Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Data
2.3. Data Acquisition and Pre-Processing
2.4. LiDAR Data and Metrics
2.5. Modality Differentiation
2.6. Unimodal Weibull Model
2.7. Finite Mixture Model
2.8. KNN Model
2.8.1. The Selection of Number of Neighbors, Response Configurations and Imputation Methods
2.8.2. Constructing Diameter Distribution Based on KNN
2.9. Model Creation and Assessment
2.10. Evaluating Fit of Predicted Diameter Distributions
3. Results
3.1. Differentiation of Modality
3.2. Unimodal Weibull Model and Finite Mixture Model
3.2.1. Predictive Models
3.2.2. Predicted Parametric Diameter Distributions
3.3. KNN Model
3.4. Predicted Diameter Distribution in Different Stem Densities
4. Discussion
4.1. Differentiation of Modality
4.2. Predictive Models
4.3. The Selection of Number of Neighbors, Response Configurations and Comparisons of MSN and RF Imputations
4.4. Assessing Diameter Distribution Predictions with UWM, FMM and KNN
4.5. Applications and Potential Improvements in Future Work
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
LiDAR Metrics | Description |
---|---|
Standard metrics | |
h25, h50, h75 and h95 | The percentiles of the canopy height distributions (25th, 50th, 75th and 95th) of first returns. |
hmean, hmax, hSQRT, hCURT, hstd, hvar, hcv, hskew and hkurt | Mean height, max height, quadratic mean height, cubic mean heights, standard deviation, variance, coefficient of variation skewness and kurtosis of the heights above ground of all first returns. |
Lskew, Lkurt and LCV | The ratio of the third (L3) to the second (L2) L-moments; The ratio of the third (L4) to the second (L2) L-moments; The ratio of the second (L2) to the first (L1) L-moments. |
d1, d3, d5, d7 and d9 | The proportion of points above the quantiles (10th, 30th, 50th, 70th and 80th) to total number of points. |
CRR | Canopy relief ratio ((mean − min)/(max − min)). |
Canopy metrics | |
Filled, Empty, OG, CG, Eu, Oligo | The voxels filled in point clouds and empty voxels within canopy spaces (Filled, Empty); The empty voxels located above and below the canopy respectively (OG, CG); The voxels located within an uppermost percentile (65%) of filled grid cells of that column, and voxels located below the point in the profile (Eu, Oligo). |
Rumple | The ratio of canopy outer surface area to ground surface area. |
CvLAD | Variation within the vertical leaf area density profile. |
VCI | Vertical complexity index, i.e., Distribution of abundance of returns in specified height bins. |
References
- Food and Agriculture Organization of the United Nations (FAO). Global Forest Resources Assessment 2015; FAO: Rome, Italy, 2015. [Google Scholar]
- Baral, H.; Guariguata, M.R.; Keenan, R.J. A proposed framework for assessing ecosystem goods and services from planted forests. Ecosyst. Serv. 2016, 22, 260–268. [Google Scholar] [CrossRef]
- Evans, J. Planted Forests: Uses, Impacts and Sustainability; Food and Agriculture Organisation of the United Nations (FAO) and CAB International: Rome, Italy, 2009. [Google Scholar]
- Bauhus, J.; Schmerbeck, J. Silvicultural options to enhance and use forest plantation biodiversity. In Ecosystem Goods and Services from Plantation Forests; Bauhus, J., van der Meer, P.J., Kanninen, M., Eds.; Earthscan: London, UK, 2010; pp. 96–139. [Google Scholar]
