Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site and Materials
2.2. Data Analysis
2.2.1. Analysis at a Species Level for Each Year
2.2.2. Analysis at a Clonal Level for Each Individual Year
2.2.3. Analysis at a Clonal Level across Years
3. Results
3.1. Growth Differences between the Two Species in Different Years
3.2. Repeatability of Height, DBH and Stem Volume in the Two Species
3.3. Variation Coefficients of Height, DBH and Stem Volume in the Two Species
3.4. Analyses of Growth Traits in the Two Species
3.5. Analysis of Increment of Stem Volume in the Two Species
3.6. Stability and Increment of Stem Volume of Clones Analyzed by GGE Biplots
3.7. Identification of Optimal Clones
4. Discussion
4.1. Genetic Variation of C. bungei and C. fargesii f. duclouxii Clones
4.2. Genotype Effect and Genotype and Environment Interaction
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Ma, W.; Zhang, S.; Wang, J.; Zhai, W.; Cui, Y.; Wang, Q. Timber Physical and Mechanical Properties of New Catalpa bungei Clones. Sci. Silvae Sin. 2013, 49, 126–134. [Google Scholar]
- Wang, P.; Ma, L.; Li, Y.; Wang, S.A.; Li, L.; Yang, R.; Ma, Y.; Wang, Q. Transcriptome profiling of indole-3-butyric acid-ind uced adventitious root formation in softwood cuttings of the Catalpa bungei variety ‘YU-1’ at different developmental stages. Genes Genom. 2016, 38, 145–162. [Google Scholar] [CrossRef]
- Zhao, X.Y.; Wang, J.H.; Zhang, J.F.; Zhang, S.G.; Zhang, J.G.; Ma, J.W. Study on phenotypic traits and germination characters of four taxons of Catalpa genus seed. J. Northwest A F Univ. 2008, 36, 149–154. [Google Scholar]
- Sykes, R.; Li, B.; Isik, F.; Kadla, J.; Chang, H.M. Genetic variation and genotype by environment interactions of juvenile wood chemical properties in Pinus taeda L. Ann. For. Sci. 2006, 63, 897–904. [Google Scholar] [CrossRef]
- Weih, M. Genetic and environmental variation in spring and autumn phenology of biomass willows (Salix spp.): Effects on shoot growth and nitrogen economy. Tree Physiol. 2009, 29, 1479–1490. [Google Scholar] [CrossRef]
- Karlsson, B.; Lundkvist, K.; Eriksson, G. Juvenile-mature correlations and selection effects on clone level after stratified family and individual selection of Picea abies (L.) KARST. seedlings. Silvae Genet. 1998, 47, 208–214. [Google Scholar]
- Stener, L.-g.; Hedenberg, Ö. Genetic parameters of wood, fibre, stem quality and growth traits in a clone rest with Betula pendula. Scand. J. For. Res. 2003, 18, 103–110. [Google Scholar] [CrossRef]
- Swain, T.L.; Verryn, S.D.; Laing, M.D. An investigation of assumptions made in estimating genetic parameters and predicting genetic gain in a Eucalyptus nitens breeding programme in South Africa. New For. 2015, 46, 7–21. [Google Scholar] [CrossRef]
- Ivkovich, M. Genetic variation of wood properties in balsam poplar (Populus balsamifera L.). Silvae Genet. 1995, 45, 119–124. [Google Scholar]
