Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Samples and Collection of PM2.5
2.2. Extraction and Analysis of Water-Soluble Inorganic Ions
2.3. Calculation of Emission Factors for Water-Soluble Ions in PM2.5
2.4. Statistical Analysis
3. Results
3.1. Emission of PM2.5 and Water-Soluble Inorganic Ions
3.2. EF of Water-Soluble Ions in Relation to Combustion of Leaves and Branches
3.3. EF of Water-Soluble Ions in PM2.5 Emitted During Smoldering and Flaming
3.4. Correlation Between Ionic Species in PM2.5
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Ito, A.; Penner, J.E. Historical emissions of carbonaceous aerosols from biomass and fossil fuel burning for the period 1870–2000. Glob. Biogeochem. Cycles 2005, 19, 273–280. [Google Scholar] [CrossRef]
- Deng, C.R. Identification of Biomass Burning Source in Aerosols and the Formation Mechanism of Haze. Ph.D. Thesis, Fudan University, Shanghai, China, April 2011. [Google Scholar]
- Deng, X.-L.; Shi, C.; Wu, B.-W.; Yang, Y.-J.; Jin, Q.; Wang, H.-L.; Zhu, S.; Yu, C. Characteristics of the water-soluble components of aerosol particles in Hefei, China. J. Environ. Sci 2016, 42, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Xing, Z.; Deng, J.; Du, K. Characterizing and sourcing ambient PM2.5 over key emission regions in China I: Water-soluble ions and carbonaceous fractions. Atmos. Environ. 2016, 135, 20–30. [Google Scholar] [CrossRef]
- Elias, P.E.; Burger, J.A.; Adams, M.B. Acid deposition effects on forest composition and growth on the Monongahela National Forest, West Virginia. Ecol. Manag. 2009, 258, 2175–2182. [Google Scholar] [CrossRef]
- Fana, H.B.; Wang, Y.H. Effects of simulated acid rain on germination, foliar damage, chlorophyll contents and seedling growth of five hardwood species growing in China. Ecol. Manag. 2000, 126, 321–329. [Google Scholar] [CrossRef]
- Hu, Y.; Bellaloui, N.; Tigabu, M.; Wang, J.; Diao, J.; Wang, K.; Yang, R.; Sun, G. Gaseous NO2 effects on stomatal behavior, photosynthesis and respiration of hybrid poplar leaves. Acta Physiol. Plant. 2015, 37, 39. [Google Scholar] [CrossRef]
- Wang, H.L.; Zhu, B.; Shen, L.J.; Kang, H.Q. Size distributions of aerosol and water-soluble ions in Nanjing during a crop residual burning event. J. Environ. Sci. 2012, 24, 1457–1465. [Google Scholar] [CrossRef]
- Park, S.S.; Sim, S.Y.; Bae, M.S.; Schauer, J.J. Size distribution of water-soluble components in particulate matter emitted from biomass burning. Atmos. Environ. 2013, 73, 62–72. [Google Scholar] [CrossRef]
- Contini, D.; Cesari, D.; Genga, A.; Siciliano, M.; Ielpo, P.; Guascito, M.R.; Conte, M. Source apportionment of size-segregated atmospheric particles based on the major water-soluble components in Lecce (Italy). Sci. Total Environ. 2014, 472, 248–261. [Google Scholar] [CrossRef]
- Li, J.; Pósfai, M.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa: 2, Compositions and aging of inorganic particles. J. Geophys. Res. Atmos. 2003, 108, 347–362. [Google Scholar] [CrossRef]
- Liu, G.; Huang, K.; Li, J.H.; Xu, H. Chemical composition of water-soluble ions in smoke emitted from tree branch combustion. Environ. Sci. J. Integr. Environ. Res. 2016, 37, 3737–3742, (In Chinese with English abstract). [Google Scholar]