- Payn, T.; Carnus, J.M.; Freer-Smith, P.; Kimberley, M.; Kollert, W.; Liu, S.; Orazio, C.; Rodriguez, L.; Silva, L.N.; Wingfield, M.J. Changes in planted forests and future global implications. For. Ecol. Manag. 2015, 352, 57–67. [Google Scholar] [CrossRef]
- Messier, C.; Kneeshaw, D. Thinking and acting differently for a sustainable management of the boreal forest. For. Chron. 1999, 75, 929–938. [Google Scholar] [CrossRef]
- Lu, H.; Campbell, E.T.; Campbell, D.E.; Wang, C.; Ren, H. Dynamics of ecosystem services provided by subtropical forests in Southeast China during succession as measured by donor and receiver value. Ecosyst. Serv. 2017, 23, 248–258. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Innes, J.; Dai, J.; She, G. Mapping above- and below-ground biomass components in subtropical forests using small-footprint LiDAR. Forests 2014, 5, 1356–1373. [Google Scholar] [CrossRef]
- Valbuena, R.; Vauhkonen, J.; Packalen, P.; Pitkänen, J.; Maltamo, M. Comparison of airborne laser scanning methods for estimating forest structure indicators based on Lorenz curves. ISPRS J. Photogramm. Remote Sens. 2014, 95, 23–33. [Google Scholar] [CrossRef]
- Kankare, V.; Vauhkonen, J.; Tanhuanpaa, T.; Holopainen, M.; Vastaranta, M.; Joensuu, M.; Krooks, A.; Hyyppa, J.; Hyyppa, H.; Alho, P.; et al. Accuracy in estimation of timber assortments and stem distribution—A comparison of airborne and terrestrial laser scanning techniques. ISPRS J. Photogramm. Remote Sens. 2014, 97, 89–97. [Google Scholar] [CrossRef]
- Silva, C.A.; Klauberg, C.; Hudak, A.T.; Vierling, L.A.; Jaafar, W.S.W.M.; Mohan, M.; Garcia, M.; Ferraz, A.; Cardil, A.; Saatchi, S. Predicting stem total and assortment volumes in an industrial Pinus taeda L. forest plantation using airborne laser scanning data and random forest. Forests 2017, 8, 254. [Google Scholar] [CrossRef]
- Xu, C.; Morgenroth, J. Mapping Net Stocked Plantation Area for Small-Scale Forests in New Zealand Using Integrated RapidEye and LiDAR Sensors. Forests 2017, 8, 487. [Google Scholar] [CrossRef]
- Maltamo, M.; Suvanto, A.; Packalén, P. Comparison of basal area and stem frequency diameter distribution modelling using airborne laser scanner data and calibration estimation. For. Ecol. Manag. 2007, 247, 26–34. [Google Scholar] [CrossRef]
- Bollandsås, O.M.; Næsset, E. Estimating percentile-based diameter distributions in uneven-sized Norway spruce stands using airborne laser scanner data. Scand. J. For. Res. 2007, 22, 33–47. [Google Scholar] [CrossRef]
- Pukkala, T.; Lähde, E.; Laiho, O. Continuous Cover Forestry in Finland-Recent Research Results. In Continuous Cover Forestry; Pukkala, T., von Gadow, K., Eds.; Springer Netherlands: Dordrecht, The Netherlands, 2012; p. 4. [Google Scholar]
- Jaworski, A.; Podlaski, R. Modelling irregular and multimodal tree diameter distributions by finite mixture models: An approach to stand structure characterisation. J. Fores 2012, 17, 79–88. [Google Scholar] [CrossRef]
- Xu, Q.; Hou, Z.; Maltamo, M.; Tokola, T. Calibration of area based diameter distribution with individual tree based diameter estimates using airborne laser scanning. ISPRS J. Photogramm. Remote Sens. 2014, 93, 65–75. [Google Scholar] [CrossRef]
- Rana, P.; Vauhkonen, J.; Junttila, V.; Hou, Z.; Gautam, B.; Cawkwell, F.; Tokola, T. Large tree diameter distribution modelling using sparse airborne laser scanning data in a subtropical forest in Nepal. ISPRS J. Photogramm. Remote Sens. 2017, 134, 86–95. [Google Scholar] [CrossRef]
