The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Data Collection
2.3. PM Particles Deposited on a Unit Leaf Area Basis (ULA)
2.4. Quantifying the Overall PM Removal Capacity Including Leaf Area Index (LAI) by Different Tree Species
2.5. Calculation of Air Pollution Tolerance Index (APTI)
2.6. Statistical Analysis
3. Results
3.1. Comparison of Particulate Matter between Urban Forests and Roadsides
3.2. PM Adsorption of a ULA Basis on Different Tree Species
3.3. PM Adsorption Based on LAI and TLA of Different Tree Species.
3.4. Suitable Biomonitors through Calculation of the Air Pollution Tolerance Index (APTI) from Biochemical Parameters
3.5. Specificity of PM according to Leaf Micromorphological Structures
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Calfapietra, C.; Peñuelas, J.; Niinemets, Ü. Urban plant physiology: Adaptation-mitigation strategies under permanent stress. Trends Plant Sci. 2015, 20, 72–75. [Google Scholar] [CrossRef]
- Livesley, S.J.; McPherson, E.G.; Calfapietra, C. The urban forest and ecosystem services: Impacts on urban water, heat, and pollution cycles at the tree, street, and city scale. J. Environ. Qual. 2016, 45, 119–124. [Google Scholar] [CrossRef]
- Massoni, E.S.; Barton, D.N.; Rusch, G.M.; Gundersen, V. Bigger, more diverse and better? Mapping structural diversity and its recreational value in urban green spaces. Ecosyst. Serv. 2018, 31, 502–516. [Google Scholar] [CrossRef]
- Tsai, W.L.; McHale, M.; Jennings, V.; Marquet, O.; Hipp, J.; Leung, Y.F.; Floyd, M. Relationships between characteristics of urban green land cover and mental health in US metropolitan areas. Int. J. Environ. Res. Public Health 2018, 15, 340. [Google Scholar] [CrossRef] [PubMed]
- Jeon, J.Y.; Hong, J.Y. Classification of urban park soundscapes through perceptions of the acoustical environments. Landsc. Urban Plan. 2015, 141, 100–111. [Google Scholar] [CrossRef]
- Rai, P.K.; Panda, L.L. Dust capturing potential and air pollution tolerance index (APTI) of some road side tree vegetation in Aizawl, Mizoram, India: An Indo-Burma hot spot region. Air Qual. Atmos. Health 2014, 7, 93–101. [Google Scholar] [CrossRef]
- Kim, K.H.; Kabir, E.; Kabir, S. A review on the human health impact of airborne particulate matter. Environ. Int. 2015, 74, 136–143. [Google Scholar] [CrossRef]
- Hamra, G.B.; Guha, N.; Cohen, A.; Laden, F.; Raaschou-Nielsen, O.; Samet, J.M.; Vineis, P.; Forastiere, F.; Saldiva, P.; Yorifuji, T.; et al. Outdoor particulate matter exposure and lung cancer: A systematic review and meta-analysis. Environ. Health Perspect. 2014, 122, 906–911. [Google Scholar] [CrossRef]
- Litschke, T.; Kuttler, W. On the reduction of urban particle concentration by vegetation—A review. Meteorol. Z. 2008, 17, 229–240. [Google Scholar] [CrossRef]
- Nowak, D.J.; Hirabayashi, S.; Bodine, A.; Hoehn, R. Modeled PM2.5 removal by trees in ten US cities and associated health effects. Environ. Pollut. 2013, 178, 395–402. [Google Scholar] [CrossRef]
