Microsatellite and Morphological Analyses Reveal Unexpected Diversity in Lymantria dispar in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specimen Collection and DNA Extraction
2.2. Microsatellite Loci and PCR Amplification
2.3. Analysis of Genetic Diversity
2.4. Population Genetic Structure
2.5. Measurements of Morphological Characteristics and Statistical Analyses
3. Results
3.1. Population Genetic Diversity and Differentiation
3.2. Genetic Structure and Variation
3.3. Morphological Analysis
4. Discussion
4.1. Genetic Variation in Gypsy Moth Populations
4.2. Other Subspecies Introduced to Eastern Eurasia
4.3. Morphological Diversity
4.4. Unique Clusters in Southern China
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Arbogast, B.S. Phylogeography: The history and formation of species. Am. Zool. 2001, 41, 134–135. [Google Scholar] [CrossRef]
- Avise, J.C. Phylogeography: Retrospect and prospect. J. Biogeogr. 2009, 36, 3–15. [Google Scholar] [CrossRef]
- Gugger, P.F.; Ikegami, M.; Sork, V.L. Influence of late Quaternary climate change on present patterns of genetic variation in valley oak, Quercus lobata Née. Mol. Ecol. 2013, 22, 3598–3612. [Google Scholar] [CrossRef] [PubMed]
- Alström, P.; Rasmussen, P.C.; Olsson, U.; Sundberg, P. Species delimitation based on multiple criteria: The Spotted Bush Warbler Bradypterus thoracicus complex (Aves: Megaluridae). Zool. J. Linn. Soc. 2008, 154, 291–307. [Google Scholar] [CrossRef]
- Bond, J.E.; Stockman, A.K. An integrative method for delimiting cohesion species: Finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring. Syst. Biol. 2008, 57, 628–646. [Google Scholar] [CrossRef]
- Dayrat, B. Towards integrative taxonomy. Biol. J. Linn. Soc. 2005, 85, 407–417. [Google Scholar] [CrossRef]
- Padial, J.M.; Miralles, A.; De la Riva, I.; Vences, M. The integrative future of taxonomy. Front. Zool. 2010, 7, 16. [Google Scholar] [CrossRef]
- Wilson, J.; Landry, J.-F.; Janzen, D.; Hallwachs, W.; Nazari, V.; Hajibabaei, M.; Hebert, P. Identity of the ailanthus webworm moth (Lepidoptera, Yponomeutidae), a complex of two species: Evidence from DNA barcoding, morphology and ecology. ZooKeys 2010, 46, 41. [Google Scholar] [CrossRef]
- Lumley, L.M.; Sperling, F.A. Integrating morphology and mitochondrial DNA for species delimitation within the spruce budworm (Choristoneura fumiferana) cryptic species complex (Lepidoptera: Tortricidae). Syst. Entomol. 2010, 35, 416–428. [Google Scholar] [CrossRef]
- Yang, Z.; Landry, J.F.; Handfield, L.; Zhang, Y.; Alma Solis, M.; Handfield, D.; Scholtens, B.G.; Mutanen, M.; Nuss, M.; Hebert, P.D. DNA barcoding and morphology reveal three cryptic species of Anania (Lepidoptera: Crambidae: Pyraustinae) in North America, all distinct from their European counterpart. Syst. Entomol. 2012, 37, 686–705. [Google Scholar] [CrossRef]
- Ortiz-Sepulveda, C.M.; Van Bocxlaer, B.; Meneses, A.D.; Fernández, F. Molecular and morphological recognition of species boundaries in the neglected ant genus Brachymyrmex (Hymenoptera: Formicidae): Toward a taxonomic revision. Org. Divers. Evol. 2019, 19, 447–542. [Google Scholar] [CrossRef]
