A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale
Abstract
:1. Introduction
1.1. Background
1.2. Natural Capital and Agriculture
1.3. Approach
- The conceptual framework for natural capital accounting (Section 2.1);
- Methods for quantifying ecosystem services at the farm scale (Section 2.2);
- Methods for valuing ecosystem services at the farm scale (Section 2.3).
2. Natural Capital at the Farm Scale
2.1. Applying the Natural Capital Accounting Framework to Agroforestry
2.2. Measuring Ecosystem Services at the Farm Scale
2.3. Valuing Ecosystem Services at the Farm Scale
3. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale
3.1. Advantages of a Natural Capital Approach
3.2. Existing Frameworks for Natural Capital Accounting at the Farm Scale
3.3. A Conceptual Model for Agroforestry Decision-Making
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Smith, P.; Gregory, P.J.; van Vuuren, D.; Obersteiner, M.; Havlík, P.; Rounsevell, M.; Woods, J.; Stehfest, E.; Bellarby, J. Competition for land. Philos. Trans. R. Soc. B 2010, 365, 2941–2957. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Bayo, F.; Wyckhuys, K.A. Worldwide decline of the entomofauna: A review of its drivers. Biol. Conserv. 2019, 232, 8–27. [Google Scholar] [CrossRef]
- Parris, K. Impact of agriculture on water pollution in OECD countries: Recent trends and future prospects. Int. J. Water Resour. Dev. 2011, 27, 33–52. [Google Scholar] [CrossRef]
- Mackay, A. Impacts of intensification of pastoral agriculture on soils: Current and emerging challenges and implications for future land uses. N. Z. Vet. J. 2008, 56, 281–288. [Google Scholar] [CrossRef]
- World Resources Institute. Creating a Sustainable Food Future; World Resources Institute: Washington, DC, USA, 2018. [Google Scholar]
- Reid, R.; Wilson, G. Agroforestry in Australia and New Zealand; Goddard and Dobson: Box Hill, Australia, 1985. [Google Scholar]
- Smith, J.; Pearce, B.D.; Wolfe, M.S. Reconciling productivity with protection of the environment: Is temperate agroforestry the answer? Renew. Agric. Food. Syst. 2012, 28, 80–92. [Google Scholar] [CrossRef]
- Bastin, J.-F.; Finegold, Y.; Garcia, C.; Mollicone, D.; Rezende, M.; Routh, D.; Zohner, C.M.; Crowther, T.W. The global tree restoration potential. Science 2019, 365, 76–79. [Google Scholar] [CrossRef]
- Lewis, S.L.; Wheeler, C.E.; Mitchard, E.T.A.; Koch, A. Restoring natural forests is the best way to remove atmospheric carbon. Nature 2019, 568, 25–28. [Google Scholar] [CrossRef]
- Black, A.W.; Frost, F.; Forge, K. Extension and Advisory Strategies for Agroforestry; Rural Industries Research and Development Corporation: Barton, Australia, 2000. [Google Scholar]
- Stewart, H. Victorian Farm Forestry Inventory Scoping Study; Farm Forest Growers Victoria Incorporated: Mansfield, Australia, 2009. [Google Scholar]
- Race, D.; Curtis, A. Adoption of farm forestry in Victoria: Linking policy with practice. Australas. J. Environ. Manag. 2007, 14, 166–178. [Google Scholar] [CrossRef]
- Cary, J.W.; Wilkinson, R.L. Perceived profitability and farmers’ conservation behaviour. J. Agric. Econ. 1997, 48, 13–21. [Google Scholar] [CrossRef]
- Fleming, A.; O’Grady, A.P.; Mendham, D.; England, J.; Mitchell, P.; Moroni, M.; Lyons, A. Understanding the values behind farmer perceptions of trees on farms to increase adoption of agroforestry in Australia. Agron. Sustain. Dev. 2019, 39, 9. [Google Scholar] [CrossRef] [Green Version]