- Breidenbach, J.; Gläser, C.; Schmidt, M. Estimation of diameter distributions by means of airborne laser scanner data. Can. J. For. Res. 2008, 38, 1611–1620. [Google Scholar] [CrossRef]
- Kuuluvainen, T.; Tahvonen, O.; Aakala, T. Even-Aged and Uneven-Aged Forest Management in Boreal Fennoscandia: A Review. Ambio 2012, 41, 720–737. [Google Scholar] [CrossRef]
- Fries, C.; Johansson, O.; Pettersson, B.; Simonsson, P. Silvicultural models to maintain and restore natural stand structures in Swedish boreal forests. For. Ecol. Manag. 1997, 94, 89–103. [Google Scholar] [CrossRef]
- Næsset, E. Area-Based Inventory in Norway -From Innovation to an Operational Reality. In Forestry Applications of Airborne Laser Scanning: Concepts and Case Studies; Maltamo, M., Næsset, E., Vauhkonen, J., Eds.; Springer: Dordrecht, The Netherlands, 2014; Volume 27, pp. 215–240. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Trees and Stands; Springer Netherlands: Dordrecht, The Netherlands, 2012. [Google Scholar]
- Sironen, S.; Kangas, A.; Maltamo, M.; Kangas, J. Estimating Individual Tree Growth with the k-Nearest Neighbour and k-Most Similar Neighbour Methods Susanna. Silva Fenn. 2001, 35, 453–467. [Google Scholar] [CrossRef]
- Nanos, N.; Montero, G. Spatial prediction of diameter distribution models. For. Ecol. Manag. 2002, 161, 147–158. [Google Scholar] [CrossRef]
- Valbuena, R.; Eerikäinen, K.; Packalen, P.; Maltamo, M. Gini coefficient predictions from airborne lidar remote sensing display the effect of management intensity on forest structure. Ecol. Indic. 2016, 60, 574–585. [Google Scholar] [CrossRef]
- Packalén, P.; Maltamo, M. Estimation of species-specific diameter distributions using airborne laser scanning and aerial photographs. Can. J. For. Res. 2008, 1760, 1750–1760. [Google Scholar] [CrossRef]
- Spriggs, R.A.; Coomes, D.A.; Jones, T.A.; Vanderwel, M.C. An Alternative Approach to Using LiDAR Remote Sensing Data to Predict Stem Diameter Distributions across a Temperate Forest Landscape. Remote Sens. 2017, 9, 944. [Google Scholar] [CrossRef]
- Kotivuori, E.; Maltamo, M.; Korhonen, L.; Packalen, P. Remote Sensing of Environment Calibration of nationwide airborne laser scanning based stem volume models. Remote Sens. Environ. 2018, 210, 179–192. [Google Scholar] [CrossRef]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote Sensing Technologies for Enhancing Forest Inventories: A Review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef]
- White, J.C.; Wulder, M.A; Varhola, A.; Vastaranta, M.; Coops, N.C.; Cook, B.D.; Pitt, D.; Woods, M. A Best Practices Guide for Generating Forest Inventory Attributes from Airborne Laser Scanning Data Using an Area-Based Approach; Information Report FI-X-10; Canadian Forest Service, Canadian Wood Fibre Centre, Pacific Forestry Centre: Victoria, BC, Canada, 2013; p. 50. [Google Scholar]
- Wulder, M.A.; Bater, C.W.; Coops, N.C.; Hilker, T.; White, J.C. The role of LiDAR in sustainable forest management. For. Chron. 2008, 84, 807–826. [Google Scholar] [CrossRef]
- Bollandsås, O.M.; Maltamo, M.; Gobakken, T.; Næsset, E. Comparing parametric and non-parametric modelling of diameter distributions on independent data using airborne laser scanning in a boreal conifer forest. Forestry 2013, 86, 493–501. [Google Scholar] [CrossRef]