- Drotz, M.K. Speciation and mitochondrial DNA diversification of the diving beetles Agabus bipustulatus and A. wollastoni (Coleoptera, Dytiscidae) within Macaronesia. Biol. J. Linn. Soc. 2003, 79, 653–666. [Google Scholar] [CrossRef]
- Magniez-Jannin, F.; David, B.; Dommergues, J.-L.; Su, Z.-H.; Okada, T.S.; Osawa, S. Analysing disparity by applying combined morphological and molecular approaches to French and Japanese carabid beetles. Biol. J. Linn. Soc. 2000, 71, 343–358. [Google Scholar] [CrossRef]
- Weirauch, C.; Schuh, R.T.; Cassis, G.; Wheeler, W.C. Revisiting habitat and lifestyle transitions in Heteroptera (Insecta: Hemiptera): Insights from a combined morphological and molecular phylogeny. Cladistics 2019, 35, 67–105. [Google Scholar] [CrossRef]
- Giese, R.; Schneider, M. Cartographic comparisons of Eurasian gypsy moth distribution (Lymantria dispar L.; Lepidoptera: Lymantriidae). Entomol. News 1979, 90, 1–16. [Google Scholar]
- Linnaeus, C.V. Systema Naturae per Regna Tria Naturae, Secundum Classes, Ordines, Genera, Species, cum Characteribus, Differentiis, Synonymis, Locis. Tomus, I. Editio decima, reformata; Impensis Laurentii Salvii: Stockholm, Sweden, 1758. [Google Scholar]
- Zhao, Z. Fauna Sinica: Lymantridae; Science Press: Beijing, China, 2003; pp. 427–433. [Google Scholar]
- Forbush, E.; Fernald, C. The Gypsy Moth and the Brown Tail Moth; Wright and Potter Press: Boston, MA, USA, 1896. [Google Scholar]
- Headlee, T.J. The Present Status of the Gypsy Moth in New Jersey. J. Econ. Entomol. 1921, 14, 172–178. [Google Scholar] [CrossRef]
- Pogue, M.; Schaefer, P.W. A Review of Selected Species of Lymantria Hübner (1819) (Lepidoptera: Noctuidae: Lymantriinae) from Subtropical and Temperate Regions of Asia, Including the Descriptions of Three New Species, Some Potentially Invasive to North America; Forest Health Technology Enterprise Team: Washington, DC, USA, 2007. [Google Scholar]
- China Inspection & Certification Group Inspection and Certification Co., Ltd. Available online: http://insp.ccic.com/ (accessed on 11 March 2019).
- U.S. Department of Agriculture. Available online: https://www.usda.gov/ (accessed on 11 March 2019).
- Bogdanowicz, S.; Wallner, W.; Bell, J.; Odell, T.; Harrison, R. Asian gypsy moths (Lepidoptera: Lymantriidae) in North America: Evidence from molecular data. Ann. Entomol. Soc. Am. 1993, 86, 710–715. [Google Scholar] [CrossRef]
- Garner, K.; Slavicek, J. Identification and characterization of a RAPD-PCR marker for distinguishing Asian and North American gypsy moths. Insect Mol. Biol. 1996, 5, 81–91. [Google Scholar] [CrossRef]
- Reineke, A.; Zebitz, C.P. Suitability of polymerase chain reaction-based approaches for identification of different gypsy moth (Lepidoptera: Lymantriidae) genotypes in central Europe. Ann. Entomol. Soc. Am. 1999, 92, 737–741. [Google Scholar] [CrossRef]
- Schreiber, D.E.; Garner, K.J.; Slavicek, J.M. Identification of three randomly amplified polymorphic DNA-polymerase chain reaction markers for distinguishing Asian and North American gypsy moths (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 1997, 90, 667–674. [Google Scholar] [CrossRef]
- Bogdanowicz, S.; Schaefer, P.; Harrison, R. Mitochondrial DNA variation among worldwide populations of gypsy moths, Lymantria dispar. Mol. Phylogenetics Evol. 2000, 15, 487–495. [Google Scholar] [CrossRef] [PubMed]