- Pannell, D. Social and economic challenges in the development of complex farming systems. Agrofor. Syst. 1999, 45, 395–411. [Google Scholar] [CrossRef]
- Atkinson, G.; Pearce, D. Measuring sustainable development. In Handbook of Environmental Economics; Bromley, D.W., Ed.; Blackwell: Oxford, UK, 1995. [Google Scholar]
- Jansson, A.; Hammer, M.; Folke, C.; Costanza, R. Investing in natural capital: Why, what, and how? In Investing in Natural Capital: The Ecological Economics Approach to Sustainability; Jansson, A., Hammer, M., Folke, C., Costanza, R., Eds.; Island Press: Washington, DC, USA, 1994. [Google Scholar]
- CBD. Global Biodiversity Outlook 4: A Mid-Term Assessment of Progress towards the Implementation of the Strategic Plan for Biodiversity 2011–2020; CBD: Montreal, QC, Canada, 2014. [Google Scholar]
- Smith, P.; Clark, H.; Dong, H.; Elsiddig, E.; Haberl, H.; Harper, R.; House, J.; Jafari, M.; Masera, O.; Mbow, C. Agriculture, forestry and other land use (AFOLU). In Climate Change 2014: Mitigation of Climate Change. IPCC Working Group III Contribution to AR5; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Jackson, W.; Argent, R.; Bax, N.; Bui, E.; Clark, G.; Coleman, S.; Cresswell, I.; Emmerson, K.; Evans, K.; Hibberd, M.; et al. Overview of State and Trends of Inland Water. In Australia State of the Environment 2016; Australian Government Department of the Environment and Energy: Canberra, Australia, 2016. [Google Scholar]
- Natural Capital Coalition. Natural Capital Protocol. Available online: http://naturalcapitalcoalition.org/protocol (accessed on 31 October 2018).
- United Nations; European Commission; Organisation for Economic Co-Operation and Development; World Bank. System of Environmental-Economic Accounting Central Framework; United Nations Statistics Division: New York, NY, USA, 2014. [Google Scholar]
- Wentworth Group. Accounting for Nature—A Scientific Method for Constructing Environmental Asset Condition Accounts; Wentworth Group: Sydney, Australia, 2016. [Google Scholar]
- Pearce, D. An intellectual history of environmental economics. Annu. Rev. Energ. Environ. 2002, 27, 57–81. [Google Scholar] [CrossRef]
- TEEB. The Economics of Ecosystems and Biodiversity: Mainstreaming the Economics of Nature: A Synthesis of the Approach, Conclusion and Recommendations of TEEB. In Proceedings of the 10th meeting of the Conference of Parties to the CBD, Nagoya, Japan, 18–29 October 2010. [Google Scholar]
- The World Bank. WAVES Annual Report 2017; The World Bank: Washington, DC, USA, 2017. [Google Scholar]
- TEEB. TEEB for Agriculture & Food: Scientific and Economic Foundations; TEEB: Geneva, Switzerland, 2018. [Google Scholar]
- FAO. System of Environmental-Economic Accounting for Agriculture, Forestry and Fisheries: SEEA AFF White Cover Final; FAO: New York, NY, USA, 2016. [Google Scholar]
- Ascui, F.; Cojoianu, T. Natural Capital Credit Risk Assessment in Agricultural Lending: An Approach Based on the Natural Capital Protocol; Natural Capital Finance Alliance: Oxford, UK, 2019. [Google Scholar]
- FAO. Natural Capital Impacts in Agriculture—Supporting Better Decision Making; FAO: Rome, Italy, 2015. [Google Scholar]
- Czúcz, B.; Keith, H.; Jackson, B.; Maes, J.; Driver, A.; Nicholson, E.; Bland, L. Discussion Paper 2.3: Proposed Typology of Condition Variables for Ecosystem Accounting and Criteria for Selection of Condition Variables. Paper Submitted to the SEEA EEA Technical Committee as input to the Revision of the Technical Recommendations in Support of the System on Environmental-Economic Accounting. Version of 13 March 2019; United Nations: New York, NY, USA, 2019; p. 23. [Google Scholar]