- Saad, R.; Wallerman, J.; Lämås, T. Estimating stem diameter distributions from airborne laser scanning data and their effects on long term forest management planning. Scand. J. For. Res. 2014, 30, 186–196. [Google Scholar] [CrossRef]
- Strunk, J.L.; Gould, P.J.; Packalen, P.; Poudel, K.P.; Andersen, H.; Temesgen, H. An Examination of Diameter Density Prediction with k-NN and Airborne Lidar. Forests 2017, 8, 444. [Google Scholar] [CrossRef]
- Thomas, V.; Oliver, R.D.; Lim, K.; Woods, M. LiDAR and Weibull modeling of diameter and basal area. For. Chron. 2008, 84, 866–875. [Google Scholar] [CrossRef]
- Räty, J.; Packalen, P.; Maltamo, M. Comparing nearest neighbor configurations in the prediction of species-specific diameter distributions. Ann. For. Sci. 2018, 75, 26. [Google Scholar] [CrossRef]
- Maltamo, M.; Næsset, E.; Bollandsås, O.M.; Gobakken, T.; Gobakken, T.; Maltamo, M.; Næsset, E.; Bollandsa, O.L.E.M. Non-parametric prediction of diameter distributions using airborne laser scanner data. Scand. J. For. Res. ISSN 2009, 24, 541–553. [Google Scholar] [CrossRef]
- Gobakken, T.; Næsset, E. Estimation of diameter and basal area distributions in coniferous forest by means of airborne laser scanner data. Scand. J. For. Res. 2004, 19, 529–542. [Google Scholar] [CrossRef]
- Bailey, R.L.; Dell, T.R. Quantifying diameter distributions with the Weibull function. For. Sci. 1973, 19, 97–104. [Google Scholar]
- Siipilehto, J.; Mehtätalo, L. Parameter recovery vs. parameter prediction for the Weibull distribution validated for Scots pine stands in Finland. Silva Fenn. 2013, 47, 1–22. [Google Scholar] [CrossRef]
- Siipilehto, J.; Lindeman, H.; Vastaranta, M.; Yu, X.; Uusitalo, J. Reliability of the predicted stand structure for clear-cut stands using optional methods: Airborne laser scanning-based methods, smartphone-based forest inventory application Trestima and pre-harvest measurement tool EMO. Silva Fenn. 2016, 50, 1–24. [Google Scholar] [CrossRef]
- Siipilehto, J. Modelling stand structure in young Scots pine dominated stands. For. Ecol. Manag. 2009, 257, 223–232. [Google Scholar] [CrossRef]
- Mehtätalo, L.; Maltamo, M.; Packalen, P. Recovering plot-specific diameter distribution and height-diameter curve using ALS based stand characteristics. In Proceedings of the ISPRS Working Group, Laser Scanning 2007 and Silvilaser 2007, Espoo, Finland, 12–14 September 2007; Volume XXXVI-3/W52, pp. 288–293. [Google Scholar]
- Cao, L.; Zhang, Z.; Yun, T.; Wang, G.; Ruan, H.; She, G. Estimating Tree Volume Distributions in Subtropical Forests Using Airborne LiDAR Data. Remote Sens. 2019, 11, 97. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, C. Fitting irregular diameter distributions of forest stands by Weibull, modified Weibull, and mixture Weibull models. J. For. Res. 2006, 11, 369–372. [Google Scholar] [CrossRef]
- Podlaski, R.; Roesch, F.A. Mathematical Biosciences Modelling diameter distributions of two-cohort forest stands with various proportions of dominant species: A two-component mixture model approach. Math. Biosci. 2014, 249, 60–74. [Google Scholar] [CrossRef]
- Mulverhill, C.; Coops, N.C.; White, J.C.; Tompalski, P.; Marshall, P.L.; Bailey, T. Enhancing the estimation of stem-size distributions for unimodal and bimodal stands in a boreal mixedwood forest with airborne laser scanning data. Forests 2018, 9, 95. [Google Scholar] [CrossRef]