- Wray, N.; Visscher, P. Estimating Trait Heritability. Nat. Educ. 2008, 1, 29. [Google Scholar]
- Maniee, M.; Kahrizi, D.; Mohammadi, H. Genetic variability of some morphophysiological traits in durum wheat (Triticum turgidum var. durum). J. Appl. Sci. 2009, 9, 1383–1387. [Google Scholar]
- Knowles, D.A.; Davis, J.R.; Edgington, H.; Raj, A.; Favé, M.J.; Zhu, X.; Potash, J.B.; Weissman, M.M.; Shi, J.; Levinson, D.F. Allele-specific expression reveals interactions between genetic variation and environment. Nat. Methods 2017, 14, 699–702. [Google Scholar] [CrossRef] [Green Version]
- Kang, X.Y. Cognition and suggestions on some issues related to clonal forestry:taking poplar as an example. J. Beijing For. Univ. 2017, 39, 1–7. [Google Scholar]
- Raymond, C.A.; Lindgren, D. Genetic flexibility—A model for determining the range of suitable environments for a seed source. Silvae Genet. 1990, 39, 112–120. [Google Scholar]
- Sixto, H.; Salvia, J.; Barrio, M.; Ciria, M.P.; Cañellas, I. Genetic variation and genotype-environment interactions in short rotation Populus plantations in southern Europe. New For. 2011, 42, 163–177. [Google Scholar] [CrossRef]
- Finlay, K.W.; Wilkinson, G.N. The analysis of adaptation in a plant-breeding programme. Aust. J. Agric. Res. 1963, 14, 742–754. [Google Scholar] [CrossRef] [Green Version]
- Eberhart, S.A. Stability parameters for comparing varieties. Crop Sci. 1966, 6, 36–40. [Google Scholar] [CrossRef]
- Mohammadi, R.; Haghparast, R.; Amri, A.; Ceccarelli, S. Yield stability of rainfed durum wheat and GGE biplot analysis of multi-environment trials. Crop Pasture Sci. 2010, 61, 92–101. [Google Scholar] [CrossRef]
- Oyekunle, M.; Haruna, A.; Badu-Apraku, B.; Usman, I.S.; Mani, H.; Ado, S.G.; Olaoye, G.; Obeng-Antwi, K.; Abdulmalik, R.O.; Ahmed, H.O. Assessment of Early-Maturing Maize Hybrids and Testing Sites Using GGE Biplot Analysis. Crop Sci. 2017, 57, 2942–2950. [Google Scholar] [CrossRef]
- Ullah, H.; Khalil, I.H.; Durrishahwar; Iltafullah; Khalil, I.A.; Fayaz, M.; Yan, J.; Ali, F. Selecting high yielding and stable mungbean [Vigna radiata (L.) Wilczek] genotypes using GGE biplot techniques. Can. J. Plant Sci. 2011, 92, 951–960. [Google Scholar] [CrossRef]
- Butler, D.G.; Cullis, B.R.; Gilmour, A.R.; Gogel, B.J. ASReml-R Reference Manual: Mixed Models for S Language Environments, 3rd ed.; The State of Queensland, Department of Primary Industries and Fisheries: Brisbane, QLD, Australia, 2009. [Google Scholar]
- SAS System for Windows. SAS/Stat Software, version 9.2; SAS Institute Inc.: Cary, NC, USA, 2009. [Google Scholar]
- Yan, W.K.; Hunt, L.A.; Sheng, Q.L.; Szlavnics, Z. Cultivar evaluation and mega-environment investigation based on the GGE biplot. Crop Sci. 2000, 40, 597–605. [Google Scholar] [CrossRef]