- Boyd, J.; Banzhaf, S. What are ecosystem services? The need for standardized environmental accounting units. Ecol. Econ. 2007, 63, 616–626. [Google Scholar] [CrossRef] [Green Version]
- Daily, G. Nature’s Services: Societal Dependence on Natural Ecosystems; Island Press: Washington, DC, USA, 1997. [Google Scholar]
- De Groot, R.S.; Wilson, M.A.; Boumans, R.M.J. A typology for the classification, description and valuation of ecosystem functions, goods and services. Ecol. Econ. 2002, 41, 393–408. [Google Scholar] [CrossRef] [Green Version]
- Fisher, B.; Turner, R.K.; Morling, P. Defining and classifying ecosystem services for decision making. Ecol. Econ. 2009, 68, 643–653. [Google Scholar] [CrossRef] [Green Version]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES) V5.1 and Guidance on the Application of the Revised Structure. EEA Framework Contract No EEA/IEA/09/003. 2018. Available online: www.cices.eu (accessed on 10 September 2018).
- Millennium Ecosystem Assessment. Ecosystems and Human Wellbeing: Synthesis; Island Press: Washington, DC, USA, 2005. [Google Scholar]
- Nahlik, A.M.; Kentula, M.E.; Fennessy, M.S.; Landers, D.H. Where is the consensus? A proposed foundation for moving ecosystem service concepts into practice. Ecol. Econ. 2012, 77, 27–35. [Google Scholar] [CrossRef]
- Wallace, K.J. Classification of ecosystem services: Problems and solutions. Biol. Conserv. 2007, 139, 235–246. [Google Scholar] [CrossRef] [Green Version]
- United Nations. Technical Recommendations in Support of the System of Environmental-Economic Accounting 2012—Experimental Ecosystem Accounting; United Nations: New York, NY, USA, 2017. [Google Scholar]
- Obst, C.G.; van de Ven, P.; Tebrake, J.; St Lawrence, J.; Edens, B. Valuation and Accounting Treatments: Issues and Options in Accounting for Ecosystem Degradation and Enhancement (Draft). In Proceedings of the 2019 Forum of Experts in SEEA Experimental Ecosystem Accounting, Glen Cove, NY, USA, 26–27 June 2019. [Google Scholar]
- Haines-Young, R.; Potschin, M.B. Common International Classification of Ecosystem Services (CICES): Consultation on Version 4, August–December 2012. EEA Framework Contract No EEA/IEA/09/003. 2013. Available online: www.cices.eu (accessed on 15 September 2018).
- Asbjornsen, H.; Hernandez-Santana, V.; Liebman, M.; Bayala, J.; Chen, J.; Helmers, M.; Ong, C.; Schulte, L.A. Targeting perennial vegetation in agricultural landscapes for enhancing ecosystem services. Renew. Agric. Food. Syst. 2014, 29, 101–125. [Google Scholar] [CrossRef]
- Jose, S. Agroforestry for ecosystem services and environmental benefits: An overview. Agrofor. Syst. 2009, 76, 1–10. [Google Scholar] [CrossRef]
- Ovando, P.; Campos, P.; Oviedo, J.L.; Caparrós, A. Ecosystem accounting for measuring total income in private and public agroforestry farms. For. Policy Econ. 2016, 71, 43–51. [Google Scholar] [CrossRef]
- Kay, S.; Graves, A.; Palma, J.H.; Moreno, G.; Roces-Díaz, J.V.; Aviron, S.; Chouvardas, D.; Crous-Duran, J.; Ferreiro-Domínguez, N.; de Jalón, S.G. Agroforestry is paying off—Economic evaluation of ecosystem services in European landscapes with and without agroforestry systems. Ecosyst. Serv. 2019, 36, 100896. [Google Scholar] [CrossRef]
