Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Work and Sampling
2.3. Development of Basal Area Increment (BAI)
2.4. Climate Data
2.5. Assessment of Release Effects
2.6. Statistical Analysis
3. Results
3.1. Growth and Release Patterns
3.2. Growth–Climate Relationship
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Bastin, J.F.; Berrahmouni, N.; Grainger, A.; Maniatis, D.; Mollicone, D.; Moore, R.; Patriarca, C.; Picard, N.; Sparrow, B.; Abraham, E.M. The extent of forest in dryland biomes. Science 2017, 356, 635–638. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rotenberg, E.; Yakir, D. Contribution of semi-arid forests to the climate system. Science 2010, 327, 451–454. [Google Scholar] [CrossRef] [PubMed]
- Schimel, D.S. Drylands in the earth system. Science 2010, 327, 418–419. [Google Scholar] [CrossRef] [PubMed]
- Liu, H.; Park Williams, A.; Allen, C.D.; Guo, D.; Wu, X.; Anenkhonov, O.A.; Liang, E.; Sandanov, D.V.; Yin, Y.; Qi, Z.; et al. Rapid warming accelerates tree growth decline in semi-arid forests of inner Asia. Glob. Chang. Biol. 2013, 19, 2500–2510. [Google Scholar] [CrossRef]
- Poulter, B.; Pederson, N.; Liu, H.; Zhu, Z.; D’Arrigo, R.; Ciais, P.; Davi, N.; Frank, D.; Leland, C.; Myneni, R.; et al. Recent trends in inner Asian forest dynamics to temperature and precipitation indicate high sensitivity to climate change. Agric. Meteorol. 2013, 178, 31–45. [Google Scholar] [CrossRef] [Green Version]
- Liang, E.; Leuschner, C.; Dulamsuren, C.; Wagner, B.; Hauck, M. Global warming-related tree growth decline and mortality on the north-eastern Tibetan plateau. Clim. Chang. 2015, 134, 163–176. [Google Scholar] [CrossRef]
- Jiao, L.; Jiang, Y.; Wang, M.; Kang, X.; Zhang, W.; Zhang, L.; Zhao, S. Responses to climate change in radial growth of Picea schrenkiana along elevations of the eastern Tianshan mountains, Northwest China. Dendrochronologia 2016, 40, 117–127. [Google Scholar] [CrossRef]
- Qi, Z.; Liu, H.; Wu, X.; Hao, Q. Climate-driven speedup of alpine treeline forest growth in the Tianshan mountains, northwestern china. Glob. Chang. Biol. 2015, 21, 816–826. [Google Scholar] [CrossRef]
- Bonan, G.B. Forests and climate change: Forcings, feedbacks, and the climate benefits of forests. Science 2008, 320, 1444–1449. [Google Scholar] [CrossRef] [Green Version]
- Trenberth, K.E.; Dai, A.; Van der Schrier, G.; Jones, P.D.; Barichivich, J.; Briffa, K.R.; Sheffield, J. Global warming and changes in drought. Nat. Clim. Chang. 2014, 4, 17–22. [Google Scholar] [CrossRef]
- Salzer, M.W.; Hughes, M.K.; Bunn, A.G.; Kipfmueller, K.F. Recent unprecedented tree-ring growth in bristlecone pine at the highest elevations and possible causes. Proc. Natl. Acad. Sci. USA 2009, 106, 20348–20353. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zhang, J.; Huang, S.; He, F. Half-century evidence from western Canada shows forest dynamics are primarily driven by competition followed by climate. Proc. Natl. Acad. Sci. USA 2015, 112, 4009–4014. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gómez-Aparicio, L.; García-Valdés, R.; Ruíz-Benito, P.; Zavala, M.A. Disentangling the relative importance of climate, size and competition on tree growth in Iberian forests: Implications for forest management under global change. Glob. Chang Biol. 2011, 17, 2400–2414. [Google Scholar] [CrossRef] [Green Version]