- Francis, T.R.; Kannenberg, L.W. Yield stability studies in short-season maize. I. A descriptive method for grouping genotypes. Can. J. Plant Sci. 1978, 58, 1035–1039. [Google Scholar] [CrossRef]
- Hallsson, L.R.; Björklund, M. Selection in a fluctuating environment leads to decreased genetic variation and facilitates the evolution of phenotypic plasticity. J. Evol. Biol. 2012, 25, 1275–1290. [Google Scholar] [CrossRef] [Green Version]
- Bergsten, U.W.U.; Nilsson, J.E. Seedling Establishment and Growth after Direct Seeding with Pinus sylvestris: Effects of Seed Type, Seed Origin, and Seeding Year. Silva Fenn. 2007, 41, 299–314. [Google Scholar]
- Grubb, P.J. The maintenance of species-richness in plant communities: The importance of the regeneration niche. Biol. Rev. 1977, 52, 107–145. [Google Scholar] [CrossRef]
- Kadmon, R.; Danin, A. Distribution of Plant Species in Israel in Relation to Spatial Variation in Rainfall. J. Veg. Sci. 1999, 10, 421–432. [Google Scholar] [CrossRef]
- Maharjan, S.K.; Poorter, L.; Holmgren, M.; Bongers, F.; Wieringa, J.J.; Hawthorne, W.D. Plant functional traits and the distribution of West African rain forest trees along the rainfall gradient. Biotropica 2011, 43, 552–561. [Google Scholar] [CrossRef]
- Huang, J.; Cai, W.; Zhong, Q.; Wang, S. Influence of temperature on micro-environment, plant eco-physiology and nitrogen removal effect in subsurface flow constructed wetland. Ecol. Eng. 2013, 60, 242–248. [Google Scholar] [CrossRef]
- Des Marais, D.L.; Lasky, J.R.; Verslues, P.E.; Chang, T.Z.; Juenger, T.E. Interactive effects of water limitation and elevated temperature on the physiology, development and fitness of diverse accessions of Brachypodium distachyon. New Phytol. 2017, 214, 132–144. [Google Scholar] [CrossRef]
- Levine, J.M.; Rees, M. Effects of Temporal Variability on Rare Plant Persistence in Annual Systems. Am. Nat. 2004, 164, 350–363. [Google Scholar] [CrossRef]
- Mckeand, S.E.; Eriksson, G.; Roberds, J.H. Genotype by environment interaction for index traits that combine growth and wood density in loblolly pine. Theor. Appl. Genet. 1997, 94, 1015–1022. [Google Scholar] [CrossRef]
- Gwaze, D.P.; Wolliams, J.A.; Kanowski, P.J.; Bridgwater, F.E. Interactions of genotype with site for height and stem straightness in Pinus taeda in Zimbabwe. Silvae Genet. 2001, 50, 135–140. [Google Scholar]
- Martinez Meier, A.G.; Sanchez, L.; Salda, D.G.; Pastorino, M.J.; Gautry, J.Y.; Gallo, L.; Rozenberg, P. Genetic control of the tree-ring response of Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) to the 2003 drought and heat-wave in France. Ann. For. Sci. 2008, 65, 102. [Google Scholar] [CrossRef]
- Zhao, X.; Hou, W.; Zheng, H.; Zhang, Z. Analyses of Genotypic Variation in White Poplar Clones at Four Sites in China. Silvae Genet. 2017, 62, 187–195. [Google Scholar] [CrossRef]