- Bogdanowicz, S.; Mastro, V.; Prasher, D.; Harrison, R. Microsatellite DNA variation among Asian and North American gypsy moths (Lepidoptera: Lymantriidae). Ann. Entomol. Soc. Am. 1997, 90, 768–775. [Google Scholar] [CrossRef]
- Keena, M.; Côté, M.-J.; Grinberg, P.; Wallner, W. World distribution of female flight and genetic variation in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2008, 37, 636–649. [Google Scholar] [CrossRef]
- Wu, Y.; Molongoski, J.J.; Winograd, D.F.; Bogdanowicz, S.M.; Louyakis, A.S.; Lance, D.R.; Mastro, V.C.; Harrison, R.G. Genetic structure, admixture and invasion success in a Holarctic defoliator, the gypsy moth (Lymantria dispar, Lepidoptera: Erebidae). Mol. Ecol. 2015, 24, 1275–1291. [Google Scholar] [CrossRef]
- Kang, T.H.; Han, S.H.; Lee, H.S. Genetic structure and demographic history of Lymantria dispar (Linnaeus, 1758) (Lepidoptera: Erebidae) in its area of origin and adjacent areas. Ecol. Evol. 2017, 7, 9162–9178. [Google Scholar] [CrossRef]
- Zahiri, R.; Schmidt, B.C.; Schintlmeister, A.; Yakovlev, R.V.; Rindoš, M. Global phylogeography reveals the origin and the evolutionary history of the gypsy moth (Lepidoptera, Erebidae). Mol. Phylogenetics Evol. 2019, 137, 1–13. [Google Scholar] [CrossRef]
- Allio, R.; Donega, S.; Galtier, N.; Nabholz, B. Large variation in the ratio of mitochondrial to nuclear mutation rate across animals: Implications for genetic diversity and the use of mitochondrial DNA as a molecular marker. Mol. Biol. Evol. 2017, 34, 2762–2772. [Google Scholar] [CrossRef]
- Zhao, J.; Wu, Y.; Kurenshchikov, D.K.; Ilyinykh, A.V.; Shi, J. Underestimated mitochondrial diversity in gypsy moth Lymantria dispar from Asia. Agric. For. Entomol. 2019, 21, 235–242. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, S.; Wang, H.; Wang, M.; Li, G. Mitochondrial Gene Sequence (COI) Reveals the Genetic Structure and Demographic History of Lymantria dispar (Lepidoptera: Erebidae: Lymantriinae) in and around China. Insects 2019, 10, 146. [Google Scholar] [CrossRef]
- Zhang, D.X.; Hewitt, G.M. Nuclear DNA analyses in genetic studies of populations: Practice, problems and prospects. Mol. Ecol. 2003, 12, 563–584. [Google Scholar] [CrossRef]
- Behura, S.K. Molecular marker systems in insects: Current trends and future avenues. Mol. Ecol. 2006, 15, 3087–3113. [Google Scholar] [CrossRef] [PubMed]
- Stewart, D.; Zahiri, R.; Djoumad, A.; Freschi, L.; Lamarche, J.; Holden, D.; Cervantes, S.; Ojeda, D.I.; Potvin, A.; Nisole, A. A multi-species TaqMan PCR assay for the identification of Asian gypsy moths (Lymantria spp.) and other invasive lymantriines of biosecurity concern to North America. PLoS ONE 2016, 11, e0160878. [Google Scholar] [CrossRef] [PubMed]
- Djoumad, A.; Nisole, A.; Zahiri, R.; Freschi, L.; Picq, S.; Gundersen-Rindal, D.E.; Sparks, M.E.; Dewar, K.; Stewart, D.; Maaroufi, H. Comparative analysis of mitochondrial genomes of geographic variants of the gypsy moth, Lymantria dispar, reveals a previously undescribed genotypic entity. Sci. Rep. 2017, 7, 14245. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Picq, S.; Keena, M.; Havill, N.; Stewart, D.; Pouliot, E.; Boyle, B.; Levesque, R.C.; Hamelin, R.C.; Cusson, M. Assessing the potential of genotyping-by-sequencing-derived single nucleotide polymorphisms to identify the geographic origins of intercepted gypsy moth (Lymantria dispar) specimens: A proof-of-concept study. Evol. Appl. 2018, 11, 325–339. [Google Scholar] [CrossRef] [Green Version]