- Campos, P.; Oviedo, J.L.; Álvarez, A.; Mesa, B.; Caparrós, A. The role of non-commercial intermediate services in the valuations of ecosystem services: Application to cork oak farms in Andalusia, Spain. Ecosyst. Serv. 2019, 39, 100996. [Google Scholar] [CrossRef]
- Alkemade, R.; Burkhard, B.; Crossman, N.D.; Nedkov, S.; Petz, K. Quantifying ecosystem services and indicators for science, policy and practice. Ecol. Indic. 2014, 37, 161–162. [Google Scholar] [CrossRef]
- Burkhard, B.; Crossman, N.; Nedkov, S.; Petz, K.; Alkemade, R. Mapping and modelling ecosystem services for science, policy and practice. Ecosyst. Serv. 2013, 4, 1–3. [Google Scholar] [CrossRef]
- Crossman, N.D.; Burkhard, B.; Nedkov, S.; Willemen, L.; Petz, K.; Palomo, I.; Drakou, E.G.; Martín-Lopez, B.; McPhearson, T.; Boyanova, K.; et al. A blueprint for mapping and modelling ecosystem services. Ecosyst. Serv. 2013, 4, 4–14. [Google Scholar] [CrossRef]
- Burkhard, B.; Kroll, F.; Müller, F.; Windhorst, W. Landscapes’ capacities to provide ecosystem services—A concept for land-cover based assessments. Landsc. Online 2009, 15, 1–22. [Google Scholar] [CrossRef]
- Eigenbrod, F.; Armsworth, P.R.; Anderson, B.J.; Heinemeyer, A.; Gillings, S.; Roy, D.B.; Thomas, C.D.; Gaston, K.J. The impact of proxy-based methods on mapping the distribution of ecosystem services. J. Appl. Ecol. 2010, 47, 377–385. [Google Scholar] [CrossRef]
- Egoh, B.N.; Drakou, E.; Dunbar, M.B.; Maes, J.; Willemen, L. Indicators for Mapping Ecosystem Services: A Review; Publications Office of the European Union: Luxembourg, 2012. [Google Scholar]
- Martínez-Harms, M.J.; Balvanera, P. Methods for mapping ecosystem service supply: A review. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 17–25. [Google Scholar] [CrossRef]
- Metzger, M.J.; Rounsevell, M.D.A.; Acosta-Michlik, L.; Leemans, R.; Schröter, D. The vulnerability of ecosystem services to land use change. Agric. Ecosyst. Environ. 2006, 114, 69–85. [Google Scholar] [CrossRef]
- Naidoo, R.; Balmford, A.; Costanza, R.; Fisher, B.; Green, R.E.; Lehner, B.; Malcolm, T.R.; Ricketts, T.H. Global mapping of ecosystem services and conservation priorities. Proc. Natl. Acad. Sci. USA 2008, 105, 9495. [Google Scholar] [CrossRef]
- Volk, M. Modelling ecosystem services—Challenges and promising future directions. Sustain. Water Qual. Ecol. 2013, 1–2, 3–9. [Google Scholar] [CrossRef]
- Kareiva, P. Natural Capital: Theory and Practice of Mapping Ecosystem Services; Oxford University Press: Oxford, UK, 2011. [Google Scholar]
- Lonsdorf, E.; Kremen, C.; Ricketts, T.; Winfree, R.; Williams, N.; Greenleaf, S. Modelling pollination services across agricultural landscapes. Ann. Bot. 2009, 103, 1589–1600. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Battaglia, M.; Sands, P.; White, D.; Mummery, D. CABALA: A linked carbon, water and nitrogen model of forest growth for silvicultural decision support. For. Ecol. Manag. 2004, 193, 251–282. [Google Scholar] [CrossRef]
- Ensis. SPIF: The Scenario Planning and Investment Framework Tool. In Commerical Environmental Forestry: Integrating Trees into Landscapes for Multiple Benefits; Summary Technical Report June 2006; Ensis (the joint forces of CSIRO and Scion): Victoria, Australia, 2006. [Google Scholar]
- Private Forests Tasmania. The Farm Forestry Toolbox Version 5.0: An Aid to Successfully Growing Trees on Farms; Private Forests Tasmania: Tasmania, Australia, 2008.