- Wang, R.; Hu, D.; Zheng, H.; Yan, S.; Wei, R. Genotype × environmental interaction by AMMI and GGE biplot analysis for the provenances of Michelia chapensis in South China. J. For. Res. 2015, 27, 659–664. [Google Scholar] [CrossRef]
- Kien, N.D.; Jansson, G.; Harwood, C.; Almqvist, C. Clonal variation and genotype by environment interactions in growth and wood density in Eucalyptus camaldulensis at three contrasting sites in Vietnam. Silvae Genet. 2010, 59, 17–28. [Google Scholar] [CrossRef]
- Ding, M.; Tier, B.; Yan, W.K.; Wu, H.X.; Powell, M.B.; McRae, T.A. Application of GGE biplot Analysis to Evaluate Genotype (G), Environment (E), And G×E interaction on Pinus radiata: A case study. N. Z. J. For. Sci. 2008, 38, 132–142. [Google Scholar]
- Yan, W.; Holland, J.B. A heritability-adjusted GGE biplot for test environment evaluation. Euphytica 2010, 171, 355–369. [Google Scholar] [CrossRef]
Species | Origin | Climate of Origin | Clones |
---|---|---|---|
C. bungei | Yellow River and Yangtze River regions | mean temperature:12–14 °C, annual precipitation: 500–900 mm | 22-03, 17-05, 19-27, 16-05, 16-10, 13-05, 16-04, 9-05, 18-09, 17-06, 16-01, 9-1, 12-09, 20-02, 20-06, 1-1, 22-08, 21-03, 22-05, 22-01, 22-07, 20-01, 23-05, 22-10, 21-02, 6-05, 19-12, 7-01, 12-13, 16-07, 19-01, 13-06 |
C. fargesii f. duclouxii | Yunnan-Guizhou plateau | mean temperature:5–24 °C, annual precipitation: 600–2000 mm | 1, 7, 15, 26, 31, 38, 43, 48, 52, 60, 63, 74, 77, 79, 110, 111, 118, 120, 128, 137 |
Year | Mean Square | F-Value | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
Species | Clone (Species) | Block | Species × Block | Error | Species | Clone (Species) | Block | Species × Block | ||
Height | 2009 | 1.363 | 0.264 | 0.530 | 0.120 | 0.228 | 5.97 * | 1.16 | 2.32 | 0.53 |
2010 | 0.020 | 0.347 | 0.360 | 0.668 | 0.162 | 0.12 | 2.14 ** | 2.22 | 4.11 ** | |
2011 | 0.006 | 0.429 | 0.264 | 1.395 | 0.186 | 0.03 | 2.31 ** | 1.42 | 7.52 ** | |
2012 | 5.198 | 0.503 | 1.121 | 3.015 | 0.271 | 19.15 ** | 1.85 ** | 4.13 ** | 11.11 ** | |
2013 | 78.229 | 0.610 | 1.398 | 4.661 | 0.240 | 325.91 ** | 2.54 ** | 5.83 ** | 19.42 ** | |
2014 | 33.076 | 3.014 | 8.036 | 8.674 | 1.300 | 25.44 ** | 2.32 ** | 6.18 ** | 6.67 ** | |
DBH | 2009 | 3.055 | 0.492 | 0.755 | 0.535 | 0.297 | 10.29 ** | 1.66 ** | 2.54 * | 1.8 |
2010 | 4.156 | 0.769 | 1.492 | 2.377 | 0.361 | 11.5 ** | 2.13 ** | 4.13 ** | 6.58 ** | |
2011 | 3.642 | 1.626 | 1.213 | 13.237 | 0.586 | 6.21 * | 2.77 ** | 2.07 | 22.58 ** | |
2012 | 3.825 | 2.931 | 2.168 | 38.914 | 0.895 | 4.27 * | 3.27 ** | 2.42 * | 43.48 ** | |
2013 | 84.589 | 7.126 | 9.182 | 63.773 | 3.261 | 25.94 ** | 2.19 ** | 2.82 * | 19.56 ** | |
2014 | 69.107 | 18.496 | 36.565 | 64.318 | 6.838 | 10.11 ** | 2.7 ** | 5.35 ** | 9.41 ** | |
Stem volume | 2009 | 0.00019 | 0.00006 | 0.00009 | 0.00011 | 0.00004 | 4.47 * | 1.35 | 2.04 | 2.53 * |
2010 | 0.00005 | 0.00019 | 0.00019 | 0.00045 | 0.00009 | 0.58 | 2.06 ** | 2.02 | 4.78 ** | |