- Guo, F.; Ju, Y.; Wang, G.; Alvarado, E.C.; Yang, X.; Ma, Y.; Liu, A. Inorganic chemical composition of PM2.5 emissions from the combustion of six main tree species in subtropical China. Atmos. Environ. 2018, 189, 107–115. [Google Scholar] [CrossRef]
- Zheng, H.Q.; Chen, J.P.; Zhang, X.; Zhang, C.A.; Zhang, C.G.; Chen, H. Study on the forecast system of forest fire weather ranks in Fujian. Chin. J. Agrometeorol. 2001, 3, 38–44, (In Chinese with English abstract). [Google Scholar]
- Wu, Z.; He, H.; Yang, J.; Liu, Z.; Liang, Y. Relative effects of climatic and local factors on fire occurrence in boreal forest landscapes of northeastern China. Sci. Total Environ. 2014, 493, 472–480. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Su, Z.; Wang, G.; Sun, L.; Lin, F.; Liu, A.Q. Wildfire ignition in the forests of southeast China: Identifying drivers and spatial distribution to predict wildfire likelihood. Appl. Geogr. 2016, 66, 12–21. [Google Scholar] [CrossRef]
- Guo, F.; Selvaraj, S.; Lin, F.; Wang, G.; Wang, W.; Su, Z.; Liu, A.Q. Geospatial information on geographical and human factors improved anthropogenic fire occurrence modeling in the Chinese boreal forest. Can. J. For. Res. 2016, 46, 582–594. [Google Scholar] [CrossRef] [Green Version]
- Guo, F.T.; Jin, Q.F.; Yang, X.J.; Liu, A.Q. An Air Compression System that Simulates the Burning of Wild Biomass. China Patent 2016211196373, 2017. [Google Scholar]
- McMeeking, G.R.; Kreidenweis, S.M.; Baker, S.; Carrico, C.M.; Chow, J.C.; Collett, J.L., Jr.; Hao, W.M.; Holden, A.S.; Kirchstetter, T.W.; Malm, W.C.; et al. Emissions of trace gases and aerosols during the open combustion of biomass in the laboratory. J. Geophys. Res. Atmos. 2009, 114, 1–20. [Google Scholar] [CrossRef]
- Akagi, S.K.; Yokelson, R.J.; Wiedinmyer, C.; Alvarado, M.J.; Reid, J.S.; Karl, T.; Crounse, J.D.; Wennberg, P.O. Emission factors for open and domestic biomass burning for use in atmospheric models. Atmos. Chem. Phys. 2011, 11, 27523–27602. [Google Scholar] [CrossRef]
- Zhang, T.; Cao, J.J.; Tie, X.X.; Shen, Z.X.; Liu, S.X.; Ding, H.; Han, Y.M.; Wang, G.H.; Ho, K.F.; Qiang, J.; et al. Water-soluble ions in atmospheric aerosols measured in Xi’an, China: Seasonal variations and sources. Atmos. Res. 2011, 102, 110–119. [Google Scholar] [CrossRef]
- Zhang, J.; Smith, K.R.; Ma, Y.; Ye, S.; Jiang, F.; Qi, W.; Liu, P.; Khalil, M.A.K.; Rasmussen, R.A.; Thorneloe, S.A. Greenhouse gases and other airborne pollutants from household stoves in China: A database for emission factors. Atmos. Environ. 2000, 34, 4537–4549. [Google Scholar] [CrossRef]
- Dhammapala, R.S. Evaluating Emission Factors of PM2.5, Selected PAHS and Phenols from Wheat and Kentucky Bluegrass Stubble Burning in Eastern Washington and Northern Idaho. Ph.D. Thesis, Washington State University, Pullman, WA, USA, August 2006. [Google Scholar]
- Sandberg, D.V. Slash fire intensity and smoke emissions. In Proceedings of the Third National Conference on Fire and Forest Meteorology of the American Meteorological Society and the Society of American Foresters, Lake Tahoe, CA, USA, 2–4 April 1974. [Google Scholar]