- Eskelson, B.N.I.; Temesgen, H.; Lemay, V.; Barrett, T.M.; Crookston, N.L.; Hudak, A.T. The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases. Scand. J. For. Res. 2009, 24, 235–246. [Google Scholar] [CrossRef]
- Chirici, G.; Mura, M.; Mcinerney, D.; Py, N.; Tomppo, E.O.; Waser, L.T.; Travaglini, D.; Mcroberts, R.E. A meta-analysis and review of the literature on the k-Nearest Neighbors technique for forestry applications that use remotely sensed data. Remote Sens. Environ. 2016, 176, 282–294. [Google Scholar] [CrossRef]
- Peuhkurinen, J.; Tokola, T.; Plevak, K.; Sirparanta, S.; Kedrov, A. Predicting Tree Diameter Distributions from Airborne Laser Scanning, SPOT 5 Satellite, and Field Sample Data in the Perm Region, Russia. Forests 2018, 9, 639. [Google Scholar] [CrossRef]
- Maltamo, M.; Malinen, J.; Kangas, A.S.; Härkönen, S.; Pasanen, A.M. A-Pasanen Most similar neighbour-based stand variable estimation for use in inventory by compartments in Finland Most similar neighbour-based stand variable estimation for use in inventory by compartments in. Forestry 2003, 76, 2003. [Google Scholar] [CrossRef]
- Moeur, M.; Stage, A.R. Most similar neighbor: An improved sampling inference procedure for natural resource planning. For. Sci. 1995, 41, 337–359. [Google Scholar]
- Breiman, L. Breiman Random forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Crookston, N.L.; Finley, A.O. yaImpute: An R Package for k NN Imputation. J. Stat. 2008. [Google Scholar] [CrossRef]
- Hudak, A.T.; Crookston, N.L.; Evans, J.S.; Hall, D.E.; Falkowski, M.J. Nearest neighbor imputation of species-level, plot-scale forest structure attributes from LiDAR data. Remote Sens. Environ. 2008, 112, 2232–2245. [Google Scholar] [CrossRef]
- Vauhkonen, J.; Korpela, I.; Maltamo, M.; Tokola, T. Imputation of single-tree attributes using airborne laser scanning-based height, intensity, and alpha shape metrics. Remote Sens. Environ. 2010, 114, 1263–1276. [Google Scholar] [CrossRef]
- Penner, M.; Woods, M.; Pitt, D.G. A comparison of airborne laser scanning and image point cloud derived tree size class distribution models in Boreal Ontario. Forests 2015, 6, 4034–4054. [Google Scholar] [CrossRef]
- Shang, C.; Treitz, P.; Caspersen, J.; Jones, T.; Shang, C.; Treitz, P.; Caspersen, J.; Estimating, T.J.; Shang, C.; Treitz, P.; et al. Estimating Stem Diameter Distributions in a Management Context for a Tolerant Hardwood Forest Using ALS Height and Intensity Data Estimating Stem Diameter Distributions in a Management Context for a Tolerant Hardwood Forest Using ALS Height and Intensity Data. Can. J. Remote Sens. 2017, 43, 79–94. [Google Scholar]
- Peuhkurinen, J.; Maltamo, M.; Malinen, J. Estimating Species-Specific Diameter Distributions and Saw Log Recoveries of Boreal Forests from Airborne Laser Scanning Data and Aerial Photographs: A Distribution-Based Approach. Silva Fenn. 2008, 42, 625–641. [Google Scholar] [CrossRef]
- Maltamo1, M.; Mehtätalo, L.; Valbuena, R.; Vauhkonen, J.; Packalen1, P. Airborne laser scanning for tree diameter distribution modelling: A comparison of different modelling alternatives in a tropical single-species plantation. Forestry 2017. [Google Scholar] [CrossRef]
- Song, Y.B.; Ding, Y.P. The development and latest progress of JSCORS. Bull. Surv. Mapp. 2009, 2, 73–74. [Google Scholar]
- Pang, Y.; Ju, H.; Lu, H.; Jia, W.; Si, L.; Guo, Y.; Liu, Q.; Li, S.; Liu, L.; Xie, B.; et al. LiCHy: The CAF’s LiDAR, CCD and Hyperspectral Integrated Airborne Observation System. Remote Sens. 2016, 8, 398. [Google Scholar] [CrossRef]
