Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Soil Survey and Slope Positions
2.3. Determination of the Density and Stock of Soil Carbon
2.4. Root Density and Biomass Measurement
2.5. Statistical Analysis
3. Results
3.1. Density of Soil Carbon
3.2. Density and Biomass of Roots
3.3. Stock of Soil Carbon
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Factors | Carbon Density | |
Slope position | Middle | Lower |
Upper | 0.072 | 0.027 |
Middle | 0.20 | |
Carbon density | ||
Soil layer | 10–30 cm | 30–100 cm |
0–10 cm | <0.0001 | <0.0001 |
10–30 cm | <0.0001 | |
Dry bulk density | ||
Soil layer | 10–30 cm | 30–100 cm |
0–10 cm | 0.003 | 0.003 |
10–30 cm | 0.44 |
Position | Pit No. | Layer | Carbon Stock (kg C m−2) |
---|---|---|---|
Lower | 2 | 0–10 cm | 3.35 |
10–30 cm | 3.01 | ||
30–100 cm | 5.29 | ||
0–100 cm | 11.65 | ||
3 | 0–10 cm | 2.45 | |
10–30 cm | 2.60 | ||
30–100 cm | 5.72 | ||
0–100 cm | 10.76 | ||
4 | 0–10 cm | 2.62 | |
10–30 cm | 2.98 | ||
30–100 cm | 6.76 | ||
0–100 cm | 12.36 | ||
9 | 0–10 cm | 2.76 | |
10–30 cm | 2.71 | ||
30–100 cm | 6.15 | ||
0–100 cm | 11.62 | ||
Middle | 1 | 0–10 cm | 3.08 |
10–30 cm | 5.12 | ||
30–100 cm | 6.89 | ||
0–100 cm | 15.09 | ||
5 | 0–10 cm | 2.41 | |
10–30 cm | 3.30 | ||
30–100 cm | 5.56 | ||
0–100 cm | 11.27 | ||
6 | 0–10 cm | 2.75 | |
10–30 cm | 4.59 | ||
30–100 cm | 5.67 | ||
0–100 cm | 13.00 | ||
7 | 0–10 cm | 2.65 | |
10–30 cm | 2.89 | ||
30–100 cm | 7.06 | ||
0–100 cm | 12.6 | ||
8 | 0–10 cm | 3.31 | |
10–30 cm | 3.76 | ||
30–100 cm | 6.81 | ||
0–100 cm | 13.88 | ||
Upper | 10 | 0–10 cm | 2.85 |
10–30 cm | 4.56 | ||
30–100 cm | 7.27 | ||
0–100 cm | 14.67 | ||
11 | 0–10 cm | 4.35 | |
10–30 cm | 4.79 | ||
30–100 cm | 7.28 | ||
0–100 cm | 16.42 | ||
12 | 0–10 cm | 4.01 | |
10–30 cm | 4.65 | ||
30–100 cm | 9.12 | ||
0–100 cm | 17.78 | ||
13 | 0–10 cm | 2.92 | |
10–30 cm | 3.43 | ||
30–100 cm | 6.81 | ||
0–100 cm | 13.15 |
Root | Fine Roots | |||
Soil layer | 15–30 cm | 30–60 cm | 60–90 cm | 90–120 cm |
0–15 cm | 0.001 | <0.001 | <0.0001 | <0.0001 |
15–30 cm | 0.003 | 0.0001 | 0.0001 | |
30–60 cm | 0.004 | 0.004 | ||
60–90 cm | 0.66 | |||
Middle roots | ||||
Slope position | Middle | Lower | ||
Upper | 0.04 | 0.04 | ||
Middle | 0.86 | |||
Soil layer | 15–30 cm | 30–60 cm | 60–90 cm | 90–120 cm |
0–15 cm | 0.18 | 0.42 | 0.06 | 0.03 |
15–30 cm | 0.82 | 0.03 | 0.02 | |
30–60 cm | 0.14 | 0.09 | ||
60–90 cm | 0.75 | |||
Coarse roots | ||||
Soil layer | 15–30 cm | 30–60 cm | 60–90 cm | 90–120 cm |
0–15 cm | 0.31 | 0.98 | 0.05 | 0.07 |
15–30 cm | 0.28 | 0.03 | 0.04 | |
30–60 cm | 0.06 | 0.08 | ||
60–90 cm | 0.49 |
References
- Scharlemann, J.P.; Tanner, E.V.; Hiederer, R.; Kapos, V. Global soil carbon: Understanding and managing the largest terrestrial carbon pool. Carbon Manag. 2014, 5, 81–91. [Google Scholar] [CrossRef]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2004, 123, 1–22. [Google Scholar] [CrossRef]
- Berhe, A.A.; Harte, J.; Harden, J.W.; Torn, M.S. The significance of the erosion-induced terrestrial carbon sink. BioScience 2007, 57, 337–346. [Google Scholar] [CrossRef]