- Reid, A.M.; Robertson, K.M. Energy content of common fuels in upland pine savannas of the south-eastern US and their application to fire behavior modelling. Int. J. Wildland Fire 2012, 21, 591–595. [Google Scholar] [CrossRef]
- Kauffman, J.B.; Cummings, D.L.; Ward, D.E. Relationships of fire, biomass and nutrient dynamics along a vegetation gradient in the Brazilian cerrado. J. Ecol. 1994, 82, 519–531. [Google Scholar] [CrossRef]
- Alves, C.A.; Gonçalves, C.; Pio, C.A.; Mirante, F.; Caseiro, A.; Tarelho, L.; Freitas, M.C.; Viegas, D.X. Smoke emissions from biomass burning in a Mediterranean shrubland. Atmos. Environ. 2010, 44, 3024–3033. [Google Scholar] [CrossRef]
- Hosseini, S.H.; Urbanski, S.P.; Dixit, P.; Qi, L.; Burling, I.R.; Yokelson, R.J.; Johnson, T.J.; Shrivastava, M.; Jung, H.S.; Weise, D.R.; et al. Laboratory characterization of PM emissions from combustion of wildland biomass fuels. J. Geophys. Res. Atmos. 2013, 118, 9914–9929. [Google Scholar] [CrossRef]
- Urbanski, S.P.; Hao, W.M.; Baker, S. Chemical composition of wildland fire emissions. In Developments in Environmental Science; Bytnerowicz, A., Arbaugh, M., Riebau, A., Andersen, C., Eds.; Elsevier: Amsterdam, The Netherlands, 2009; Volume 8, pp. 79–107. [Google Scholar]
- Allen, A.G.; Miguel, A.H. Biomass burning in the Amazon: Characterization of the ionic component of aerosols generated from flaming and smoldering rainforest and savannah. Environ. Sci. Technol. 1995, 29, 486–493. [Google Scholar] [CrossRef]
- Yamasoe, M.A.; Artaxo, P.; Miguel, A.H.; Allen, A.G. Chemical composition of aerosol particles from direct emissions of vegetation fires in the Amazon Basin: Water-soluble species and trace elements. Atmos. Environ. 2000, 34, 1641–1653. [Google Scholar] [CrossRef]
- Echalar, F.; Gaudichet, A.; Cachier, H.; Artaxo, P. Aerosol emissions by tropical forest and savanna biomass burning: Characteristic trace elements and fluxes. Geophys. Res. Lett. 1995, 22, 3039–3042. [Google Scholar] [CrossRef] [Green Version]
- Vicente, A.; Alves, C.; Calvo, A.I.; Fernandes, A.P.; Nunes, T.; Monteiro, C.; Almeida, S.M.; Pio, C. Emission factors and detailed chemical composition of smoke particles from the 2010 wildfire season. Atmos. Environ. 2013, 71, 295–303. [Google Scholar] [CrossRef]
- Schmidl, C.; Bauer, H.; Dattler, A.; Hitzenberger, R.; Weissenboeck, G.; Marr, L.L.; Puxbaum, H. Chemical characterisation of particle emissions from burning leaves. Atmos. Environ. 2008, 42, 9070–9079. [Google Scholar] [CrossRef]
- Chen, H.J.; Li, Y.Q.; Chen, D.D.; Zhang, Y.; Wu, L.M.; Ji, J.S. Soil phosphorus fractions and their availability in Chinese fir plantations in south China. For. Res. 1996, 9, 121–126. [Google Scholar]
Forest Type | Species | EFPM2.5 (g·kg−1) | EFWSI (g·kg−1) | Heat of Combustion (kJ) |
---|---|---|---|---|
Boreal | Conifer | 9.03 ± 0.97a | 1.03 ± 0.06a | 19 182 ± 294a |
Broadleaved | 4.62 ± 0.38b | 1.51 ± 0.10b | 18 319 ± 264b | |
Mean | 6.83 ± 0.67A | 1.27 ± 0.08A | 18 751 ± 289A | |
Subtropical | Conifer | 1.66 ± 0.31c | 1.11 ± 0.06a | 19 115 ± 286a |
Broadleaved | 2.28 ± 0.37c | 1.05 ± 0.09a | 18 054 ± 293b | |
Mean | 1.97 ± 0.34B | 1.08 ± 0.07B | 18 584 ± 290B |
Forest Type | Species | |||