- Young, A.; Menz, K.M.; Muraya, P.; Smith, C. SCUAF-Version 4: A Model to Estimate Soil Changes under Agriculture, Agroforestry and Forestry; ACIAR: Canberra, Australia, 1998; p. 49.
- van der Werf, W.; Keesman, K.; Burgess, P.; Graves, A.; Pilbeam, D.; Incoll, L.; Metselaar, K.; Mayus, M.; Stappers, R.; van Keulen, H. Yield-SAFE: A parameter-sparse, process-based dynamic model for predicting resource capture, growth, and production in agroforestry systems. Ecol. Eng. 2007, 29, 419–433. [Google Scholar] [CrossRef] [Green Version]
- Keating, B.A.; Carberry, P.S.; Hammer, G.L.; Probert, M.E.; Robertson, M.J.; Holzworth, D.; Huth, N.I.; Hargreaves, J.N.; Meinke, H.; Hochman, Z. An overview of APSIM, a model designed for farming systems simulation. Eur. J. Agron. 2003, 18, 267–288. [Google Scholar] [CrossRef] [Green Version]
- Warner, A. Farm Forestry Toolbox Version 5.0: Helping Australian Growers to Manage Their Trees: A Report for the RIRDC/L & WA/FWPRDC Joint Venture Agroforestry Program; Rural Industries Research and Development Corporation: Canberra, Australia, 2007. [Google Scholar]
- USDA Forest Service. i-Tree: Tools for Assessing and Managing Forests and Community Trees. Available online: https://www.itreetools.org/about.php (accessed on 3 February 2019).
- Sandhu, H.S.; Wratten, S.D.; Cullen, R.; Case, B. The future of farming: The value of ecosystem services in conventional and organic arable land. An experimental approach. Ecol. Econ. 2008, 64, 835–848. [Google Scholar] [CrossRef]
- Porter, J.; Costanza, R.; Sandhu, H.; Sigsgaard, L.; Wratten, S. The value of producing food, energy, and ecosystem services within an agro-ecosystem. Ambio 2009, 38, 186–193. [Google Scholar] [CrossRef]
- Crossman, N.D.; Connor, J.D.; Bryan, B.A.; Summers, D.M.; Ginnivan, J. Reconfiguring an irrigation landscape to improve provision of ecosystem services. Ecol. Econ. 2010, 69, 1031–1042. [Google Scholar] [CrossRef]
- Petz, K.; van Oudenhoven, A.P. Modelling land management effect on ecosystem functions and services: A study in the Netherlands. Int. J. Biodivers. Sci. Ecosyst. Serv. Manag. 2012, 8, 135–155. [Google Scholar] [CrossRef]
- Fisher, I. The Nature of Capital and Income; The Macmillan Company: New York, NY, USA, 1906. [Google Scholar]
- Krutilla, J.V. Conservation reconsidered. Am. Econ. Rev. 1967, 57, 777–786. [Google Scholar]
- Fenichel, E.P.; Abbott, J.K.; Yun, S.D. Chapter 3—The nature of natural capital and ecosystem income. In Handbook of Environmental Economics; Dasgupta, P., Pattanayak, S.K., Smith, V.K., Eds.; Elsevier: Amsterdam, The Netherlands, 2018; Volume 4, pp. 85–142. [Google Scholar]
- Pezzey, J.C.; Toman, M.A. Sustainability and its economic interpretations. In Scarcity and Growth Revisited—Natural Resources and the Environment in the New Millenium; Resources for the Future: Washington, DC, USA, 2005. [Google Scholar]