- Zhao, J.; Wang, Y.; Zuo, Y.; Shi, J.; Yu, Y.; Zou, Y.; Ponomarew, V.; Bezborodov, V. Optimization on Rearing Technique of Gypsy Moth on Artificial Diet. J. Northeast For. Univ. 2018, 46, 90–93. [Google Scholar]
- Wilfinger, W.W.; Mackey, K.; Chomczynski, P. Effect of pH and ionic strength on the spectrophotometric assessment of nucleic acid purity. Biotechniques 1997, 22, 474–481. [Google Scholar] [CrossRef]
- Koshio, C.; Tomishima, M.; Shimizu, K.; Kim, H.-S.; Takenaka, O. Microsatellites in the gypsy moth, Lymantria dispar L. (Lepidoptera: Lymantriidae). Appl. Entomol. Zool. 2002, 37, 309–312. [Google Scholar] [CrossRef] [Green Version]
- Hulce, D.; Li, X.; Snyder-Leiby, T.; Liu, C.J. GeneMarker® genotyping software: Tools to increase the statistical power of DNA fragment analysis. J. Biomol. Tech. JBT 2011, 22, S35. [Google Scholar]
- Glaubitz, J.C. Convert: A user-friendly program to reformat diploid genotypic data for commonly used population genetic software packages. Mol. Ecol. Notes 2004, 4, 309–310. [Google Scholar] [CrossRef]
- Van Oosterhout, C.; Hutchinson, W.F.; Wills, D.P.; Shipley, P. MICRO-CHECKER: Software for identifying and correcting genotyping errors in microsatellite data. Mol. Ecol. Notes 2004, 4, 535–538. [Google Scholar] [CrossRef]
- Rousset, F. genepop’007: A complete re-implementation of the genepop software for Windows and Linux. Mol. Ecol. Resour. 2008, 8, 103–106. [Google Scholar] [CrossRef] [PubMed]
- Raymond, M. GENEPOP (version 1.2): Population genetics software for exact tests and ecumenicism. J. Hered. 1995, 86, 248–249. [Google Scholar] [CrossRef]
- Park, S. The Excel Microsatellite Toolkit, version 3.1; Animal Genomics Laboratory, UCD: Dublin, Ireland, 2001. [Google Scholar]
- Botstein, D.; White, R.L.; Skolnick, M.; Davis, R.W. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 1980, 32, 314. [Google Scholar] [PubMed]
- Belkhir, K. GENETIX 4.05, Logiciel sous Windows TM pour la Génétique des Populations. 2004. Available online: http://www. genetix. univ-montp2. fr/genetix/genetix. htm (accessed on 26 April 2019).
- Peakall, R.; Smouse, P.E. GenAlEx 6.5: Genetic analysis in Excel. Population genetic software for teaching and research—An update. Bioinformatics 2012, 28, 2537–2539. [Google Scholar] [CrossRef] [Green Version]
- Peakall, R.; Smouse, P.E. GENALEX 6: Genetic analysis in Excel. Population genetic software for teaching and research. Mol. Ecol. Notes 2006, 6, 288–295. [Google Scholar] [CrossRef]
- Mantel, N. The detection of disease clustering and a generalized regression approach. Cancer Res. 1967, 27, 209–220. [Google Scholar]
- Smouse, P.E.; Long, J.C.; Sokal, R.R. Multiple regression and correlation extensions of the Mantel test of matrix correspondence. Syst. Zool. 1986, 35, 627–632. [Google Scholar] [CrossRef]