- Jump, A.S.; Hunt, J.M.; Peñuelas, J. Rapid climate change-related growth decline at the southern range edge of Fagus sylvatica. Glob. Chang. Biol. 2006, 12, 2163–2174. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Jia, M.; Wang, G.; Zhu, W.; McDowell, N.G. Rapid warming forces contrasting growth trends of subalpine fir (Abies fabri) at higher- and lower-elevations in the eastern Tibetan plateau. For. Ecol. Manage. 2017, 402, 135–144. [Google Scholar] [CrossRef]
- Huo, Y.; Gou, X.; Liu, W.; Li, J.; Zhang, F.; Fang, K. Climate–growth relationships of schrenk spruce (Picea schrenkiana) along an altitudinal gradient in the western Tianshan mountains, Northwest China. Trees 2017, 31, 429–439. [Google Scholar] [CrossRef] [Green Version]
- Hasenauer, H. Dimensional relationships of open-grown trees in Austria. For. Ecol. Manage. 1997, 96, 197–206. [Google Scholar] [CrossRef]
- Maestre, F.T.; Valladares, F.; Reynolds, J.F. Is the change of plant-plant interactions with abiotic stress predictable? A meta-analysis of field results in arid environments. J. Ecol. 2005, 93, 748–757. [Google Scholar] [CrossRef]
- Poulter, B.; Frank, D.; Ciais, P.; Myneni, R.B.; Andela, N.; Bi, J.; Broquet, G.; Canadell, J.G.; Chevallier, F.; Liu, Y.Y.; et al. Contribution of semi-arid ecosystems to interannual variability of the global carbon cycle. Nature 2014, 509, 600–603. [Google Scholar] [CrossRef] [Green Version]
- He, Z.; Zhao, W.; Liu, H.; Tang, Z. Effect of forest on annual water yield in the mountains of an arid inland river basin: A case study in the pailugou catchment on northwestern china’s qilian mountains. Hydrol. Process. 2012, 26, 613–621. [Google Scholar] [CrossRef]
- Zhang, L.; Yu, P.; Wang, Y.; Wang, S.; Liu, X.; Jin, M.; Zhang, X. Altitudinal changes in structure of middle-aged picea crassifolia forests on the northern slope of the qilian mountains. For. Res. 2015, 28, 557–564. [Google Scholar]
- Sun, F.; Lü, Y.; Wang, J.; Hu, J.; Fu, B. Soil moisture dynamics of typical ecosystems in response to precipitation: A monitoring-based analysis of hydrological service in the qilian mountains. Catena 2015, 129, 63–75. [Google Scholar] [CrossRef]
- Reineke, L.H. Perfecting a stand-density index for even-aged forests. J. Agric. Res. 1933, 46, 627–638. [Google Scholar]
- Holmes, R.L. Computer-assisted quality control in tree-ring dating and measurement. Tree Ring Bull. 1983, 43, 69–78. [Google Scholar]
- Wigley, T.M.; Briffa, K.R.; Jones, P.D. On the average value of correlated time series, with applications in dendroclimatology and hydrometeorology. J. Clim. Appl. Meteorol. 1984, 23, 201–213. [Google Scholar] [CrossRef]
- Lévesque, M.; Saurer, M.; Siegwolf, R.; Eilmann, B.; Brang, P.; Bugmann, H.; Rigling, A.J.G. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Glob. Chang. Biol. 2013, 19, 3184–3199. [Google Scholar] [CrossRef]
- Wang, J.; Wang, Y.; Li, X.; Jing, W.; Ge, S. Water situation and runoff production in the pailougou basin of qilian mountains. J. Glaciol. Geocryol. 2006, 28, 62–69, (In Chinese with English abstract). [Google Scholar]
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The cru ts3. 10 dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Nowacki, G.J.; Abrams, M.D. Radial-growth averaging criteria for reconstructing disturbance histories from presettlement-origin oaks. Ecol. Monogr. 1997, 67, 225–249. [Google Scholar] [CrossRef]
- Wu, X.; Liu, H.; He, L.; Qi, Z.; Anenkhonov, O.A.; Korolyuk, A.Y.; Yu, Y.; Guo, D. Stand-total tree-ring measurements and forest inventory documented climate-induced forest dynamics in the semi-arid Altai mountains. Ecol. Indic. 2014, 36, 231–241. [Google Scholar] [CrossRef]