- Xu, Y.; Xu, W.; Mo, L.; Heal, M.R.; Xu, X.; Yu, X. Quantifying particulate matter accumulated on leaves by 17 species of urban trees in Beijing, China. Environ. Sci. Pollut. Res. 2018, 25, 12545–12556. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.N.; Tarafdar, J.C.; Biswas, P. Nanoparticle synthesis and delivery by an aerosol route for watermelon plant foliar uptake. J. Nanopart. Res. 2013, 15, 1417. [Google Scholar] [CrossRef]
- Wang, L.; Gong, H.; Liao, W.; Wang, Z. Accumulation of particles on the surface of leaves during leaf expansion. Sci. Total Environ. 2015, 532, 420–434. [Google Scholar] [CrossRef]
- Castanheiro, A.; Samson, R.; De Wael, K. Magnetic-and particle-based techniques to investigate metal deposition on urban green. Sci. Total Environ. 2016, 571, 594–602. [Google Scholar] [CrossRef] [PubMed]
- Jeanjean, A.P.; Monks, P.S.; Leigh, R.J. Modelling the effectiveness of urban trees and grass on PM2.5 reduction via dispersion and deposition at a city scale. Atmos. Environ. 2016, 147, 1–10. [Google Scholar] [CrossRef]
- Ortolani, C.; Vitale, M. The importance of local scale for assessing, monitoring and predicting of air quality in urban areas. Sustain. Cities Soc. 2016, 26, 150–160. [Google Scholar] [CrossRef]
- Cai, M.; Xin, Z.; Yu, X. Spatio-temporal variations in PM leaf deposition: A meta-analysis. Environ. Pollut. 2017, 231, 207–218. [Google Scholar] [CrossRef]
- Chen, L.; Liu, C.; Zhang, L.; Zou, R.; Zhang, Z. Variation in tree species ability to capture and retain airborne fine particulate matter (PM2.5). Sci. Rep. 2017, 7, 3206. [Google Scholar] [CrossRef] [PubMed]
- Shi, J.; Zhang, G.; An, H.; Yin, W.; Xia, X. Quantifying the particulate matter accumulation on leaf surfaces of urban plants in Beijing, China. Atmos. Pollut. Res. 2017, 8, 836–842. [Google Scholar] [CrossRef]
- Song, Y.; Maher, B.A.; Li, F.; Wang, X.; Sun, X.; Zhang, H. Particulate matter deposited on leaf of five evergreen species in Beijing, China: Source identification and size distribution. Atmos. Environ. 2015, 105, 53–60. [Google Scholar] [CrossRef]
- Tian, L.; Yin, S.; Ma, Y.; Kang, H.; Zhang, X.; Tan, H.; Meng, H.; Liu, C. Impact factor assessment of the uptake and accumulation of polycyclic aromatic hydrocarbons by plant leaves: Morphological characteristics have the greatest impact. Sci. Total Environ. 2019, 652, 1149–1155. [Google Scholar] [CrossRef] [PubMed]
- Daresta, B.E.; Italiano, F.; de Gennaro, G.; Trotta, M.; Tutino, M.; Veronico, P. Atmospheric particulate matter (PM) effect on the growth of Solanum lycopersicum cv. Roma plants. Chemosphere 2015, 119, 37–42. [Google Scholar] [CrossRef] [PubMed]
- Leonard, R.J.; McArthur, C.; Hochuli, D.F. Particulate matter deposition on roadside plants and the importance of leaf trait combinations. Urban For. Urban Green. 2016, 20, 249–253. [Google Scholar] [CrossRef]
- Rai, P.K. Biodiversity of roadside plants and their response to air pollution in an Indo-Burma hotspot region: Implications for urban ecosystem restoration. J. Asia Pac. Entomol. 2016, 9, 47–55. [Google Scholar] [CrossRef]
- Seoul Open Data Plaza. Available online: http://opengov.seoul.go.kr/data/14732526 (accessed on 7 July 2019).