- Pritchard, J.K.; Stephens, M.; Donnelly, P. Inference of population structure using multilocus genotype data. Genetics 2000, 155, 945–959. [Google Scholar]
- Evanno, G.; Regnaut, S.; Goudet, J. Detecting the number of clusters of individuals using the software STRUCTURE: A simulation study. Mol. Ecol. 2005, 14, 2611–2620. [Google Scholar] [CrossRef] [Green Version]
- Earl, D.A. STRUCTURE HARVESTER: A website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv. Genet. Resour. 2012, 4, 359–361. [Google Scholar] [CrossRef]
- Jakobsson, M.; Rosenberg, N.A. CLUMPP: A cluster matching and permutation program for dealing with label switching and multimodality in analysis of population structure. Bioinformatics 2007, 23, 1801–1806. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Excoffier, L.; Lischer, H.E. Arlequin suite ver 3.5: A new series of programs to perform population genetics analyses under Linux and Windows. Mol. Ecol. Resour. 2010, 10, 564–567. [Google Scholar] [CrossRef] [PubMed]
- Cornuet, J.M.; Luikart, G. Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 1996, 144, 2001–2014. [Google Scholar] [PubMed]
- Piry, S.; Luikart, G.; Cornuet, J. BOTTLENECK: A computer program for detecting recent reductions in the effective population size using allele frequency data. J. Hered. 1999, 90, 502–503. [Google Scholar] [CrossRef]
- Di Rienzo, A.; Peterson, A.; Garza, J.; Valdes, A.; Slatkin, M.; Freimer, N. Mutational processes of simple-sequence repeat loci in human populations. Proc. Natl. Acad. Sci. USA 1994, 91, 3166–3170. [Google Scholar] [CrossRef] [Green Version]
- Landry, J.-F. Taxonomic review of the leek moth genus Acrolepiopsis (Lepidoptera: Acrolepiidae) in North America. Can. Entomol. 2007, 139, 319–353. [Google Scholar] [CrossRef]
- Nice, C.; Shapiro, A. Molecular and morphological divergence in the butterfly genus Lycaeides (Lepidoptera: Lycaenidae) in North America: Evidence of recent speciation. J. Evol. Biol. 1999, 12, 936–950. [Google Scholar] [CrossRef] [Green Version]
- Team, R. Integrated Development for R.; RStudio. Inc: Boston, MA, USA, 2015. [Google Scholar]
- Nei, M. F-statistics and analysis of gene diversity in subdivided populations. Ann. Hum. Genet. 1977, 41, 225–233. [Google Scholar] [CrossRef]
- Nei, M.; Roychoudhury, A.K. Sampling variances of heterozygosity and genetic distance. Genetics 1974, 76, 379–390. [Google Scholar]
- Li, C.; Horvitz, D. Some methods of estimating the inbreeding coefficient. Am. J. Hum. Genet. 1953, 5, 107–117. [Google Scholar]
- Wright, S. Coefficients of inbreeding and relationship. Am. Nat. 1922, 56, 330–338. [Google Scholar] [CrossRef] [Green Version]
- Wright, S. Evolution and the Genetics of Populations: Variability within and among Natural Populations; University of Chicago Press: Chicago, IL, USA, 1984; Volume 4. [Google Scholar]
- Hughes, A.R.; Inouye, B.D.; Johnson, M.T.; Underwood, N.; Vellend, M. Ecological consequences of genetic diversity. Ecol. Lett. 2008, 11, 609–623. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R. The Genetical Theory of Natural Selection; Oxford University Press: Oxford, UK, 1930. [Google Scholar]
- Reed, D.H.; Frankham, R. Correlation between fitness and genetic diversity. Conserv. Biol. 2003, 17, 230–237. [Google Scholar] [CrossRef]