2011 | 0.00007 | 0.00051 | 0.00033 | 0.00160 | 0.00025 | 0.29 | 2.04 ** | 1.32 | 6.42 ** | |
2012 | 0.00322 | 0.00074 | 0.00031 | 0.00614 | 0.00027 | 11.88 ** | 2.72 ** | 1.13 | 22.69 ** | |
2013 | 0.04994 | 0.00127 | 0.00077 | 0.01220 | 0.00045 | 110.19 ** | 2.8 ** | 1.7 | 26.93 ** | |
2014 | 0.03561 | 0.00192 | 0.00351 | 0.02064 | 0.00065 | 54.82 ** | 2.95 ** | 5.4 ** | 31.78 ** |
Species | Source of Variation | Df | Mean Square | F-Value | ||||
---|---|---|---|---|---|---|---|---|
Height | DBH | Stem Volume | Height | DBH | Stem Volume | |||
C. bungei | Year | 5 | 463.289 | 1204.700 | 0.310 | 1095.246 ** | 286.833 ** | 155.000 ** |
Clone | 31 | 2.392 | 10.735 | 0.003 | 3.441 ** | 3.565 ** | 2.859 ** | |
Block | 4 | 4.290 | 44.273 | 0.012 | 4.783 ** | 7.406 ** | 4.000 * | |
Clone × Year | 155 | 0.160 | 0.808 | 0.000 | 1.622 ** | 2.114 ** | 3.013 ** | |
Block × Year | 20 | 0.362 | 3.774 | 0.002 | 3.675 ** | 9.876 ** | 11.208 ** | |
Clone × block | 122 | 0.634 | 2.586 | 0.001 | 6.430 ** | 6.766 ** | 5.002 ** | |
Error | 598 | 0.099 | 0.382 | 0.000 | ||||
C. fargesii f. duclouxii | Year | 5 | 159.337 | 520.887 | 0.097 | 106.296 ** | 63.000 ** | 32.333 ** |
Clone | 19 | 0.781 | 9.209 | 0.001 | 1.287 ** | 3.751 ** | 2.367 ** | |
Block | 4 | 7.883 | 55.697 | 0.014 | 4.080 ** | 5.667 ** | 4.667 ** | |
Clone × Year | 95 | 0.141 | 0.622 | 0.000 | 1.293 ** | 1.777 ** | 2.069 ** | |
Block × Year | 20 | 1.467 | 7.996 | 0.003 | 13.410 * | 22.850 ** | 25.660 ** | |
Clone × Block | 76 | 0.574 | 2.183 | 0.000 | 5.248 ** | 6.237 ** | 4.155 ** | |
Error | 369 | 0.109 | 0.350 | 0.000 |
Clones | Increment of Stem Volume/m3 | Mean/m3 | Standard Deviation/m3 | Variable Coefficient/% | Minimum/m3 | Maximum/m3 | Range/m3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | |||||||
22-03 | 0.017 | 0.011 | 0.042 | 0.052 | 0.038 | 0.032 | 0.017 | 53.74 | 0.011 | 0.052 | 0.041 |
17-05 | 0.007 | 0.003 | 0.013 | 0.034 | 0.014 | 0.014 | 0.012 | 82.73 | 0.003 | 0.034 | 0.031 |
19-27 | 0.011 | 0.013 | 0.033 | 0.058 | 0.028 | 0.028 | 0.019 | 66.60 | 0.011 | 0.058 | 0.047 |
16-05 | 0.013 | 0.015 | 0.030 | 0.051 | 0.018 | 0.025 | 0.016 | 62.74 | 0.013 | 0.051 | 0.038 |
16-10 | 0.010 | 0.010 | 0.032 | 0.038 | 0.018 | 0.022 | 0.013 | 58.37 | 0.010 | 0.038 | 0.027 |
13-05 | 0.011 | 0.009 | 0.026 | 0.046 | 0.021 | 0.023 | 0.015 | 66.17 | 0.009 | 0.046 | 0.037 |
16-04 | 0.013 | 0.010 | 0.025 | 0.037 | 0.021 | 0.021 | 0.011 | 51.18 | 0.010 | 0.037 | 0.027 |
9-05 | 0.011 | 0.009 | 0.025 | 0.048 | 0.024 | 0.023 | 0.016 | 67.06 | 0.009 | 0.048 | 0.039 |
18-09 | 0.010 | 0.007 | 0.022 | 0.035 | 0.021 | 0.019 | 0.011 | 59.16 | 0.007 | 0.035 | 0.028 |
17-06 | 0.010 | 0.006 | 0.026 | 0.033 | 0.013 | 0.018 | 0.011 | 64.35 | 0.006 | 0.033 | 0.027 |
16-01 | 0.013 | 0.009 | 0.030 | 0.040 | 0.021 | 0.023 | 0.013 | 56.08 | 0.009 | 0.040 | 0.032 |