- Zhao, X.; Guo, Q.; Su, Y.; Xue, B. Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS J. Photogramm. Remote Sens. 2016, 117, 79–91. [Google Scholar] [CrossRef]
- White, J.C.; Stepper, C.; Tompalski, P.; Coops, N.C.; Wulder, M.A. Comparing ALS and image-based point cloud metrics and modelled forest inventory attributes in a complex coastal forest environment. Forests 2015, 6, 3704–3732. [Google Scholar] [CrossRef]
- Hilker, T.; Van Leeuwen, M.; Coops, N.C. Comparing canopy metrics derived from terrestrial and airborne laser scanning in a Douglas-fir dominated forest stand. Trees 2010, 24, 819–832. [Google Scholar] [CrossRef]
- Lefsky, M.A.; Cohen, W.B.; Acker, S.A.; Parker, G.G. Lidar remote sensing of the canopy structure and biophysical properties of Douglas-Fir western hemlock forests. Remote Sens. Environ. 1999, 361, 339–361. [Google Scholar] [CrossRef]
- Bouvier, M.; Durrieu, S.; Fournier, R.A.; Renaud, J.P. Generalizing predictive models of forest inventory attributes using an area-based approach with airborne LiDAR data. Remote Sens. Environ. 2015, 156, 322–334. [Google Scholar] [CrossRef]
- Van Ewijk, K.Y.; Treitz, P.M.; Scott, N.A. Characterizing Forest Succession in Central Ontario using Lidar-derived Indices. Photogramm. Eng. Remote Sens. 2011, 77, 261–270. [Google Scholar] [CrossRef]
- Næsset, E. Predicting forest stand characteristics with airborne scanning laser using a practical two-stage procedure and field data. Remote Sens. Environ. 2002, 80, 88–99. [Google Scholar] [CrossRef]
- McGaughey, R.J. FUSION/LDV: Software for LiDAR Data Analysis and Visualization; US Department of Agriculture, Forest Service, Pacific Northwest Research Station: Seattle, WA, USA, 2014.
- MATLAB. Version 8.4.0.150421 (R2014b). Natick, M.T.M.I., 2013. Available online: https://www.mathworks.com (accessed on 12 December 2018).
- Pach, M.; Podlaski, R. Tree diameter structural diversity in Central European forests with Abies alba and Fagus sylvatica: Managed versus unmanaged forest stands. Ecol. Res. 2015, 30, 367–384. [Google Scholar] [CrossRef]
- Valbuena, R.; Packalen, P.; Mehtätalo, L.; García-Abril, A.; Maltamo, M. Characterizing forest structural types and shelterwood dynamics from Lorenz-based indicators predicted by airborne laser scanning. Can. J. For. Res. 2013, 43, 1063–1074. [Google Scholar] [CrossRef]
- Hosenfeld, B.; Bos, E.H.; Wardenaar, K.J.; Conradi, H.J.; Van Der Maas, H.L.J.; Visser, I.; Jonge, P. De Major depressive disorder as a nonlinear dynamic system: Bimodality in the frequency distribution of depressive symptoms over time. BMC Psychiatry 2015, 15, 222. [Google Scholar] [CrossRef]
- Lexerød, N.L.; Eid, T. An evaluation of different diameter diversity indices based on criteria related to forest management planning. For. Ecol. Manag. 2006, 222, 17–28. [Google Scholar] [CrossRef]
- Valbuena, R.; Maltamo, M.; Martı, S.; Packalen, P.; Pascual, C. Patterns of covariance between airborne laser scanning metrics and Lorenz curve descriptors of tree size inequality. Can. J. Remote Sens. 2013, 39, S18–S31. [Google Scholar] [CrossRef]
- Valbuena, R.; Packalén, P.; Martı´n-Fernández, S.; Maltamo, M. Diversity and equitability ordering profiles applied to study forest structure. For. Ecol. Manag. Ecol. Manag. 2012, 276, 185–195. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2008. [Google Scholar]
