The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Meteorological Measurements
2.3. Water Sampling and Isotope Analyses
2.4. Data Analysis
3. Results
3.1. Rainfall and Temperature
3.2. Soil Temperature Conditions
3.3. Soil Water Content
3.4. Isotopic Composition of Water Samples
3.5. Isotopic in Soil Profile and Walnut Stem
3.6. Proportions of Soil Water Contributions to Walnut Trees
4. Discussion
4.1. Variations in the Isotopic Composition of Soil Water and Plant Water
4.2. Seasonal Water Use Patterns of Trees
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Gauthier, M.M.; Jacobs, D.F. Walnut (Juglans spp.) ecophysiology in response to environmental stresses and potential acclimation to climate change. Ann. For. Sci. 2011, 68, 1277–1290. [Google Scholar] [CrossRef]
- Cristofori, V.; Tommasini, G.; Rugini, E.; Bignami, C. Effects of Irrigation on Yield Components and Quality of Walnut Cultivar ‘Chandler’; CAB International: Oxfordshire, UK, 2009. [Google Scholar]
- Zencich, S.J.; Froend, R.H.; Turner, J.V.; Gailitis, V. Influence of groundwater depth on the seasonal sources of water accessed by banksia, tree species on a shallow, sandy coastal aquifer. Oecologia 2002, 131, 8–19. [Google Scholar] [CrossRef] [PubMed]
- Zhang, J.N.; Lai, X.; Li, G.; Zhao, J.N.; Zhang, Y.S.; Yang, D.L. Response of plant diversity and soil nutrient condition to grazing disturbance in Stipa baicalensis roshev. grassland. Acta Agrestia Sin. 2010, 18, 177–182. [Google Scholar]
- Meinzer, F.C.; Clearwater, M.J.; Goldstein, G. Water transport in trees: Current perspectives, new insights and some controversies. Environ. Exp. Bot. 2001, 45, 239–262. [Google Scholar] [CrossRef]
- Javaux, M.; Rothfuss, Y.; Vanderborght, J.; Vereecken, H.; Brüggemann, N. Isotopic composition of plant water sources. Nature 2016, 536, E1. [Google Scholar] [CrossRef] [PubMed]
- Ehleringer, J.R.; Dawson, T.E. Water uptake by plants: Perspectives from stable isotope composition. Plant Cell Environ. 1992, 15, 1073–1082. [Google Scholar] [CrossRef]
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Annu. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- White, J.W.C.; Cook, E.R.; Lawrence, J.R.; Broecker, W.S. The DH ratios of sap in trees: Implications for water sources and tree ring, D.H. ratios. Geochim. Cosmochim. Acta 1985, 49, 237–246. [Google Scholar] [CrossRef]
- Phillips, D.L.; Gregg, J.W. Source partitioning using stable isotopes: Coping with too many sources. Oecologia 2003, 136, 261. [Google Scholar] [CrossRef]
- Phillips, D.; Newsome, S.; Gregg, J. Combining sources in stable isotope mixing models: Alternative methods. Oecologia 2005, 144, 520–527. [Google Scholar] [CrossRef]
- Grossiord, C.; Gessler, A.; Granier, A.; Berger, S.; Bréchet, C.; Hentschel, R.; Scherer-Lorenzen, M.; Bonal, D. Impact of interspecific interactions on the soil water uptake depth in a young temperate mixed species plantation. J. Hydrol. 2014, 519, 3511–3519. [Google Scholar] [CrossRef]
- Ma, Y.; Song, X. Using stable isotopes to determine seasonal variations in water uptake of summer maize under different fertilization treatments. Sci. Total Environ. 2016, 550, 471–483. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Liu, Y.; Xu, Z.; Duffy, R.; Chen, W.; An, S.; Liu, S.; Liu, F. Analyzing relationships among water uptake patterns, rootlet biomass distribution and soil water content profile in a subalpine shrubland using water isotopes. Eur. J. Soil Biol. 2011, 47, 380–386. [Google Scholar] [CrossRef] [Green Version]
- Wu, H.W.; Li, X.Y.; Jiang, Z.Y.; Chen, H.Y.; Zhang, C.C.; Xiao, X. Contrasting water use pattern of introduced and native plants in an alpine desert ecosystem, northeast Qinghai–Tibet plateau, China. Sci. Total Environ. 2016, 542, 182–191. [Google Scholar] [CrossRef] [PubMed]
- Rothfuss, Y.; Javaux, M. Isotopic approaches to quantifying root water uptake and redistribution: A review and comparison of methods. Biogeosci. Discuss. 2016, 1–47. [Google Scholar] [CrossRef]
- Centritto, M.; Wahbi, S.; Serraj, R.; Chaves, M.M. Effects of partial rootzone drying (prd) on adult olive tree (Olea europaea) in field conditions under arid climate: II. photosynthetic responses. Agric. Ecosyst. Environ. 2005, 106, 303–311. [Google Scholar] [CrossRef]
- Yang, B.; Wen, X.; Sun, X. Seasonal variations in depth of water uptake for a subtropical coniferous plantation subjected to drought in an East Asian monsoon region. Agric. For. Meteorol. 2015, 201, 218–228. [Google Scholar] [CrossRef]
- Martín-Gómez, P.; Barbeta, A.; Voltas, J.; Peñuelas, J.; Dennis, K.; Palacio, S.; Dawson, T.E.; Ferrio, J.P. Isotope-ratio infrared spectroscopy: A reliable tool for the investigation of plant-water sources? New Phytol. 2015, 207, 914–927. [Google Scholar] [CrossRef]