- Chen, F.; Luo, Y.; Keena, M.A.; Wu, Y.; Wu, P.; Shi, J. DNA barcoding of gypsy moths from China (Lepidoptera: Erebidae) reveals new haplotypes and divergence patterns within gypsy moth subspecies. J. Econ. Entomol. 2015, 109, 366–374. [Google Scholar] [CrossRef] [PubMed]
- Padial, J.M.; De La Riva, I. A response to recent proposals for integrative taxonomy. Biol. J. Linn. Soc. 2010, 101, 747–756. [Google Scholar] [CrossRef] [Green Version]
- Mason, C.; McManus, M. The role of dispersal in the natural spread of the gypsy moth. In Proceedings of the Second IUFRO Conference on Dispersal of Forest Insects: Evaluation, Theory and Management Implications 27–31 August 1979; Washington State University: Washington, DC, USA, 1980; pp. 94–115. [Google Scholar]
- Keena, M.; Grinberg, P.; Wallner, W. Inheritance of female flight in Lymantria dispar (Lepidoptera: Lymantriidae). Environ. Entomol. 2007, 36, 484–494. [Google Scholar] [CrossRef] [Green Version]
- Keena, M.A.; Côté, M.-J.; Grinberg, P.S.; Wallner, W.E. Predicting the Female Flight Capability of Gypsy Moths by Using DNA Markers. In Proceedings of the 21st US Department of Agriculture interagency research forum on invasive species 2010, Annapolis, MD, USA, 12–15 January 2010; Gen. Tech. Rep., NRS-P-75.; McManus, K.A., Gottschalk, K.W., Eds.; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2011; pp. 35–37. [Google Scholar]
- Ao, H.; Dekkers, M.J.; Xiao, G.; Yang, X.; Qin, L.; Liu, X.; Qiang, X.; Chang, H.; Zhao, H. Different orbital rhythms in the Asian summer monsoon records from North and South China during the Pleistocene. Glob. Planet. Chang. 2012, 80, 51–60. [Google Scholar] [CrossRef]
- Shi, J.; Chen, F.; Keena, M.A. Differences in wing morphometrics of Lymantria dispar (Lepidoptera: Erebidae) between populations that vary in female flight capability. Ann. Entomol. Soc. Am. 2015, 108, 528–535. [Google Scholar] [CrossRef] [Green Version]
- Yang, F.; Luo, Y.; Shi, J. The influence of geographic population, age, and mating status on the flight activity of the Asian gypsy moth Lymantria dispar (Lepidoptera: Erebidae) in China. Appl. Entomol. Zool. 2017, 52, 265–270. [Google Scholar] [CrossRef]
- Mittelbach, G.G.; Schemske, D.W.; Cornell, H.V.; Allen, A.P.; Brown, J.M.; Bush, M.B.; Harrison, S.P.; Hurlbert, A.H.; Knowlton, N.; Lessios, H.A. Evolution and the latitudinal diversity gradient: Speciation, extinction and biogeography. Ecol. Lett. 2007, 10, 315–331. [Google Scholar] [CrossRef]
- Huskey, S.H.; Turingan, R.G. Variation in prey-resource utilization and oral jaw gape between two populations of largemouth bass, Micropterus salmoides. Environ. Biol. Fishes 2001, 61, 185–194. [Google Scholar] [CrossRef]
- Ricalde, M.P.; Nava, D.E.; Loeck, A.E.; Donatti, M.G. Temperature-dependent development and survival of Brazilian populations of the Mediterranean fruit fly, Ceratitis capitata, from tropical, subtropical and temperate regions. J. Insect Sci. 2012, 12, 33. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Number | Code | Sampling Location | Longitude | Latitude | N1 | N2 |
---|---|---|---|---|---|---|
1 | HLJ | Hegang, Heilongjiang † | 130°49′44″E | 47°34′39″N | 20 | 10 |
2 | LN | Wafangdian, Liaoning | 121°58′44″E | 39°37′37″N | 10 | |