- Cowell, F. Measurement of Inequality. In Handbook of Income Distribution; Atkinson, A.B., Bourguignon, F., Eds.; STICERD: London, UK, 2000; pp. 87–166. [Google Scholar]
- Liu, C.; Beaulieu, J.; Prégent, G.; Zhang, S.Y. Applications and comparison of six methods for predicting parameters of the Weibull function in unthinned Picea glauca plantations. Scand. J. For. Res. 2009, 24, 67–75. [Google Scholar] [CrossRef]
- Gorgoso, J.J.; Álvarez González, J.G.; Rojo, A.; Grandas Arias, J.A. Modelling diameter distributions of Betula alba L. stands in northwest Spain with the two-paramenter Weibull function. Investig. Agrar. Sist. Recur. For. 2007, 16, 113–123. [Google Scholar] [CrossRef]
- Liu, C.; Zhang, L.; Davis, C.J.; Solomon, D.S.; Gove, J.H. A finite mixture model for characterizing the diameter distributions of mixed-species forest stands. For. Sci. 2002, 48, 653–661. [Google Scholar]
- Zasada, M.; Cieszewski, C.J. A finite mixture distribution approach for characterizing tree diameter distributions by natural social class in pure even-aged Scots pine stands in Poland. For. Ecol. Manag. 2005, 204, 145–158. [Google Scholar] [CrossRef]
- Peter Macdonald, with Contributions from Juan Du. Mixdist: Mixture Distribution Models. R Package Version 0.5-5. 2012. Available online: https://cran.r-project.org/web/packages/mixdist/index.html (accessed on 12 December 2018).
- Latifi, H.; Nothdurft, A.; Koch, B. Non-parametric prediction and mapping of standing timber volume and biomass in a temperate forest: Application of multiple optical/LiDAR-derived predictors. Forestry 2010, 83, 395–407. [Google Scholar] [CrossRef]
- Dash, J.P.; Marshall, H.M.; Rawley, B. Methods for estimating multivariate stand yields and errors using k -NN and aerial laser scanning. Forestry 2015, 88, 237–247. [Google Scholar] [CrossRef]
- Belgiu, M.; Drăguţ, L. Random forest in remote sensing: A review of applications and future directions. ISPRS J. Photogramm. Remote Sens. 2016, 114, 24–31. [Google Scholar] [CrossRef]
- Zhang, Z.; Cao, L.; She, G. Estimating forest structural parameters using canopy metrics derived from airborne LiDAR data in subtropical forests. Remote Sens. 2017, 9, 940. [Google Scholar] [CrossRef]
- Sprugel, D. Correcting for Bias in Log-Transformed Allometric Equations. Ecology 1983, 64, 209–210. [Google Scholar] [CrossRef]
- Næsset, E.; Økland, T. Estimating tree height and tree crown properties using airborne scanning laser in a boreal nature reserve. Remote Sens. Environ. 2002, 79, 105–115. [Google Scholar] [CrossRef]
- Akaike, H. A new look at the statistical model identification. IEEE Trans. Automat. Control 1974, 19, 716–723. [Google Scholar] [CrossRef]
- Reynolds, M.; Burk, T.; Huang, W. Goodness-of-fit tests and model selection procedures for diameter distribution models. For. Sci. 1988, 34, 373–399. [Google Scholar]
- Kato, J.; Hayashi, I. Quantitative analysis of a stand of Pinus densiflora undergoing succession to Quercus mongolica ssp. crispula: II. Growth and population dynamics of Q. mongolica ssp. crispula under the P. densiflora canopy. Ecol. Res. 2007, 22, 527–533. [Google Scholar] [CrossRef]
- Hui, G.; Pommerening, A. Analysing tree species and size diversity patterns in multi-species uneven-aged forests of Northern China. For. Ecol. Manag. 2014, 316, 125–138. [Google Scholar] [CrossRef]