- Margitai, Z.; Simon, E.; Fábián, I.; Braun, M. Inorganic chemical composition of dust deposited on oleander (Nerium oleander L.) leaves. Air Qual. Atmos. Health 2017, 10, 339–347. [Google Scholar] [CrossRef]
- Liu, J.; Cao, Z.; Zou, S.; Liu, H.; Hai, X.; Wang, S.; Duan, J.; Xi, B.; Yan, G.; Zhang, S.; et al. An investigation of the leaf retention capacity, efficiency and mechanism for atmospheric particulate matter of five greening tree species in Beijing, China. Sci. Total Environ. 2018, 616, 417–426. [Google Scholar] [CrossRef]
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Particulate matter pollution capture by leaves of seventeen living wall species with special reference to rail-traffic at a metropolitan station. Urban For. Urban Green. 2017, 27, 173–186. [Google Scholar] [CrossRef]
- Sgrigna, G.; Sæbø, A.; Gawronski, S.; Popek, R.; Calfapietra, C. Particulate matter deposition on Quercus ilex leaves in an industrial city of central Italy. Environ. Pollut. 2015, 197, 187–194. [Google Scholar] [CrossRef]
- Jonckheere, I.; Muys, B.; Coppin, P. Allometry and evaluation of in situ optical LAI determination in Scots pine: A case study in Belgium. Tree Physiol. 2005, 25, 723–732. [Google Scholar] [CrossRef]
- Peper, P.J.; McPherson, E.G.; Mori, S.M. Equations for predicting diameter, height, crown width, and leaf area of San Joaquin Valley street trees. J. Arboric. 2001, 27, 306–317. [Google Scholar]
- Semenzato, P.; Cattaneo, D.; Dainese, M. Growth prediction for five tree species in an Italian urban forest. Urban For. Urban Green. 2011, 10, 169–176. [Google Scholar] [CrossRef]
- Rai, P.K. Impacts of particulate matter pollution on plants: Implications for environmental biomonitoring. Ecotoxicol. Environ. Saf. 2016, 129, 120–136. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.Q.; Liu, Y.J.; Chen, X.; Yang, Z.; Zhu, M.H.; Li, Y.P. Pollution resistance assessment of existing landscape plants on Beijing streets based on air pollution tolerance index method. Ecotoxicol. Environ. Saf. 2016, 132, 212–223. [Google Scholar] [CrossRef] [PubMed]
- Keller, T.; Schwager, H. Air pollution and ascorbic acid. Eur. J. For. Pathol. 1977, 7, 338–350. [Google Scholar] [CrossRef]
- Smart, R.E.; Bingham, G.E. Rapid estimates of relative water content. Plant Physiol. 1974, 53, 258–260. [Google Scholar] [CrossRef]
- Seoul Metropolitan Government. Available online: http://cleanair.seoul.go.kr/main.htm (accessed on 31 December 2018).
- Weerakkody, U.; Dover, J.W.; Mitchell, P.; Reiling, K. Evaluating the impact of individual leaf traits on atmospheric particulate matter accumulation using natural and synthetic leaves. Urban For. Urban Green. 2018, 30, 98–107. [Google Scholar] [CrossRef]
- Li, Y.; Wang, Y.; Wang, B.; Wang, Y.; Yu, W. The response of plant photosynthesis and stomatal conductance to fine particulate matter (PM2.5) based on leaf factors analyzing. Plant Biol. 2019, 62, 120–128. [Google Scholar] [CrossRef]
- Mo, L.; Ma, Z.; Xu, Y.; Sun, F.; Lun, X.; Liu, X.; Chen, J.; Yu, X. Assessing the capacity of plant species to accumulate particulate matter in Beijing, China. PLoS ONE 2015, 10, e0140664. [Google Scholar] [CrossRef]
- Rai, P.K. Dust deposition capacity of certain roadside plants in Aizawl, Mizoram: Implications for environmental geomagnetic studies. In Recent Advances in Civil Engineering; Dwivedi, S.B., Ed.; Indian Institute of Technology (BHU): Varanasi, India, 2011; pp. 66–73. [Google Scholar]