- Pearce, D.; Moran, D. The Economic Value of Biodiversity; Routledge: London, UK, 2013. [Google Scholar]
- Pascual, U.; Muradian, R.; Brander, L.; Gómez-Baggethun, E.; Martín-López, B.; Verma, M.; Armsworth, P.; Christie, M.; Cornelissen, H.; Eppink, F. The economics of valuing ecosystem services and biodiversity. In The Economics of Ecosystems and Biodiversity: Ecological and Economic Foundations; Taylor and Francis: London, UK, 2010; pp. 183–256. [Google Scholar] [CrossRef]
- Thompson, D.; George, B. Financial and economic evaluation of agroforestry. In Agroforestry for Natural Resource Management; CSIRO Publishing: Canberra, Australia, 2009; pp. 283–308. [Google Scholar]
- Stainback, G.A.; Alavalapati, J.R.R.; Shrestha, R.K.; Larkin, S.; Wong, G. Improving Environmental Quality in South Florida through Silvopasture: An Economic Approach. J. Agric. Appl. Econ. 2004, 36, 481–489. [Google Scholar] [CrossRef]
- Kulshreshtha, S.; Kort, J. External economic benefits and social goods from prairie shelterbelts. Agrofor. Syst. 2009, 75, 39–47. [Google Scholar] [CrossRef]
- Oviedo, J.L.; Huntsinger, L.; Campos, P. The Contribution of Amenities to Landowner Income: Cases in Spanish and Californian Hardwood Rangelands. Rangel. Ecol. Manag. 2017, 70, 518–528. [Google Scholar] [CrossRef]
- Morse, R.; Calderone, N. The value of honey bee pollination in the United States. Bee Cult. 2000, 128, 1–15. [Google Scholar]
- Wilson, S.J. Ontario’s Wealth, Canada’s Future: Appreciating the Value of the Greenbelt’s Eco-Services; David Suzuki Foundation: Vancouver, BC, Canada, 2008. [Google Scholar]
- Winfree, R.; Gross, B.J.; Kremen, C. Valuing pollination services to agriculture. Ecol. Econ. 2011, 71, 80–88. [Google Scholar] [CrossRef]
- Alam, M.; Olivier, A.; Paquette, A.; Dupras, J.; Revéret, J.P.; Messier, C. A general framework for the quantification and valuation of ecosystem services of tree-based intercropping systems. Agrofor. Syst. 2014, 88, 679–691. [Google Scholar] [CrossRef]
- Polyakov, M.; Pannell, D.J.; Pandit, R.; Tapsuwan, S.; Park, G. Capitalized amenity value of native vegetation in a multifunctional rural landscape. Am. J. Agric. Econ. 2015, 97, 299–314. [Google Scholar] [CrossRef]
- Shrestha, R.K.; Alavalapati, J.R.R. Valuing environmental benefits of silvopasture practice: A case study of the Lake Okeechobee watershed in Florida. Ecol. Econ. 2004, 49, 349–359. [Google Scholar] [CrossRef]
- de Jalón, S.G.; Graves, A.; Palma, J.H.; Williams, A.; Upson, M.; Burgess, P.J. Modelling and valuing the environmental impacts of arable, forestry and agroforestry systems: A case study. Agrofor. Syst. 2018, 92, 1059–1073. [Google Scholar] [CrossRef]
- National Australia Bank. Natural Value. Available online: https://www.nab.com.au/about-us/corporate-responsibility/environment/natural-value (accessed on 20 June 2018).