9-1 | 0.012 | 0.006 | 0.030 | 0.041 | 0.014 | 0.021 | 0.014 | 70.10 | 0.006 | 0.041 | 0.035 |
12-09 | 0.007 | 0.005 | 0.025 | 0.041 | 0.026 | 0.021 | 0.015 | 73.16 | 0.005 | 0.041 | 0.036 |
20-02 | 0.010 | 0.008 | 0.028 | 0.039 | 0.022 | 0.021 | 0.013 | 59.64 | 0.008 | 0.039 | 0.031 |
20-06 | 0.015 | 0.011 | 0.034 | 0.047 | 0.023 | 0.026 | 0.015 | 56.22 | 0.011 | 0.047 | 0.036 |
1-1 | 0.015 | 0.008 | 0.028 | 0.046 | 0.039 | 0.027 | 0.016 | 59.14 | 0.008 | 0.046 | 0.038 |
22-08 | 0.012 | 0.009 | 0.037 | 0.039 | 0.013 | 0.022 | 0.015 | 66.87 | 0.009 | 0.039 | 0.030 |
21-03 | 0.008 | 0.006 | 0.020 | 0.032 | 0.020 | 0.017 | 0.010 | 59.53 | 0.006 | 0.032 | 0.025 |
22-05 | 0.011 | 0.008 | 0.036 | 0.049 | 0.018 | 0.025 | 0.017 | 70.68 | 0.008 | 0.049 | 0.040 |
22-01 | 0.013 | 0.006 | 0.035 | 0.052 | 0.021 | 0.025 | 0.018 | 72.21 | 0.006 | 0.052 | 0.045 |
22-07 | 0.012 | 0.011 | 0.029 | 0.050 | 0.031 | 0.027 | 0.016 | 59.51 | 0.011 | 0.050 | 0.038 |
20-01 | 0.015 | 0.010 | 0.033 | 0.058 | 0.029 | 0.029 | 0.019 | 65.83 | 0.010 | 0.058 | 0.048 |
23-05 | 0.011 | 0.006 | 0.019 | 0.039 | 0.016 | 0.018 | 0.013 | 69.84 | 0.006 | 0.039 | 0.033 |
22-10 | 0.012 | 0.006 | 0.030 | 0.028 | 0.012 | 0.018 | 0.011 | 60.30 | 0.006 | 0.030 | 0.024 |
21-02 | 0.011 | 0.002 | 0.027 | 0.040 | 0.013 | 0.019 | 0.015 | 82.09 | 0.002 | 0.040 | 0.039 |
6-05 | 0.010 | 0.010 | 0.036 | 0.058 | 0.018 | 0.026 | 0.021 | 78.07 | 0.010 | 0.058 | 0.048 |
19-12 | 0.011 | 0.007 | 0.026 | 0.043 | 0.019 | 0.021 | 0.014 | 67.32 | 0.007 | 0.043 | 0.036 |
7-01 | 0.006 | 0.004 | 0.011 | 0.025 | 0.015 | 0.012 | 0.009 | 70.46 | 0.004 | 0.025 | 0.022 |
12-13 | 0.007 | 0.005 | 0.020 | 0.035 | 0.013 | 0.016 | 0.012 | 74.80 | 0.005 | 0.035 | 0.030 |
16-07 | 0.012 | 0.010 | 0.029 | 0.035 | 0.019 | 0.021 | 0.011 | 51.58 | 0.010 | 0.035 | 0.025 |
19-01 | 0.012 | 0.011 | 0.043 | 0.055 | 0.016 | 0.027 | 0.020 | 74.90 | 0.011 | 0.055 | 0.044 |
13-06 | 0.012 | 0.006 | 0.030 | 0.050 | 0.027 | 0.025 | 0.017 | 67.92 | 0.006 | 0.050 | 0.044 |
Mean | 0.011 | 0.008 | 0.028 | 0.043 | 0.021 | 0.022 | 0.015 | 65.57 | 0.008 | 0.043 | 0.035 |
Clones | Increment of Stem Volume/m3 | Mean/m3 | Standard Deviation/m3 | Variable Coefficient/% | Minimum/m3 | Maximum/m3 | Range/m3 | ||||
---|---|---|---|---|---|---|---|---|---|---|---|
2009–2010 | 2010–2011 | 2011–2012 | 2012–2013 | 2013–2014 | |||||||
1 | 0.012 | 0.005 | 0.018 | 0.008 | 0.026 | 0.014 | 0.009 | 62.02 | 0.005 | 0.026 | 0.022 |
7 | 0.012 | 0.007 | 0.019 | 0.015 | 0.016 | 0.014 | 0.005 | 34.16 | 0.007 | 0.019 | 0.012 |
15 | 0.012 | 0.006 | 0.017 | 0.013 | 0.041 | 0.018 | 0.014 | 76.14 | 0.006 | 0.041 | 0.035 |
26 | 0.013 | 0.010 | 0.029 | 0.019 | 0.028 | 0.020 | 0.009 | 42.84 | 0.010 | 0.029 | 0.019 |
31 | 0.013 | 0.007 | 0.018 | 0.012 | 0.024 | 0.015 | 0.007 | 44.95 | 0.007 | 0.024 | 0.017 |
38 | 0.009 | 0.007 | 0.021 | 0.014 | 0.018 | 0.014 | 0.006 | 41.95 | 0.007 | 0.021 | 0.013 |