- Doetterl, S.; Stevens, A.; Six, J.; Merckx, R.; van Oost, K.; Pinto, M.C.; Casanova-Katny, A.; Muñoz, C.; Boudin, M.; Venegas, E.Z.; et al. Soil carbon storage controlled by interactions between geochemistry and climate. Nat. Geosci. 2015, 8, 780–783. [Google Scholar] [CrossRef]
- Morisada, K.; Ono, K.; Kanomata, H. Organic carbon stock in forest soils in Japan. Geoderma 2004, 119, 21–32. [Google Scholar] [CrossRef]
- Pampasit, S.; Khamyong, S.; Breulmann, G.; Ninomiya, I.; Ogino, K. Mineral Element Accumulation in Soils and Trees in Tropical Hill Evergreen Forest, Northern Thailand. Tropics 2000, 9, 275–286. [Google Scholar] [CrossRef]
- Thompson, J.A.; Kolka, R.K. Soil carbon storage estimation in a forested watershed using quantitative soil-landscape modeling. Soil Sci. Soc. Am. J. 2005, 69, 1086–1093. [Google Scholar] [CrossRef]
- Tsui, C.-C.; Chen, Z.-S.; Hsieh, C.-F. Relationships between soil properties and slope position in a lowland rain forest of southern Taiwan. Geoderma 2004, 123, 131–142. [Google Scholar] [CrossRef]
- Raghubanshi, A.S. Effect of topography on selected soil properties and nitrogen mineralization in a dry tropical forest. Soil Biol. Biochem. 1992, 24, 145–150. [Google Scholar] [CrossRef]
- Johnson, K.D.; Scatena, F.N.; Silver, W.L. Atypical soil carbon distribution across a tropical steepland forest catena. Catena 2011, 87, 391–397. [Google Scholar] [CrossRef]
- Takahashi, M.; Furusawa, H.; Limtong, P.; Sunanthapongsuk, V.; Marod, D.; Panuthai, S. Soil nutrient status after bamboo flowering and death in a seasonal tropical forest in western Thailand. Ecol. Res. 2007, 22, 160–164. [Google Scholar] [CrossRef]
- Takahashi, M.; Hirai, K.; Limtong, P.; Leaungvutivirog, C.; Panuthai, S.; Suksawang, S.; Anusontpornperm, S.; Marod, D. Topographic variation in heterotrophic and autotrophic soil respiration in a tropical seasonal forest in Thailand. Soil Sci. Plant Nutr. 2011, 57, 452–465. [Google Scholar] [CrossRef] [Green Version]
- Western, A.W.; Zhou, S.L.; Grayson, R.B.; McMahon, T.A.; Blöschl, G.; Wilson, D.J. Spatial correlation of soil moisture in small catchments and its relationship to dominant spatial hydrological processes. J. Hydrol. 2004, 286, 113–134. [Google Scholar] [CrossRef]
- Rosenbaum, U.; Bogena, H.R.; Herbst, M.; Huisman, J.A.; Peterson, T.J.; Weuthen, A.; Western, A.W.; Vereecken, H. Seasonal and event dynamics of spatial soil moisture patterns at the small catchment scale. Water Resour. Res. 2012, 48, W10544. [Google Scholar] [CrossRef]
- Panuthai, S.; Orasa, S.; Deesaeng, B.; Marod, D. Hydrological characteristics study of Maeklong head watershed on land use changes, Kanchanaburi province, Thailand. In Proceedings of the International Workshop on Ecological Knowledge for Adaptation on Climate Change, Sri Nakhon Khuen Khan Park, Samut Prakarn Province, Thailand, 2–3 December 2013; Aksornsiam Limited Company: Bangkok, Thailand, 2013; pp. 62–65. Available online: http://t-fern.forest.ku.ac.th/iDocument/inter_page15.pdf (accessed on 16 January 2019).