- Pandey, A.K.; Pandey, M. Assessment of Air Pollution Tolerance Index of some plants to develop vertical gardens near street canyons of a polluted tropical city. Ecotoxicol. Environ. Saf. 2016, 134, 358–364. [Google Scholar] [CrossRef]
- Hong, C.S. Pollen allergy plants in Korea. Allergy Asthma Immunol. Res. 2015, 3, 239–254. [Google Scholar] [CrossRef]
- Asam, C.; Hofer, H.; Wolf, M.; Aglas, L.; Wallner, M. Tree pollen allergens-an update from a molecular perspective. Allergy 2015, 70, 1201–1211. [Google Scholar] [CrossRef] [PubMed]
- Asturias, J.A.; Ibarrola, I.; Amat, P.; Tella, R.; Malet, A.; Cisteró-Bahíma, A.; Enrique, E.; Malek, T.; Martinez, A. Purified allergens vs. complete extract in the diagnosis of plane tree pollen allergy. Clin. Exp. Allergy 2006, 36, 1505–1512. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Ren, J.; Hao, X.; Liu, D.; Zhang, R.; Wu, M.; Yi, F.; Lin, J.; Shinich, Y.; Wang, Q. Characterization of protein expression of Platanus pollen following exposure to gaseous pollutants and vehicle exhaust particles. Aerobiologia 2014, 30, 281–291. [Google Scholar] [CrossRef] [PubMed]
- Alcazar, P.; Galan, C.; Torres, C.; Dominguez-Vilches, E. Detection of airborne allergen (Pla a 1) in relation to Platanus pollen in Cordoba, South Spain. Ann. Agric. Environ. Med. 2015, 22. [Google Scholar] [CrossRef]
- Fernandez-Gonzalez, D.; Gonzalez-Parrado, Z.; Vega-Maray, A.M.; Valencia-Barrera, R.M.; Camazon-Izquierdo, B.; De Nuntiis, P.; Mandrioli, P. Platanus pollen allergen, Pla a 1: Quantification in the atmosphere and influence on a sensitizing population. Clin. Exp. Allergy 2010, 40, 1701–1708. [Google Scholar] [CrossRef]
- Park, H.J.; Lim, H.S.; Park, K.H.; Lee, J.H.; Park, J.W.; Hong, C.S. Changes in allergen sensitization over the last 30 years in Korea respiratory allergic patients: A single-center. Allergy Asthma Immunol. Res. 2014, 6, 434–443. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Seasonal changes of leaf surface contamination in beech, oak, and ginkgo in relation to leaf micromorphology and wettability. New Phytol. 1998, 138, 91–98. [Google Scholar] [CrossRef]
- Uni, D.; Katra, I. Airborne dust absorption by semi-arid forests reduces PM pollution in nearby urban environments. Sci. Total Environ. 2017, 598, 984–992. [Google Scholar] [CrossRef]
- Neinhuis, C.; Barthlott, W. Characterization and distribution of water-repellent, self-cleaning plant surfaces. Ann. Bot. 1997, 79, 667–677. [Google Scholar] [CrossRef]
- Kiyomizu, T.; Yamagishi, S.; Kume, A.; Hanba, Y.T. Contrasting photosynthetic responses to ambient air pollution between the urban shrub Rhododendron × pulchrum and urban tall tree Ginkgo biloba in Kyoto city: Stomatal and leaf mesophyll morpho-anatomies are key traits. Trees 2019, 33, 63–77. [Google Scholar] [CrossRef]
- Tallis, M.; Taylor, G.; Sinnett, D.; Freer-Smith, P. Estimating the removal of atmospheric particulate pollution by the urban tree canopy of London, under current and future environments. Landsc. Urban Plan. 2011, 103, 129–138. [Google Scholar] [CrossRef]
- Mori, J.; Hanslin, H.M.; Burchi, G.; Sæbø, A. Particulate matter and element accumulation on coniferous trees at different distances from a highway. Urban For. Urban Green. 2015, 14, 170–177. [Google Scholar] [CrossRef]
- Nakaji, T.; Izuta, T. Effects of ozone and/or excess soil nitrogen on growth, needle gas exchange rates and Rubisco contents of Pinus densiflora seedlings. Water Air Soil Pollut. 2001, 130, 971–976. [Google Scholar] [CrossRef]
- Shaw, P.J.A.; Holland, M.R.; Darrall, N.M.; McLeod, A.R. The occurrence of SO2-related foliar symptoms on Scots pine (Pinus sylvestris L.) in an open-air forest fumigation experiment. New Phytol. 1993, 123, 143–152. [Google Scholar] [CrossRef]