- Cojoianu, T.F.; Ascui, F. Developing an evidence base for assessing natural capital risks and dependencies in lending to Australian wheat farms. J. Sustain. Financ. Invest. 2018, 8, 95–113. [Google Scholar] [CrossRef]
- Ogilvy, S. Developing the ecological balance sheet for agricultural sustainability. Sustain. Acc. Manag. Policy. J. 2015, 6, 110–137. [Google Scholar] [CrossRef]
- Campos, P.; Rodríguez, Y.; Caparrós, A. Towards the dehesa total income accounting: Theory and operative Monfragüe study cases. For. Syst. 2001, 10. [Google Scholar] [CrossRef]
- Caparrós, A.; Campos, P.; Montero, G. An Operative Framework for Total Hicksian Income Measurement: Application to a Multiple-Use Forest. Environ. Resour. Econ. 2003, 26, 173–198. [Google Scholar] [CrossRef]
- Dominati, E.; Mackay, A.; Green, S.; Patterson, M. A soil change-based methodology for the quantification and valuation of ecosystem services from agro-ecosystems: A case study of pastoral agriculture in New Zealand. Ecol. Econ. 2014, 100, 119–129. [Google Scholar] [CrossRef]
- Baker, T.P.; Moroni, M.T.; Mendham, D.S.; Smith, R.; Hunt, M.A. Impacts of windbreak shelter on crop and livestock production. Crop. Pasture. Sci. 2018, 69, 785–796. [Google Scholar] [CrossRef]
- Cleugh, H. Effects of windbreaks on airflow, microclimates and crop yields. Agrofor. Syst. 1998, 41, 55–84. [Google Scholar] [CrossRef]
- Bird, P.R.; Bicknell, D.; Bulman, P.A.; Burke, S.J.A.; Leys, J.F.; Parker, J.N.; Van Der Sommen, F.J.; Voller, P. The role of shelter in Australia for protecting soils, plants and livestock. Agrofor. Syst. 1992, 20, 59–86. [Google Scholar] [CrossRef]
- Olander, L.; Mason, S.; Warnell, K.; Tallis, H. Building Ecosystem Services Conceptual Models; NESP Conceptual Model Series No. 1; Duke University: Durham, NC, USA, 2018. [Google Scholar]
- England, J.R.; O’Grady, A.P.; Fleming, A.; Marais, Z.; Mendham, D. Trees on farms to support natural capital: An evidence-based review for grazed dairy systems. Sci. Total Environ. 2019, unpublished work. [Google Scholar]
- Müller, A.; Knoke, T.; Olschewski, R. Can existing estimates for ecosystem service values inform forest management? Forests 2019, 10, 132. [Google Scholar] [CrossRef]
- Abadi, A.; Lefroy, T.; Cooper, D.; Hean, R.; Davies, C. Profitability of Medium to Low Rainfall Agroforestry in the Cropping Zone; Rural Industries Research and Development Corporation Publication: Barton, Australia, 2003. [Google Scholar]
- Graves, A.R.; Burgess, P.J.; Liagre, F.; Terreaux, J.-P.; Borrel, T.; Dupraz, C.; Palma, J.; Herzog, F. Farm-SAFE: The process of developing a plot-and farm-scale model of arable, forestry, and silvoarable economics. Agrofor. Syst. 2011, 81, 93–108. [Google Scholar] [CrossRef]
- Digital Agriculture Service. DAS Rural Intelligence Platform. Available online: https://digitalagricultureservices.com/platform (accessed on 20 August 2019).
- FarmMap4D. FarmMap4D Spatial Hub Factsheet: Turning Big Data into Better Decisions. Available online: http://www.farmmap4d.com.au/wp-content/uploads/2018/02/Turning-big-data-into-better-decisionsV2.pdf (accessed on 20 August 2019).
