0 | |
2 | 1.8093e−15 | 4.5231e−16 | 3.5022e−3 | |
3 | 6.6558e−77 | 1.6639e−77 | 1.8093e−15 | |
1 | 4.7515e−3 | 6.7960e−4 | 1.7821e+0 | |
2 | 3.6795e−15 | 5.2564e−16 | 8.3616e−3 | |
3 | 1.0884e−75 | 1.5548e−76 | 6.4920e−15 |
Acknowledgments
Conflicts of Interest
References
- Schröder, E. Über unendlich viele Algorithmen zur Auflosung der Gleichungen. Math. Ann. 1870, 2, 317–365. [Google Scholar] [CrossRef]
- Hansen, E.; Patrick, M. A family of root finding methods. Numer. Math. 1977, 27, 257–269. [Google Scholar] [CrossRef]
- Li, S.G.; Cheng, L.Z.; Neta, B. Some fourth-order nonlinear solvers with closed formulae for multiple roots. Comput. Math. Appl. 2010, 59, 126–135. [Google Scholar] [CrossRef] [Green Version]
- Victory, H.D.; Neta, B. A higher order method for multiple zeros of nonlinear functions. Int. J. Comput. Math. 1983, 12, 329–335. [Google Scholar] [CrossRef]
- Dong, C. A family of multipoint iterative functions for finding multiple roots of equations. Int. J. Comput. Math. 1987, 21, 363–367. [Google Scholar] [CrossRef]
- Osada, N. An optimal multiple root-finding method of order three. J. Comput. Appl. Math. 1994, 51, 131–133. [Google Scholar] [CrossRef]
- Chun, C.; Neta, B. A third-order modification of Newton’s method for multiple roots. Appl. Math. Comput. 2009, 211, 474–479. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. New third order nonlinear solvers for multiple roots. Appl. Math. Comput. 2008, 202, 162–170. [Google Scholar] [CrossRef] [Green Version]
- Chun, C.; Bae, H.J.; Neta, B. New families of nonlinear third-order solvers for finding multiple roots. Comput. Math. Appl. 2009, 57, 1574–1582. [Google Scholar] [CrossRef]
- Neta, B.; Johnson, A.N. High-order nonlinear solver for multiple roots. Comput. Math. Appl. 2008, 55, 2012–2017. [Google Scholar] [CrossRef] [Green Version]
- Neta, B. Extension of Murakami’s high order nonlinear solver to multiple roots. Int. J. Comput. Math. 2010, 87, 1023–1031. [Google Scholar] [CrossRef]
- Behl, R.; Cordero, A.; Motsa, S.S.; Torregrosa, J.R.; Kanwar, V. An optimal fourth-order family of methods for multiple roots and its dynamics. Numer. Algorithms 2015. [Google Scholar] [CrossRef]
- Singh, A.; Jaiswal, J.P. An efficient family of optimal fourth-order iterative methods for finding multiple roots of nonlinear equations. Proc. Natl. Acad. Sci. India Sect. A Phys. Sci. 2015, 85, 439–450. [Google Scholar] [CrossRef]
- Traub, J.F. Iterative Methods for the Solution of Equations; Prentice Hall, Inc.: Englewood Cliffs, NJ, USA, 1964. [Google Scholar]
- King, R.F. A secant method for multiple roots. BIT 1977, 17, 321–328. [Google Scholar] [CrossRef]
- Iyengar, S.R.K.; Jain, R.K. Derivative free multipoint iterative methods for simple and multiple roots. BIT 1986, 26, 93–99. [Google Scholar] [CrossRef]
- Wu, X.Y.; Fu, D.S. New higher-order convergence iteration methods without employing derivatives for solving nonlinear equations. Comput. Math. Appl. 2001, 41, 489–495. [Google Scholar] [CrossRef]
- Wu, X.Y.; Xia, J.L.; Shao, R. Quadratically convergent multiple roots finding method without derivatives. Comput. Math. Appl. 2001, 42, 115–119. [Google Scholar]
- Steffensen, I.F. Remark on iteration. Skand. Aktuarietidskr. 1933, 16, 64–72. [Google Scholar] [CrossRef]
- Wu, X.Y. A new continuation Newton-like method and its deformation. Appl. Math. Comput. 2000, 112, 75–78. [Google Scholar] [CrossRef]
- Parida, P.K.; Gupta, D.K. An improved method for finding multiple roots and it’s multiplicity of nonlinear equations in R. Appl. Math. Comput. 2008, 202, 498–503. [Google Scholar] [CrossRef]
- Yun, B.I. A derivative free iterative method for finding multiple roots of nonlinear equations. Appl. Math. Lett. 2008, 22, 1859–1863. [Google Scholar] [CrossRef]
- Li, X.; Mu, C.; Ma, J.; Hou, L. Fifth order iterative method for finding multiple roots of nonlinear equations. Numer. Algorithms 2011, 57, 389–398. [Google Scholar] [CrossRef]
- Sharma, R.; Bahl, A. A sixth order transformation method for finding multiple roots of nonlinear equations and basin attractors for various methods. Appl. Math. Comput. 2015, 269, 105–117. [Google Scholar] [CrossRef]
- Kung, H.T.; Traub, J.F. Optimal order of one-point and multipoint iteration. J. Assoc. Comput. Mach. 1974, 21, 643–651. [Google Scholar] [CrossRef]
- Kioustelidis, J.B. A derivative-free transformation preserving the order of convergence of iteration methods in case of multiple zeros. Numer. Math. 1979, 33, 385–389. [Google Scholar] [CrossRef]
- Cordero, A.; Huesoa, J.L.; Martínez, E.; Torregrosa, J.R. A new technique to obtain derivative-free optimal iterative methods for solving nonlinear equations. J. Comput. Appl. Math. 2013, 252, 95–102. [Google Scholar] [CrossRef]
- Wolfram, S. The Mathematica Book, 5th ed.; Wolfram Media, Inc.: Champaign, IL, USA, 2003. [Google Scholar]
- Owtrowski, A.M. Solution of Equations and Systems of Equations; Academic Press: New York, NY, USA, 1960. [Google Scholar]
- Ullah, M.Z.; Serra-Capizzano, S.; Ahmad, F. An efficient multistep iterative method for computing the numerical solution of systems of nonlinear equations associated with ODEs. Appl. Math. Comput. 2015, 250, 249–259. [Google Scholar] [CrossRef]
© 2016 by the author; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons by Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jaiswal, J.P. An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity. Algorithms 2016, 9, 10. https://doi.org/10.3390/a9010010
Jaiswal JP. An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity. Algorithms. 2016; 9(1):10. https://doi.org/10.3390/a9010010
Chicago/Turabian StyleJaiswal, Jai Prakash. 2016. "An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity" Algorithms 9, no. 1: 10. https://doi.org/10.3390/a9010010
APA StyleJaiswal, J. P. (2016). An Optimal Order Method for Multiple Roots in Case of Unknown Multiplicity. Algorithms, 9(1), 10. https://doi.org/10.3390/a9010010