- Marod, D.; Kutintara, U.; Yarwudhi, C.; Tanaka, H.; Nakashizuka, T. Structural dynamics of a natural mixed deciduous forest in western Thailand. J. Veg. Sci. 1999, 10, 777–786. [Google Scholar] [CrossRef]
- Soil Survey Staff. Keys to Soil Taxonomy, 8th ed.; USDA Natural Resources Conservation Service: Washington, DC, USA, 1998.
- Anusontpornperm, S.; Kheoruenromne, I. Soil under various conditions of land use change from tropical forests. In Proceedings of the FORTROP’96: Tropical Forestry in the 21th Century, 25–28 November 1996; Kasetsart University: Bangkok, Thailand, 1996; Volume 2, pp. 156–170. [Google Scholar]
- Takahashi, M.; Hirai, K.; Limtong, P.; Leaungvutivirog, C.; Suksawang, S.; Panuthai, S.; Anusontpornperm, S.; Marod, D. Soil respiration in different ages of teak plantations in Thailand. JARQ 2009, 43, 337–343. [Google Scholar] [CrossRef]
- Hirai, K.; Takahashi, M.; Limtong, P.; Suksawang, S.; Toriyama, J.; Kiyono, Y.; Sato, T. The changes of soil carbon stock following forest degradation in tropical monsoon forest in southeast Asia. In Proceedings of the International Workshop on Ecological Knowledge for Adaptation on Climate Change, Sri Nakhon khuen khan Park, Samut Prakarn Province, Thailand, 2–3 December 2013; Aksornsiam Limited Company: Bangkok, Thailand, 2013; pp. 42–43. Available online: http://t-fern.forest.ku.ac.th/iDocument/inter_page10.pdf (accessed on 16 January 2019).
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018. [Google Scholar]
- Paz, H. Root/Shoot allocation and root architecture in seedlings: Variation among Forest Sites, Microhabitats, and Ecological Groups. Biotropica 2003, 35, 318–332. [Google Scholar] [CrossRef]
- Markesteijn, L.; Poorter, L. Seedling root morphology and biomass allocation of 62 tropical tree species in relation to drought-and shade-tolerance. J. Ecol. 2009, 97, 311–325. [Google Scholar] [CrossRef]
- Rumpel, C.; Kögel-Knabner, I. Deep soil organic matter—A key but poorly understood component of terrestrial C cycle. Plant Soil 2011, 338, 143–158. [Google Scholar] [CrossRef]
- Brant, J.B.; Myrold, D.D.; Sulzman, E.W. Root controls on soil microbial community structure in forest soils. Oecologia 2006, 148, 650–659. [Google Scholar] [CrossRef]
- Sanaullah, M.; Chabbi, A.; Leifeld, J.; Bardoux, G.; Billou, D.; Rumpel, C. Decomposition and stabilization of root litter in top-and subsoil horizons: What is the difference? Plant Soil 2011, 338, 127–141. [Google Scholar] [CrossRef]
- Rasse, D.P.; Rumpel, C.; Dignac, M.F. Is soil carbon mostly root carbon? Mechanisms for a specific stabilisation. Plant Soil 2005, 269, 341–356. [Google Scholar] [CrossRef]
- Fujimaki, R.; Takeda, H.; Wiwatiwitaya, D. Fine root decomposition in tropical dry evergreen and dry deciduous forests in Thailand. J. For. Res. Jpn. 2008, 13, 338–346. [Google Scholar] [CrossRef]
- Yoo, K.; Amundson, R.; Heimsath, A.M.; Dietrich, W.E. Spatial patterns of soil organic carbon on hillslopes: Integrating geomorphic processes and the biological C cycle. Geoderma 2006, 130, 47–65. [Google Scholar] [CrossRef]
- Wischmeier, W.H.; Smith, D.D. Predicting Rainfall Erosion Losses—A Guide to Conservation Planning; USDA, Science and Education Administration: Hyattsville, MD, USA, 1978.