---|---|---|---|---|
Ions | Boreal | Subtropical | Conifer | Broadleaved |
Na+ | 0.101 ± 0.008a | 0.061 ± 0.005b | 0.067 ± 0.005A | 0.091 ± 0.008B |
NH4+ | 0.083 ± 0.009a | 0.073 ± 0.006a | 0.076 ± 0.006A | 0.079 ± 0.008A |
K+ | 0.326 ± 0.012a | 0.248 ± 0.015b | 0.280 ± 0.015A | 0.292 ± 0.013A |
Mg2+ | 0.085 ± 0.008a | 0.052 ± 0.005b | 0.061 ± 0.005A | 0.073 ± 0.008A |
Ca2+ | 0.125 ± 0.008a | 0.099 ± 0.009b | 0.111 ± 0.008A | 0.112 ± 0.008A |
F− | 0.054 ± 0.004a | 0.109 ± 0.008b | 0.080 ± 0.009A | 0.082 ± 0.006A |
Cl− | 0.392 ± 0.027a | 0.286 ± 0.010b | 0.287 ± 0.011A | 0.374 ± 0.023B |
SO4− | 0.043 ± 0.004a | 0.062 ± 0.010a | 0.033 ± 0.004A | 0.066 ± 0.008B |
NO3− | 0.071 ± 0.009a | 0.041 ± 0.004b | 0.039 ± 0.003A | 0.067 ± 0.008B |
NO2− | 0.041 ± 0.006a | 0.046 ± 0.005a | 0.038 ± 0.004A | 0.047 ± 0.006A |
Within Boreal | Within Subtropical | |||
---|---|---|---|---|
Ions | Conifer | Broadleaved | Conifer | Broadleaved |
Na+ | 0.078 ± 0.006a | 0.117 ± 0.013b | 0.055 ± 0.008A | 0.064 ± 0.006A |
NH4+ | 0.058 ± 0.004a | 0.099 ± 0.014b | 0.094 ± 0.009A | 0.058 ± 0.007B |
K+ | 0.326 ± 0.024a | 0.326 ± 0.012a | 0.234 ± 0.015A | 0.257 ± 0.022A |
Mg2+ | 0.057 ± 0.004a | 0.103 ± 0.012b | 0.065 ± 0.009A | 0.043 ± 0.012B |
Ca2+ | 0.129± 0.011a | 0.122 ± 0.011a | 0.093 ± 0.012A | 0.103± 0.011A |
F− | 0.029 ± 0.003a | 0.070 ± 0.006b | 0.132 ± 0.008A | 0.093 ± 0.011B |
Cl− | 0.275 ± 0.018a | 0.470 ± 0.037b | 0.299 ± 0.012A | 0.278 ± 0.016A |
SO4− | 0.017 ± 0.001a | 0.060 ± 0.005b | 0.048 ± 0.006A | 0.071 ± 0.016A |
NO3− | 0.039 ± 0.005a | 0.092 ± 0.013b | 0.038 ± 0.005A | 0.043 ± 0.006A |
NO2− | 0.022 ± 0.003a | 0.053 ± 0.009b | 0.053 ± 0.006A | 0.041 ± 0.007A |
Boreal Species | Sub-Tropical Species | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
F− | Cl− | SO42− | NO3− | NO2− | F− | Cl− | SO42− | NO3− | NO2− | ||
Na+ | 0.58 * | 0.18 | 0.82 ** | 0.53 * | 0.81 ** | Na+ | 0.14 | 0.02 | 0.41 | 0.53 * | 0.14 |
NH4+ | 0.58 * | 0.55 * | 0.79 ** | 0.80 ** | 0.86 ** | NH4+ | 0.95 ** | 0.77 ** | 0.34 | −0.10 | 0.77 ** |
K+ | −0.23 | −0.06 | 0.18 | 0.19 | 0.07 | K+ | 0.21 | 0.21 | 0.41 | 0.71 ** | 0.23 |
Mg2+ | 0.69 ** | 0.54 * | 0.85 ** | 0.74 ** | 0.89 ** | Mg2+ | 0.78 ** | 0.57 * | 0.46 | −0.17 | −0.61 |
Ca2+ | −0.28 | 0.36 | −0.23 | 0.57 * | 0.29 | Ca2+ | 0.55 * | 0.69 ** | 0.91 ** | 0.57 * | 0.70 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Tigabu, M.; Guo, X.; Zheng, W.; Guo, L.; Guo, F. Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests 2019, 10, 994. https://doi.org/10.3390/f10110994
Ma Y, Tigabu M, Guo X, Zheng W, Guo L, Guo F. Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests. 2019; 10(11):994. https://doi.org/10.3390/f10110994
Chicago/Turabian StyleMa, Yuanfan, Mulualem Tigabu, Xinbin Guo, Wenxia Zheng, Linfei Guo, and Futao Guo. 2019. "Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment" Forests 10, no. 11: 994. https://doi.org/10.3390/f10110994
APA StyleMa, Y., Tigabu, M., Guo, X., Zheng, W., Guo, L., & Guo, F. (2019). Water-Soluble Inorganic Ions in Fine Particulate Emission During Forest Fires in Chinese Boreal and Subtropical Forests: An Indoor Experiment. Forests, 10(11), 994. https://doi.org/10.3390/f10110994