43 | 0.010 | 0.011 | 0.026 | 0.016 | 0.027 | 0.018 | 0.008 | 45.35 | 0.010 | 0.027 | 0.017 |
48 | 0.010 | 0.009 | 0.021 | 0.029 | 0.025 | 0.019 | 0.009 | 47.77 | 0.009 | 0.029 | 0.020 |
52 | 0.010 | 0.013 | 0.019 | 0.018 | 0.023 | 0.016 | 0.005 | 30.82 | 0.010 | 0.023 | 0.013 |
60 | 0.008 | 0.011 | 0.025 | 0.025 | 0.018 | 0.017 | 0.008 | 45.16 | 0.008 | 0.025 | 0.017 |
63 | 0.014 | 0.014 | 0.033 | 0.026 | 0.037 | 0.025 | 0.011 | 43.38 | 0.014 | 0.037 | 0.024 |
74 | 0.011 | 0.009 | 0.018 | 0.013 | 0.017 | 0.014 | 0.004 | 28.48 | 0.009 | 0.018 | 0.009 |
77 | 0.009 | 0.008 | 0.023 | 0.021 | 0.020 | 0.016 | 0.007 | 43.04 | 0.008 | 0.023 | 0.014 |
79 | 0.011 | 0.009 | 0.019 | 0.017 | 0.036 | 0.018 | 0.011 | 57.72 | 0.009 | 0.036 | 0.027 |
110 | 0.010 | 0.007 | 0.016 | 0.033 | 0.003 | 0.014 | 0.012 | 85.69 | 0.003 | 0.033 | 0.030 |
111 | 0.016 | 0.004 | 0.025 | 0.026 | 0.029 | 0.020 | 0.011 | 52.24 | 0.004 | 0.029 | 0.026 |
118 | 0.009 | 0.007 | 0.018 | 0.021 | 0.019 | 0.015 | 0.007 | 43.94 | 0.007 | 0.021 | 0.014 |
120 | 0.011 | 0.009 | 0.016 | 0.009 | 0.025 | 0.014 | 0.007 | 47.69 | 0.009 | 0.025 | 0.016 |
128 | 0.014 | 0.010 | 0.026 | 0.028 | 0.032 | 0.022 | 0.010 | 43.47 | 0.010 | 0.032 | 0.023 |
137 | 0.009 | 0.005 | 0.015 | 0.017 | 0.026 | 0.015 | 0.008 | 56.43 | 0.005 | 0.026 | 0.022 |
Mean | 0.011 | 0.008 | 0.021 | 0.019 | 0.025 | 0.017 | 0.008 | 48.66 | 0.008 | 0.027 | 0.019 |
Species | Clones | Height/m | DBH/cm | Stem Volume/m3 |
---|---|---|---|---|
C. bungei | 22-03 | 8.10 | 12.01 | 0.1647 |
mean | 8.10 | 12.01 | 0.1647 | |
Population mean | 7.64 | 10.04 | 0.1157 | |
Genetic gain | 3.81% | 14.32% | 31.55% | |
C. fargesii f. duclouxii | 63 | 7.49 | 11.16 | 0.132 |
128 | 7.28 | 10.28 | 0.1157 | |
mean | 7.39 | 10.72 | 0.1239 | |
Population mean | 6.94 | 9.15 | 0.0898 | |
Genetic gain | 0.57% | 11.13% | 22.67% |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xiao, Y.; Ma, W.; Lu, N.; Wang, Z.; Wang, N.; Zhai, W.; Kong, L.; Qu, G.; Wang, Q.; Wang, J. Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests 2019, 10, 57. https://doi.org/10.3390/f10010057
Xiao Y, Ma W, Lu N, Wang Z, Wang N, Zhai W, Kong L, Qu G, Wang Q, Wang J. Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests. 2019; 10(1):57. https://doi.org/10.3390/f10010057
Chicago/Turabian StyleXiao, Yao, Wenjun Ma, Nan Lu, Zhi Wang, Nan Wang, Wenji Zhai, Lisheng Kong, Guanzheng Qu, Qiuxia Wang, and Junhui Wang. 2019. "Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii" Forests 10, no. 1: 57. https://doi.org/10.3390/f10010057
APA StyleXiao, Y., Ma, W., Lu, N., Wang, Z., Wang, N., Zhai, W., Kong, L., Qu, G., Wang, Q., & Wang, J. (2019). Genetic Variation of Growth Traits and Genotype-by-Environment Interactions in Clones of Catalpa bungei and Catalpa fargesii f. duclouxii. Forests, 10(1), 57. https://doi.org/10.3390/f10010057