- Land Development Department. Land Development Department Soil Erosion in Thailand; Land Development Department: Bangkok, Thailand, 2000. (In Thai)
- Tingting, L.V.; Xiaoyu, S.; Dandan, Z.; Zhenshan, X.; Jianming, G. Assessment of soil erosion risk in northern Thailand. Int. Arch Photogramm Remote Sens. Spat. Inf. Sci. 2008, 8, 703–708. [Google Scholar]
- Zhou, B.Z.; Fu, M.Y.; Xie, J.Z.; Yang, X.S.; Li, Z.C. Ecological functions of bamboo forest: Research and Application. J. For. Res. 2005, 16, 143–147. [Google Scholar]
- Parr, J.; Sullivan, L.; Chen, B.; Ye, G.; Zheng, W. Carbon bio-sequestration within the phytoliths of economic bamboo species. Glob. Chang. Biol. 2010, 16, 2661–2667. [Google Scholar] [CrossRef]
- Janmahasatien, S.; Phopinit, S.; Sakai, M.; Ohta, S. Characteristics of soil under different forest types on a limestone plateau in Erawan national park, Thailand. In Proceedings of the FORTROP’96: Tropical Forestry in the 21th Century, Bangkok, Thailand, 25–28 November 1996; Kasetsart University: Bangkok, Thailand, 1997; Volume 2, pp. 271–280. [Google Scholar]
- Bunyavejchewin, S.; Baker, P.J.; Davies, S.J. Seasonally Dry Tropical Forests in Continental Southeast Asia. Structure, Composition, and Dynamics. In The Ecology and Conservation of Seasonally Dry Forests in Asia; McShea, W.J., Davies, S.J., Bhumpakphan, N., Eds.; Smithsonian Institution Scholarly Press: Washington, DC, USA, 2011; pp. 9–35. [Google Scholar]
Position | Upper | Middle | Lower | The p Value of ANOVA | |
---|---|---|---|---|---|
Layer | Carbon (kg m−3) | Position | Layer | ||
0–10 cm | 35.3 (7.6) | 29.1 (2.8) | 27.1 (4.4) | 0.03 | <0.0001 |
10–30 cm | 21.8 (3.1) | 19.1 (5.2) | 14.9 (1.4) | Interaction | |
30–100 cm | 10.9 (1.5) | 9.31 (0.84) | 8.33 (0.92) | 0.38 | |
Dry bulk density (kg m−3) | |||||
0–10 cm | 980 (212) | 977 (132) | 1152 (185) | 0.811 | 0.0002 |
10–30 cm | 1150 (194) | 1191 (121) | 1179 (269) | Interaction | |
30–100 cm | 1167 (164) | 1243 (122) | 1196 (218) | 0.12 | |
No. of soil pits | 4 | 5 | 4 |
Position | Upper | Middle | Lower | The p Value of ANOVA | |
---|---|---|---|---|---|
Layer | Fine roots (kg m−3) | Position | Layer | ||
0–15 cm | 0.98 (0.39) | 1.10 (0.63) | 0.66 (0.64) | 0.502 | <0.0001 |
15–30 cm | 0.67 (0.39) | 0.74 (0.57) | 0.43 (0.34) | Interaction | |
30–60 cm | 0.24 (0.17) | 0.23 (0.15) | 0.33 (0.17) | 0.11 | |
60–90 cm | 0.04 (0.05) | 0.16 (0.09) | 0.18 (0.16) | ||
90–120 cm | 0.04 (0.07) | 0.16 (0.16) | 0.14 (0.15) | ||
Medium roots (kg m−3) | Position | Layer | |||
0–15 cm | 0.52 (0.44) | 0.24 (0.31) | 0.13 (0.15) | 0.030 | 0.037 |
15–30 cm | 0.95 (1.07) | 0.41 (1.02) | 0.22 (0.16) | Interaction | |
30–60 cm | 1.30 (2.05) | 0.03 (0.04) | 0.11 (0.13) | 0.081 | |
60–90 cm | 0.22 (0.54) | 0.00 (0.00) | 0.13 (0.27) | ||
90–120 cm | 0.04 (0.07) | 0.00 (0.00) | 0.22 (0.45) | ||
Coarse roots (kg m−3) | Position | Layer | |||