- Stock, B.C.; Semmens, B.X. MixSIAR GUI User Manual. Version 3.1. 2016. Available online: https://github.com/brianstock/MixSIAR/ (accessed on 16 March 2016). [CrossRef]
- Craig, H. Isotopic variations in meteoric waters. Science 1961, 133, 1702–1703. [Google Scholar] [CrossRef]
- Brunel, J.P.; Walker, G.R.; Dighton, J.C.; Monteny, B. Use of stable isotopes of water to determine the origin of water used by the vegetation and to partition evapotranspiration. A case study from hapex-sahel. J. Hydrol. (Amst.) 1997, 188–189, 466–481. [Google Scholar] [CrossRef]
- Wang, P.; Song, X.F.; Han, D.M.; Zhang, Y.H.; Liu, X. A study of root water uptake of crops indicated by hydrogen and oxygen stable isotopes: A case in Shanxi province, China. Agric. Water Manag. 2010, 97, 475–482. [Google Scholar] [CrossRef]
- Midwood, A.J.; Boutton, T.W.; Archer, S.R.; Watts, S.E. Water use by woody plants on contrasting soils in a savanna parkland: Assessment with δ2h and δ18O. Plant Soil 1998, 205, 13–24. [Google Scholar] [CrossRef]
- Rossatto, D.R.; Silva, L.D.C.R.; Villalobos-Vega, R.; Sternberg, L.D.S.L.; Franco, A.C. Depth of water uptake in woody plants relates to groundwater level and vegetation structure along a topographic gradient in a neotropical savanna. Environ. Exp. Bot. 2012, 77, 259–266. [Google Scholar] [CrossRef]
- Allison, G.B.; Leaney, F.W. Estimation of isotopic exchange parameters, using constant-feed pans. J. Hydrol. 1982, 55, 151–161. [Google Scholar] [CrossRef]
- Gazis, C.; Feng, X. A stable isotope study of soil water: Evidence for mixing and preferential flow paths. Geoderma 2004, 119, 97–111. [Google Scholar] [CrossRef]
- Tang, K.; Feng, X. The effect of soil hydrology on the oxygen and hydrogen isotopic compositions of plants’ source water. Earth Planet. Sci. Lett. 2001, 185, 355–367. [Google Scholar] [CrossRef]
- Dai, Y.; Zheng, X.J.; Tang, L.S.; Li, Y. Stable oxygen isotopes reveal distinct water use patterns of two haloxylon, species in the gurbantonggut desert. Plant Soil 2015, 389, 73–87. [Google Scholar] [CrossRef]
- Zhou, H.; Zheng, X.J.; Tang, L.S.; Li, Y. Differences and similarities between water sources of Tamarix ramosissima, Nitraria sibirica and Reaumuria soongorica in the southeastern Junggar Basin. Chin. J. Plant Ecol. 2013, 37, 665–673. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Zhao, B.; Zhu, A.; Hui, Z.; Huang, P.; Li, X. Coupling a two-tip linear mixing model with a δd–δ18O plot to determine water sources consumed by maize during different growth stages. Field Crop. Res. 2011, 123, 196–205. [Google Scholar] [CrossRef]
- Drake, P.L.; Franks, P.J. Water resource partitioning, stem xylem hydraulic properties, and plant water use strategies in a seasonally dry riparian tropical rainforest. Oecologia 2003, 137, 321–329. [Google Scholar] [CrossRef]
- Zhang, Y.; Shen, Y.; Sun, H.; Gates, J.B. Evapotranspiration and its partitioning in an irrigated winter wheat field: A combined isotopic and micrometeorologic approach. J. Hydrol. 2011, 408, 203–211. [Google Scholar] [CrossRef]
- Stahl, C.; Hérault, B.; Rossi, V.; Burban, B.; Bréchet, C.; Bonal, D. Depth of soil water uptake by tropical rainforest trees during dry periods: Does tree dimension matter? Oecologia 2013, 173, 1191–1201. [Google Scholar] [CrossRef] [PubMed]
- Romero-Saltos, H.; Sternberg, L.S.; Moreira, M.Z.; Nepstad, D.C. Rainfall exclusion in an eastern amazonian forest alters soil water movement and depth of water uptake. Am. J. Bot. 2005, 92, 443–455. [Google Scholar] [CrossRef]
- Liu, S.B.; Chen, Y.N.; Chen, Y.P.; Deng, H.J.; Fang, G.H. Study on the depth of water uptake by Populus euphratica trees of different ages in the lower reaches of the Heihe river, based on the stable isotope techniques. Acta Ecol. Sin. 2016, 36, 729–739. [Google Scholar]
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, X.; Zhao, S.; Ma, H.; Qi, G.; Guo, S. The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains. Forests 2019, 10, 121. https://doi.org/10.3390/f10020121
Liu Y, Zhang X, Zhao S, Ma H, Qi G, Guo S. The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains. Forests. 2019; 10(2):121. https://doi.org/10.3390/f10020121
Chicago/Turabian StyleLiu, Yang, Xuemei Zhang, Shuang Zhao, Huabing Ma, Guohui Qi, and Suping Guo. 2019. "The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains" Forests 10, no. 2: 121. https://doi.org/10.3390/f10020121
APA StyleLiu, Y., Zhang, X., Zhao, S., Ma, H., Qi, G., & Guo, S. (2019). The Depth of Water Taken up by Walnut Trees during Different Phenological Stages in an Irrigated Arid Hilly Area in the Taihang Mountains. Forests, 10(2), 121. https://doi.org/10.3390/f10020121