3 | BJ | Beijing | 116°12′25″E | 40°18′01″N | 10 | |
4 | HB | Zhangjiakou, Hebei † | 115°52′23″E | 41°00′11″N | 20 | 10 |
5 | CRS | Charisuzhen, Tongliao, Inner Mongolia | 123°28′34″E | 43°07′36″N | 20 | |
6 | Kdr | Hulunbeir, Inner Mongolia † | 120°42′43″E | 49°17′08″N | 20 | 10 |
7 | TL | Tongliao, Inner Mongolia | 122°15′47″E | 43°37′02″N | 20 | |
8 | XJ | Urumqi, Xinjiang | 87°56′48″E | 44°10′06″N | 17 | |
9 | AH | Lu’an, Anhui † | 116°30′27″E | 31°45′10″N | 20 | 10 |
10 | SX | Yuncheng, Shanxi | 111°00′14″E | 35°01′21″N | 10 | |
11 | CD | Chengdu, Sichuan † | 104°03′58″E | 30°34′23″N | 20 | 10 |
12 | YN | Lushui, Yunnan † | 98°51′15″E | 25°51′03″N | 20 | 10 |
13 | XF | Xifeng, Guizhou † | 106°44′25″E | 27°05′25″N | 20 | 10 |
14 | ZY | Zunyi, Guizhou † | 106°56′14″E | 27°42′23″N | 20 | 4 |
15 | RM | Primorsky Krai, Russia † | 132°00′40″E | 43°11′11″N | 20 | 10 |
16 | Hu | Honshu, Japan † | 139°02′35″E | 35°04′28″N | 20 | 10 |
17 | RBI | Shira, Russia † | 89°57′52″E | 54°30′06″N | 20 | 10 |
18 | MA | Massachusetts, USA | 71°50′02″W | 42°30′30″N | 20 | |
19 | NC | North Carolina, USA | 83°14′36″W | 35°42′06″N | 20 | |
20 | CT | Connecticut, USA † | 72°41′27″W | 41°37′39″N | 20 | 10 |
21 | JL | Lithuania | 25°14′12″E | 54°41′09″N | 20 | |
22 | KG | Greece † | 22°41′10″E | 39°48′06″N | 20 | 10 |
23 | FR | France † | 02°43′58″E | 48°52′06″N | 20 | 10 |
Locus Name | Motif | Label | Forward Primer | Reverse Primer | Annealing Temperature (°C) |
---|---|---|---|---|---|
10F1 | (AC) | FAM | CGCACAAAGCTCTCAGATGA | CGTTACCGCGTGTCTAGATT | 53 |
49 | (TGA) | HEX | GAAGCCTACATTCAGCAGTTG | GAAATCCGTCCATCCATTTG | 54 |
101 | (TGA) | ROX | AATTTACCCTTGCGTTATGTAGAC | ACATATTCGAACAGTTGTTTCATAA | 54 |
106 | (TGA) | ROX | AGGCTCGATGCCAGTAGTGG | ACAAAGCCAATCGGATAGAACA | 54 |
107 | (GT) | ROX | TCTGAAGCGAGATGAACTGG | TAAGCTTAGACCTCCTCCAG | 53 |
138 | (GT) | HEX | TTCGTTCAGTGAGCGAGAGA | CTCCATACCCCAATCAAGAC | 54 |
202 | (AC) | FAM | TCCCATATCTGTCCACACCA | AATCCATTAAAATCGGTCTAGCC | 53 |
238 | (CA) | HEX | ACTGTTCGTTTATTCAATAGTGTTGG | ATATCCCTTAGTCGCCTTTTACG | 54 |
254 | (CA) | ROX | TACTGTTTGAAGTCGGTTTTGC | GATGACTAGCGTATTCAATACGCA | 54 |
CODE | Na | AP | Rs | D | mPIC | HE | HO | FIS | HWE | TPM |
---|---|---|---|---|---|---|---|---|---|---|
HLJ | 7.33 | 3 | 5.904 | 0.755 | 0.695 | 0.732 | 0.572 | 0.243 | 0.0000 * | 0.8203 |
LN | 5.56 | 2 | 5.556 | 0.714 | 0.636 | 0.672 | 0.589 | 0.175 | 0.0016 * | 1.0000 |
BJ | 4.89 | 2 | 4.889 | 0.644 | 0.570 | 0.614 | 0.678 | −0.052 | 0.2384 | 0.7344 |
HB | 6.44 | 1 | 5.216 | 0.666 | 0.609 | 0.647 | 0.561 | 0.157 | 0.0001 * | 0.8203 |
CRS | 6.67 | 2 | 5.304 | 0.654 | 0.601 | 0.635 | 0.550 | 0.158 | 0.0005 * | 0.6523 |
Kdr | 4.44 | 0 | 3.943 | 0.638 | 0.556 | 0.619 | 0.550 | 0.137 | 0.0200 | 0.0137 ‡ |
TL | 7.33 | 3 | 5.867 | 0.709 | 0.659 | 0.688 | 0.578 | 0.185 | 0.0000 * | 0.7344 |
XJ | 4.89 | 2 | 4.493 | 0.686 | 0.601 | 0.661 | 0.516 | 0.247 | 0.0000 * | 0.0098 ‡‡ |
AH | 7.22 | 3 | 5.749 | 0.700 | 0.649 | 0.680 | 0.611 | 0.127 | 0.0002 * | 0.6523 |
SX | 5.56 | 0 | 5.556 | 0.712 | 0.631 | 0.672 | 0.633 | 0.110 | 0.0255 | 0.3008 |
CD | 7.22 | 5 | 5.863 | 0.746 | 0.688 | 0.724 | 0.589 | 0.211 | 0.0000 * | 0.5703 |