- Pederson, N.; Varner, J.M., III; Palik, B.J. Canopy disturbance and tree recruitment over two centuries in a managed longleaf pine landscape. For. Ecol. Manage. 2008, 254, 85–95. [Google Scholar] [CrossRef]
- Coomes, D.A.; Allen, R.B. Effects of size, competition and altitude on tree growth. J. Ecol. 2007, 95, 1084–1097. [Google Scholar] [CrossRef]
- Dulamsuren, C.; Hauck, M.; Kopp, G.; Ruff, M.; Leuschner, C. European beech responds to climate change with growth decline at lower, and growth increase at higher elevations in the center of its distribution range (sw Germany). Trees 2016, 31, 673–686. [Google Scholar] [CrossRef]
- Lyu, L.; Suvanto, S.; Nöjd, P.; Henttonen, H.M.; Mäkinen, H.; Zhang, Q.B. Tree growth and its climate signal along latitudinal and altitudinal gradients: Comparison of tree rings between Finland and the Tibetan plateau. Biogeosciences 2017, 14, 3083–3095. [Google Scholar] [CrossRef] [Green Version]
- Körner, C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 2015, 25, 107–114. [Google Scholar] [CrossRef]
- Körner, C.; Paulsen, J. A world-wide study of high altitude treeline temperatures. J. Biogeogr. 2004, 31, 713–732. [Google Scholar] [CrossRef]
- Liang, E.; Camarero, J.J. Threshold-dependent and non-linear associations between temperature and tree growth at and below the alpine treeline. Trees 2017, 32, 661–662. [Google Scholar] [CrossRef]
- Waring, R.H.; Gao, L. Recent reduction in the frequency of frost accounts for most of the increased growth of a high elevation spruce forest in northwestern china. Trees 2016, 30, 1225–1236. [Google Scholar] [CrossRef] [Green Version]
- DeLucia, E.H.; Smith, W.K. Air and soil temperature limitations on photosynthesis in Engelmann spruce during summer. Can. J. For. Res. 1987, 17, 527–533. [Google Scholar] [CrossRef]
- González de Andrés, E.; Camarero, J.J.; Blanco, J.A.; Imbert, J.B.; Lo, Y.H.; Sangüesa-Barreda, G.; Castillo, F.J.; Turnbull, M. Tree-to-tree competition in mixed European beech-scots pine forests has different impacts on growth and water-use efficiency depending on site conditions. J. Ecol. 2018, 106, 59–75. [Google Scholar] [CrossRef] [Green Version]
- Ford, K.R.; Breckheimer, I.K.; Franklin, J.F.; Freund, J.A.; Kroiss, S.J.; Larson, A.J.; Theobald, E.J.; HilleRisLambers, J. Competition alters tree growth responses to climate at individual and stand scales. Can. J. For. Res. 2017, 47, 53–62. [Google Scholar] [CrossRef] [Green Version]
- Lechuga, V.; Carraro, V.; Vinegla, B.; Carreira, J.A.; Linares, J.C. Managing drought-sensitive forests under global change. Low competition enhances long-term growth and water uptake in abies pinsapo. For. Ecol. Manage. 2017, 406, 72–82. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T.; Xu, G.; Wu, M.; Zhang, G.; Li, C.; Wu, G. Anthropogenic-management could mitigate declines in growth and survival of Qinghai spruce (Picea crassifolia) in the east qilian mountains, northeast Tibetan plateau. Agric. Meteorol. 2018, 250, 118–126. [Google Scholar] [CrossRef]
- Primicia, I.; Camarero, J.J.; Janda, P.; Čada, V.; Morrissey, R.C.; Trotsiuk, V.; Bače, R.; Teodosiu, M.; Svoboda, M.J.F.E. Management. Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. For. Ecol. Manage. 2015, 354, 77–86. [Google Scholar] [CrossRef]
- Sánchez-Salguero, R.; Linares, J.C.; Camarero, J.J.; Madrigal-González, J.; Hevia, A.; Sánchez-Miranda, Á.; Ballesteros-Cánovas, J.A.; Alfaro-Sánchez, R.; García-Cervigón, A.I.; Bigler, C.; et al. Disentangling the effects of competition and climate on individual tree growth: A retrospective and dynamic approach in scots pine. For. Ecol. Manage. 2015, 358, 12–25. [Google Scholar] [CrossRef]