- Schulz, H.; Beck, W.; Lausch, A. Atmospheric depositions affect the growth patterns of Scots pines (Pinus sylvestris L.)—A long-term cause-effect monitoring study using biomarkers. Environ. Monit. Assess. 2019, 191, 159. [Google Scholar] [CrossRef]
- Kume, A.; Tsuboi, N.; Satomura, T.; Suzuki, M.; Chiwa, M.; Nakane, K.; Sakurai, N.; Horikoshi, T.; Sakugawa, H. Physiological characteristics of Japanese red pine, Pinus densiflora Sieb. et Zucc., in declined forests at Mt. Gokurakuji in Hiroshima Prefecture, Japan. Trees 2000, 14, 305–311. [Google Scholar] [CrossRef]
- Bottalico, F.; Chirici, G.; Giannetti, F.; De Marco, A.; Nocentini, S.; Paoletti, E.; Salbitano, F.; Sanesi, G.; Serenelli, C.; Travaglini, D. Air pollution removal by green infrastructures and urban forests in the city of Florence. Agric. Agric. Sci. Procedia 2016, 8, 243–251. [Google Scholar] [CrossRef]
- Schleicher, N.J.; Norra, S.; Chai, F.; Chen, Y.; Wang, S.; Cen, K.; Yu, Y.; Stüben, D. Temporal variability of trace metal mobility of urban particulate matter from Beijing–A contribution to health impact assessments of aerosols. Atmos. Environ. 2011, 45, 7248–7265. [Google Scholar] [CrossRef]
Site | PM10 | PM2.5 |
---|---|---|
Seoul | 45.4 1 | 24.6 |
Seongdong District 2 | 47.4 | 24.4 |
Seocho District 2 | 47.8 | 24.1 |
Species | Leaf Morphology | Allometric Equation (m2·tree−1) | R2 | References |
---|---|---|---|---|
P. densiflora | EC 1 | y = 0.2988 × (DBH2) − 7.5336 × (DBH) + 74.075 | 0.94 | [30] |
Z. serrata | DC 2 | y = EXP(4.033) × EXP((0.045 × DBH) −1) × EXP(0.12706/2) | 0.91 | [31] |
P. occidentalis | DC | y = EXP(5.198) × EXP((0.021 × DBH) −1) × EXP(0.23508/2) | 0.74 | [31] |
P. yedoensis | DC | y = 3.036 × (EXP(0.09 × DBH) −1) | 0.80 | [32] |
G. biloba | DC | y = EXP(3.410) × EXP((0.053 × DBH) −1) × EXP(0.30207/2) | 0.86 | [31] |
Sites | P. densiflora | Z. serrata | P. occidentalis | P. yedoensis | G. biloba | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
SFP | SFP-IN | 8.9 | ± | 0.5 | ab | 8.0 | ± | 0.7 | c | 9.3 | ± | 0.4 | a | 8.6 | ± | 0.7 | b | 8.2 | ± | 0.3 | c |
SFP-OUT | 8.8 | ± | 0.4 | A | 8.4 | ± | 0.5 | B | 9.0 | ± | 0.5 | A | 8.7 | ± | 0.4 | A | 8.4 | ± | 0.3 | B | |
YCF | YCF-IN | 8.7 | ± | 0.5 | a | 6.9 | ± | 0.7 | c*** | 9.0 | ± | 0.7 | a | 8.7 | ± | 0.6 | a | 8.2 | ± | 0.4 | b |
YCF-OUT | 8.9 | ± | 0.6 | A | 8.1 | ± | 0.6 | C | 8.7 | ± | 0.5 | AB | 8.5 | ± | 0.5 | B | 8.1 | ± | 0.5 | C |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kwak, M.J.; Lee, J.; Kim, H.; Park, S.; Lim, Y.; Kim, J.E.; Baek, S.G.; Seo, S.M.; Kim, K.N.; Woo, S.Y. The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. Forests 2019, 10, 960. https://doi.org/10.3390/f10110960
Kwak MJ, Lee J, Kim H, Park S, Lim Y, Kim JE, Baek SG, Seo SM, Kim KN, Woo SY. The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. Forests. 2019; 10(11):960. https://doi.org/10.3390/f10110960
Chicago/Turabian StyleKwak, Myeong Ja, Jongkyu Lee, Handong Kim, Sanghee Park, Yeaji Lim, Ji Eun Kim, Saeng Geul Baek, Se Myeong Seo, Kyeong Nam Kim, and Su Young Woo. 2019. "The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides" Forests 10, no. 11: 960. https://doi.org/10.3390/f10110960
APA StyleKwak, M. J., Lee, J., Kim, H., Park, S., Lim, Y., Kim, J. E., Baek, S. G., Seo, S. M., Kim, K. N., & Woo, S. Y. (2019). The Removal Efficiencies of Several Temperate Tree Species at Adsorbing Airborne Particulate Matter in Urban Forests and Roadsides. Forests, 10(11), 960. https://doi.org/10.3390/f10110960