Section | Group | Service |
---|---|---|
Provisioning | Cultivated terrestrial plants for nutrition, materials, or energy | Cultivated trees or shrubs grown for nutritional purposes (food), fibres and other materials (timber), or energy (fuel) |
Regulation & Maintenance | Mediation of wastes/toxic substances by living processes | Sequestration of atmospheric carbon |
Mediation of nuisances of anthropogenic origin | Noise attenuation Visual screening | |
Regulation of baseline flows and extreme events | Control of erosion rates Hydrological cycle and water flow regulation (including flood control) Wind protection | |
Lifecycle maintenance, habitat, and gene pool protection | Pollination (habitat for pollinators) | |
Pest and disease control | Pest control (habitat for pest-predators) | |
Regulation of soil quality | Decomposition and fixing processes and their effect on soil quality | |
Water conditions | Regulation of the chemical condition of freshwaters through run-off control and nutrient uptake by trees and shrubs | |
Atmospheric composition and conditions | Regulation of temperature and humidity, including ventilation and transpiration | |
Cultural | Physical and experiential interactions with natural environment | Characteristics of agroforestry systems that enable activities promoting health, recuperation, or enjoyment through active or immersive interactions orpassive or observational interactions |
Intellectual and representative interactions with natural environment | Characteristics of agroforestry systems that are resonant in terms of culture or heritage or enable aesthetic experiences | |
Other biotic characteristics that have a non-use value | Characteristics of agroforestry systems that have an existence value or an option or bequest value |
Valuation Method | Description | Services (See Table 1) that Could Be Valued Using This Method |
---|---|---|
Direct market valuation | Where commercial markets exist for services, market prices can be used to represent their value. | Food, fibre, timber, or fuel from cultivated trees or shrubs. Sequestration of atmospheric carbon |
Production function | Where a service plays an intermediate role in the production of a marketable good, production functions can be used to estimate the contribution of that service as a proportion of the market price. | Pollination (habitat for pollinators), e.g., Morse and Calderone [82]. Regulation of temperature and humidity, including ventilation and transpiration. Wind protection. |
Averted expenditure | Service is valued based on costs associated with declining benefits due to the loss of that service. | Control of erosion rates, e.g., [83]. Regulation of the chemical condition of freshwaters through run-off control and nutrient uptake by trees and shrubs. Hydrological cycle and water flow regulation (including flood control). |
Replacement cost | Service is valued based on the cost of replacing that service entirely with an artificial or technical solution. This method is often employed to value regulating services in agriculture. | Pollination (habitat for pollinators), e.g., Winfree et al. [84]. Pest control (habitat for pest-predators). Decomposition and fixing processes and their effect on soil quality, e.g., Sandhu et al. [68], Alam et al. [85]. Control of erosion rates. Regulation of temperature and humidity, including ventilation and transpiration. |
Revealed preference: hedonic pricing | Estimates the value of people’s preferences for characteristics of a place based on their contribution to property prices. | Various (potentially difficult to isolate value of individual services) e.g., Polyakov et al. [86]. |
Stated preference: contingent valuation or choice experiment | These methods use questionnaires about hypothetical scenarios of environmental change to estimate economic value. | Use and non-use values of a broad range of services including: amenity, cultural heritage, recreation, aesthetics, and existence or bequest value, e.g., Shrestha and Alavalapati [87]. |
Benefit transfer | Where resources do not allow for original economic valuation using one of the above methods, it is possible to use data from comparable studies to value services. | Any of the above |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Marais, Z.E.; Baker, T.P.; O’Grady, A.P.; England, J.R.; Tinch, D.; Hunt, M.A. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests 2019, 10, 980. https://doi.org/10.3390/f10110980
Marais ZE, Baker TP, O’Grady AP, England JR, Tinch D, Hunt MA. A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests. 2019; 10(11):980. https://doi.org/10.3390/f10110980
Chicago/Turabian StyleMarais, Zara E., Thomas P. Baker, Anthony P. O’Grady, Jacqueline R. England, Dugald Tinch, and Mark A. Hunt. 2019. "A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale" Forests 10, no. 11: 980. https://doi.org/10.3390/f10110980
APA StyleMarais, Z. E., Baker, T. P., O’Grady, A. P., England, J. R., Tinch, D., & Hunt, M. A. (2019). A Natural Capital Approach to Agroforestry Decision-Making at the Farm Scale. Forests, 10(11), 980. https://doi.org/10.3390/f10110980