0–15 cm | 2.17 (4.24) | 1.03 (2.68) | 0.76 (2.29) | 0.98 | 0.026 |
15–30 cm | 0.46 (1.12) | 2.66 (4.06) | 5.06 (8.05) | Interaction | |
30–60 cm | 2.67 (4.19) | 1.25 (3.74) | 0.00 (0.00) | 0.195 | |
60–90 cm | 0.00 (0.00) | 0.04 (0.13) | 0.00 (0.00) | ||
90–120 cm | 0.00 (0.00) | 0.28 (0.82) | 0.00 (0.00) | ||
No. of samples | 6 | 9 | 9 |
Slope Position | Root Size | Fine Roots | Medium Roots | Coarse Roots | Total | Percentage of Bamboo in Fine Roots |
---|---|---|---|---|---|---|
Layer | (kg m−2) | (%) | ||||
Upper | 0–15 cm | 0.15 (0.05) | 0.08 (0.01) | 0.33 (0.33) | 0.55 (0.59) | 49.3 |
15–30 cm | 0.10 (0.02) | 0.14 (0.12) | 0.07 (0.07) | 0.31 (0.21) | 57.6 | |
30–60 cm | 0.07 (0.01) | 0.39 (0.34) | 0.80 (0.79) | 1.27 (1.24) | 45.2 | |
60–90 cm | 0.01 (0.01) | 0.07 (0.07) | 0.00 (0.00) | 0.08 (0.12) | 47.9 | |
90–120 cm | 0.01 (0.01) | 0.01 (0.01) | 0.00 (0.00) | 0.03 (0.03) | 8.6 | |
0–120 cm | 0.34 (0.11) | 0.69 (0.67) | 1.20 (1.00) | 2.23 (1.67) | 48.1 | |
Middle | 0–15 cm | 0.17 (0.07) | 0.04 (0.04) | 0.15 (0.22) | 0.36 (0.39) | 55.7 |
15–30 cm | 0.11 (0.05) | 0.06 (0.08) | 0.40 (0.36) | 0.57 (0.59) | 55.4 | |
30–60 cm | 0.07 (0.03) | 0.01 (0.01) | 0.37 (0.53) | 0.45 (1.06) | 67.6 | |
60–90 cm | 0.05 (0.02) | 0.00 (0.00) | 0.01 (0.02) | 0.06 (0.04) | 77.6 | |
90–120 cm | 0.05 (0.01) | 0.00 (0.00) | 0.08 (0.12) | 0.13 (0.24) | 75.1 | |
0–120 cm | 0.44 (0.16) | 0.11 (0.12) | 1.02 (0.88) | 1.57 (1.05) | 58.8 | |
Lower | 0–15 cm | 0.10 (0.09) | 0.02 (0.01) | 0.12 (0.16) | 0.23 (0.33) | 37.9 |
15–30 cm | 0.07 (0.04) | 0.03 (0.01) | 0.76 (0.77) | 0.86 (1.14) | 34.0 | |
30–60 cm | 0.10 (0.03) | 0.03 (0.02) | 0.00 (0.00) | 0.13 (0.06) | 25.5 | |
60–90 cm | 0.06 (0.03) | 0.04 (0.03) | 0.00 (0.00) | 0.10 (0.09) | 31.4 | |
90–120 cm | 0.04 (0.03) | 0.07 (0.05) | 0.00 (0.00) | 0.11 (0.12) | 46.2 | |
0–120 cm | 0.36 (0.17) | 0.20 (0.07) | 0.87 (0.67) | 1.43 (0.74) | 34.7 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Takahashi, M.; Hirai, K.; Marod, D.; Anusontpornperm, S.; Limtong, P.; Leaungvutivirog, C.; Panuthai, S. Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand. Forests 2019, 10, 106. https://doi.org/10.3390/f10020106
Takahashi M, Hirai K, Marod D, Anusontpornperm S, Limtong P, Leaungvutivirog C, Panuthai S. Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand. Forests. 2019; 10(2):106. https://doi.org/10.3390/f10020106
Chicago/Turabian StyleTakahashi, Masamichi, Keizo Hirai, Dokrak Marod, Somchai Anusontpornperm, Pitayakon Limtong, Chaveevan Leaungvutivirog, and Samreong Panuthai. 2019. "Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand" Forests 10, no. 2: 106. https://doi.org/10.3390/f10020106
APA StyleTakahashi, M., Hirai, K., Marod, D., Anusontpornperm, S., Limtong, P., Leaungvutivirog, C., & Panuthai, S. (2019). Atypical Pattern of Soil Carbon Stocks along the Slope Position in a Seasonally Dry Tropical Forest in Thailand. Forests, 10(2), 106. https://doi.org/10.3390/f10020106