- Wang, Y.; Pederson, N.; Ellison, A.M.; Buckley, H.L.; Case, B.S.; Liang, E.; Julio Camarero, J. Increased stem density and competition may diminish the positive effects of warming at alpine treeline. Ecology 2016, 97, 1668–1679. [Google Scholar] [CrossRef] [Green Version]
- Linares, J.C.; Camarero, J.J.; Carreira, J.A. Competition modulates the adaptation capacity of forests to climatic stress: Insights from recent growth decline and death in relict stands of the mediterranean fir abies pinsapo. J. Ecol. 2010, 98, 592–603. [Google Scholar] [CrossRef]
- Aldea, J.; Bravo, F.; Bravo-Oviedo, A.; Ruiz-Peinado, R.; Rodríguez, F.; Del Rio, M. Thinning enhances the species-specific radial increment response to drought in mediterranean pine-oak stands. Agric. Meteorol. 2017, 237, 371–383. [Google Scholar] [CrossRef]
- Magruder, M.; Chhin, S.; Palik, B.; Bradford, J.B. Thinning increases climatic resilience of red pine. Can. J. For. Res. 2013, 43, 878–889. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T.; Wu, G.; Xu, G.; Zhang, Y.; Gao, H.; Zhang, Y.; Feng, Q. Qinghai spruce (Picea crassifolia) growth–climate response between lower and upper elevation gradient limits: A case study along a consistent slope in the mid-qilian mountains region. Environ. Earth Sci. 2016, 75, 236. [Google Scholar] [CrossRef]
- Ek, A.R.; Dudek, A. Development of Individual Tree Based Stand Growth Simulators: Progress and Applications; Collage of Forestry, Department of Forest Resources Staff Paper Series No. 20; University of Minnesota: Minneapolis, MN, USA, 1980. [Google Scholar]
- Berger, U.; Hildenbrandt, H. A new approach to spatially explicit modelling of forest dynamics: Spacing, ageing and neighbourhood competition of mangrove trees. Ecol. Model. 2000, 132, 287–302. [Google Scholar] [CrossRef]
- Tian, H.; Chen, G.; Liu, M.; Zhang, C.; Sun, G.; Lu, C.; Xu, X.; Ren, W.; Pan, S.; Chappelka, A. Model estimates of net primary productivity, evapotranspiration, and water use efficiency in the terrestrial ecosystems of the southern united states during 1895–2007. For. Ecol. Manage. 2010, 259, 1311–1327. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Chen, G.; Xu, X.; Liu, M.; Ren, W.; Tao, B.; Sun, G.; Pan, S.; Liu, J. Climate and land use controls over terrestrial water use efficiency in monsoon Asia. Ecohydrology 2011, 4, 322–340. [Google Scholar] [CrossRef]
- Cramer, W.; Kicklighter, D.W.; Bondeau, A.; Iii, B.M.; Churkina, G.; Nemry, B.; Ruimy, A.; Schloss, A.L. Comparing global models of terrestrial net primary productivity (npp): Overview and key results. Glob. Chang. Biol. 1999, 5, 1–15. [Google Scholar] [CrossRef]
- Kucharik, C.J.; Foley, J.A.; Delire, C.; Fisher, V.A.; Coe, M.T.; Lenters, J.D.; Young-Molling, C.; Ramankutty, N.; Norman, J.M.; Gower, S.T. Testing the performance of a dynamic global ecosystem model: Water balance, carbon balance, and vegetation structure. Glob. Ecol. Biogeogr. 2000, 14, 795–825. [Google Scholar] [CrossRef]
- Thum, T.; MacBean, N.; Peylin, P.; Bacour, C.; Santaren, D.; Longdoz, B.; Loustau, D.; Ciais, P. The potential benefit of using forest biomass data in addition to carbon and water flux measurements to constrain ecosystem model parameters: Case studies at two temperate forest sites. Agric. Meteorol. 2017, 234, 48–65. [Google Scholar] [CrossRef]
- Clark, J.S.; Bell, D.M.; Hersh, M.H.; Nichols, L. Climate change vulnerability of forest biodiversity: Climate and competition tracking of demographic rates. Glob. Chang. Biol. 2011, 17, 1834–1849. [Google Scholar] [CrossRef]