YN | 3.78 | 4 | 3.452 | 0.523 | 0.452 | 0.508 | 0.439 | 0.162 | 0.0020 * | 0.4258 |
XF | 5.44 | 0 | 4.850 | 0.720 | 0.647 | 0.697 | 0.544 | 0.243 | 0.0000 * | 0.0195 ‡ |
ZY | 6.67 | 0 | 5.568 | 0.710 | 0.652 | 0.689 | 0.567 | 0.202 | 0.0000 * | 0.1641 |
RM | 3.67 | 1 | 3.372 | 0.539 | 0.470 | 0.526 | 0.533 | 0.011 | 0.2806 | 0.2500 |
Hu | 2.89 | 0 | 2.646 | 0.493 | 0.403 | 0.479 | 0.439 | 0.110 | 0.0679 | 0.1641 |
RBI | 3.33 | 2 | 3.072 | 0.489 | 0.426 | 0.475 | 0.444 | 0.090 | 0.1005 | 0.5469 |
MA | 2.78 | 0 | 2.559 | 0.479 | 0.382 | 0.465 | 0.422 | 0.118 | 0.0318 | 0.1289 |
NC | 2.89 | 0 | 2.517 | 0.469 | 0.368 | 0.453 | 0.283 | 0.396 | 0.0000 * | 0.2031 |
CT | 2.89 | 0 | 2.708 | 0.488 | 0.404 | 0.473 | 0.378 | 0.226 | 0.0002 * | 0.0039 ‡‡ |
JL | 3.33 | 0 | 3.064 | 0.501 | 0.429 | 0.487 | 0.422 | 0.158 | 0.0733 | 0.3594 |
KG | 3.00 | 0 | 2.579 | 0.367 | 0.311 | 0.356 | 0.311 | 0.152 | 0.0491 | 0.6406 |
FR | 5.22 | 0 | 4.564 | 0.649 | 0.587 | 0.631 | 0.600 | 0.075 | 0.0018 * | 1.0000 |
Source of Variation | d.f. | Sum of Squares | Variance Components | Percentage of Variation (%) | |
---|---|---|---|---|---|
K = 2 | Among groups | 1 | 140.066 | 0.28129 Va | 8.01 * |
Among populations within groups | 21 | 461.404 | 0.52072 Vb | 14.83 * | |
K = 5 | Among groups | 4 | 310.208 | 0.37513 Va | 10.87 * |
Among populations within groups | 18 | 291.261 | 0.36811 Vb | 10.66 * | |
Within populations | 831 | 2251.018 | 2.70881 Vc | 78.47 * | |
Total | 853 | 2852.487 | 3.45204 | — — |
Component 1a | Component 2a | Communality | Component 1b | Component 2b | |
---|---|---|---|---|---|
Eigenvalue | 5.723 | 1.209 | 3.292 | 1.028 | |
Standard deviation | 2.392 | 1.100 | 1.814 | 1.013 | |
Proportion of variance | 0.636 | 0.134 | 0.658 | 0.205 | |
Cumulative proportion | 0.636 | 0.770 | 0.658 | 0.864 | |
Loadings: | |||||
LUNC | 0.371 | 0.109 | 0.802 | 0.503 | 0.150 |
LSAC | 0.352 | 0.109 | 0.722 | ||
LPHA | 0.347 | 0.413 | 0.895 | 0.465 | 0.396 |
WUNC | 0.219 | −0.504 | 0.581 | ||
LVAL | 0.387 | 0.162 | 0.614 | ||
WVAL | 0.320 | −0.150 | 0.889 | 0.444 | −0.201 |
WJUX | 0.351 | −0.114 | 0.722 | ||
LUTS | 0.407 | 0.000 | 0.955 | 0.539 | |
WSAC | 0.170 | −0.696 | 0.751 | 0.208 | −0.883 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zuo, Y.; Kurenshchikov, D.K.; Yu, J.; Zou, Y.; Wang, Y.; Wang, Y.; Shi, J. Microsatellite and Morphological Analyses Reveal Unexpected Diversity in Lymantria dispar in China. Forests 2019, 10, 1100. https://doi.org/10.3390/f10121100
Zuo Y, Kurenshchikov DK, Yu J, Zou Y, Wang Y, Wang Y, Shi J. Microsatellite and Morphological Analyses Reveal Unexpected Diversity in Lymantria dispar in China. Forests. 2019; 10(12):1100. https://doi.org/10.3390/f10121100
Chicago/Turabian StyleZuo, Yifan, D. K. Kurenshchikov, Jinyong Yu, Yuanping Zou, Yiming Wang, Yanjun Wang, and Juan Shi. 2019. "Microsatellite and Morphological Analyses Reveal Unexpected Diversity in Lymantria dispar in China" Forests 10, no. 12: 1100. https://doi.org/10.3390/f10121100
APA StyleZuo, Y., Kurenshchikov, D. K., Yu, J., Zou, Y., Wang, Y., Wang, Y., & Shi, J. (2019). Microsatellite and Morphological Analyses Reveal Unexpected Diversity in Lymantria dispar in China. Forests, 10(12), 1100. https://doi.org/10.3390/f10121100