- Collalti, A.; Trotta, C.; Keenan, T.F.; Ibrom, A.; Bond-Lamberty, B.; Grote, R.; Vicca, S.; Reyer, C.P.; Migliavacca, M.; Veroustraete, F. Thinning can reduce losses in carbon use efficiency and carbon stocks in managed forests under warmer climate. JAMES 2018, 10, 2427–2452. [Google Scholar] [CrossRef] [Green Version]
- Park, C.E.; Jeong, S.J.; Joshi, M.; Osborn, T.J.; Ho, C.H.; Piao, S.; Chen, D.; Liu, J.; Yang, H.; Park, H.; et al. Keeping global warming within 1.5 °C constrains emergence of aridification. Nat. Clim. Chang. 2018, 8, 70–74. [Google Scholar] [CrossRef] [Green Version]
Altitude (m a.s.l.) | Soil Depth (cm) a | Soil Sand Content (%) a | ANW a,b | Sites | Slope (°) | Aspect (°) | Density (trees/ha) | Canopy Coverage (%) | DBH (cm) | SDI | Height (m) | Crown Ratio (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
2700 | 80 | 34 | 228 | S2700 | 33 | 45 | 2175 | 80 | 11.9 ± 1.6 | 660.7 | 8.2 ± 2.6 | 35.7 ± 20.1 |
O2700 | 25 | 15 | 75 | 25 | 24.9 ± 3.5 | 74.5 | 12.2 ± 3.5 | 70.2 ± 15.1 | ||||
2900 | 60 | 44 | 377 | S2900 | 32 | 24 | 2725 | 90 | 12.0 ± 0.9 | 839.0 | 8.6 ± 2.8 | 34.0 ± 11.5 |
O2900 | 35 | 20 | 100 | 25 | 19.9 ± 3.6 | 69.5 | 11.5 ± 2.6 | 64.5 ± 16.7 | ||||
3100 | 50 | 47 | 587 | S3100 | 32 | 25 | 1150 | 67 | 15.4 ± 1.2 | 528.4 | 8.1 ± 1.9 | 50.2 ± 16.4 |
O3100 | 35 | 22 | 75 | 20 | 16.1 ± 4.1 | 37.0 | 10.5 ± 2.1 | 70.6 ± 15.1 | ||||
3300 | 50 | 58 | 422 | S3300 | 35 | 32 | 375 | 25 | 16.2 ± 1.5 | 186.9 | 6.0 ± 1.6 | 67.7 ± 12.3 |
O3300 | 32 | 30 | 75 | 20 | 17.9 ± 1.9 | 43.8 | 9.6 ± 1.7 | 75.7 ± 11.0 |
Altitudes (m a.s.l.) | Sites | No. of Cores/Trees | Average Age (Age Range) | MS | EPS | SSS > 0.85 |
---|---|---|---|---|---|---|
2700 | S2700 | 45/30 | 62 (51–70) | 0.376 | 0.989 | 1945–2013 |
O2700 | 4/3 | 62 (58–65) | 0.336 | 0.939 | 1949–2013 | |
2900 | S2900 | 73/47 | 62 (52–74) | 0.319 | 0.995 | 1945–2013 |
O2900 | 3/3 | 59 (54–63) | 0.295 | 0.912 | 1954–2013 | |
3100 | S3100 | 25/16 | 59 (40–80) | 0.165 | 0.982 | 1951–2013 |
O3100 | 4/3 | 59 (52–66) | 0.12 | 0.954 | 1950–2013 | |
3300 | S3300 | 10/7 | 55 (41–80) | 0.137 | 0.932 | 1964–2013 |
O3300 | 4/3 | 66 (49–79) | 0.151 | 0.957 | 1940–2013 |
(a) | S2700 | S2900 | S3100 | S3300 | (b) | O2700 | O2900 | O3100 | O3300 | (c) | S2700 | S2900 | S3100 | S3300 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
S2700 | 1 | 0.833 ** | 0.229 | 0.009 | O2700 | 1 | 0.882 ** | 0.745 ** | 0.763 ** | O2700 | 0.018 | |||
S2900 | 1 | 0.594 ** | 0.2 | O2900 | 1 | 0.763 ** | 0.741 ** | O2900 | 0.275 | |||||
S3100 | 1 | 0.75 ** | O3100 | 1 | 0.913 ** | O3100 | 0.624 ** | |||||||
S3300 | 1 | O3300 | 1 | O3300 | 0.868 ** |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Shi, H.; Yu, P.; Wang, Y.; Pan, S.; Wang, B.; Tian, H. Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China. Forests 2019, 10, 1133. https://doi.org/10.3390/f10121133
Zhang L, Shi H, Yu P, Wang Y, Pan S, Wang B, Tian H. Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China. Forests. 2019; 10(12):1133. https://doi.org/10.3390/f10121133
Chicago/Turabian StyleZhang, Lei, Hao Shi, Pengtao Yu, Yanhui Wang, Shufen Pan, Bin Wang, and Hanqin Tian. 2019. "Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China" Forests 10, no. 12: 1133. https://doi.org/10.3390/f10121133
APA StyleZhang, L., Shi, H., Yu, P., Wang, Y., Pan, S., Wang, B., & Tian, H. (2019). Divergent Growth Responses to Warming between Stand-Grown and Open-Grown Trees in a Dryland Montane Forest in Northwestern China. Forests, 10(12), 1133. https://doi.org/10.3390/f10121133