- Ozdemir, I.; Donoghue, D.N.M. Modelling tree size diversity from airborne laser scanning using canopy height models with image texture measures. For. Ecol. Manag. 2013, 295, 28–37. [Google Scholar] [CrossRef]
- Valbuena, R. Forest Structure Indicators Based on Tree Size Inequality and Their Relationships to Airborne Laser Scanning; University of Eastern Finland: Joensuu, Finland, 2015. [Google Scholar]
- Damgaard, C.; Weiner, J. Describing inequality in plant size or fecundity. Ecology 2000, 81, 1139–1142. [Google Scholar] [CrossRef]
- Knox, R.; Peet, R.; Christensen, N. Population dynamics in Loblolly Pine stands: Changes in skewness and size inequality. Ecology 1989, 70, 1153–1166. [Google Scholar] [CrossRef]
- Turnbull, J.W. Development of sustainable forestry plantations in China: A review. Int. For. Rev. 2008, 1, 95–96. [Google Scholar]
- Næsset, E.; Gobakken, T. Estimation of above- and below-ground biomass across regions of the boreal forest zone using airborne laser. Remote Sens. Environ. 2008, 112, 3079–3090. [Google Scholar] [CrossRef]
- Tompalski, P.; Coops, N.C.; White, J.C.; Wulder, M.A. Enriching ALS-derived area-based estimates of volume through tree-Level downscaling. Forests 2015, 6, 2608–2630. [Google Scholar] [CrossRef]
- Cao, L.; Coops, N.C.; Hermosilla, T.; Innes, J.; Dai, J. Using Small-Footprint Discrete and Full-Waveform Airborne LiDAR Metrics to Estimate Total Biomass and Biomass Components in Subtropical Forests. Remote Sens. 2014, 6, 7110–7135. [Google Scholar] [CrossRef]
- Tonolli, S.; Dalponte, M.; Neteler, M.; Rodeghiero, M.; Vescovo, L.; Gianelle, D. Fusion of airborne LiDAR and satellite multispectral data for the estimation of timber volume in the Southern Alps. Remote Sens. Environ. 2011, 115, 2486–2498. [Google Scholar] [CrossRef]
- Kane, V.R.; Bakker, J.D.; Lutz, J.A.; Franklin, J.F.; Kane, V.R.; Mcgaughey, R.J.; Bakker, J.D.; Gersonde, R.F.; Lutz, J.A.; Franklin, J.F. Comparisons between field- and LiDAR-based measures of stand structural complexity. Can. J. For. Res. 2010, 40, 761–773. [Google Scholar] [CrossRef]
- Gagliasso, D.; Hummel, S.; Temesgen, H. A Comparison of Selected Parametric and Non-Parametric Imputation Methods for Estimating Forest Biomass and Basal Area. Open J. For. 2014, 4, 42–48. [Google Scholar] [CrossRef]
- Lindberg, E.; Holmgren, J.; Olofsson, K.; Wallerman, J.; Olsson, H. Estimation of tree lists from airborne laser scanning by combining single- tree and area-based methods. Int. J. Remote Sens. 2010, 31, 1175–1192. [Google Scholar] [CrossRef]
- Zald, H.S.J.; Wulder, M.A.; White, J.C.; Hilker, T.; Hermosilla, T.; Hobart, G.W.; Coops, N.C. Integrating Landsat pixel composites and change metrics with lidar plots to predictively map forest structure and aboveground biomass in Saskatchewan, Canada. Remote Sens. Environ. 2016, 176, 188–201. [Google Scholar] [CrossRef]
- Shen, X.; Cao, L.; Chen, D.; Sun, Y.; Wang, G.; Ruan, H. Prediction of Forest Structural Parameters Using Airborne Full-Waveform LiDAR and Hyperspectral Data in Subtropical Forests. Remote Sens. 2018, 10, 1729. [Google Scholar] [CrossRef]
Parameters | Chinese Fir Forests (n = 20) | Eucalypt Forests (n = 29) | ||||
---|---|---|---|---|---|---|
Range | Mean | SD | Range | Mean | SD | |
DBH/cm | 11.41–23.34 | 16.48 | 3.90 | 5.52–23.45 | 12.64 | 3.96 |
H/m | 9.72–19.56 | 13.33 | 2.38 | 8.01–30.37 | 15.92 | 4.57 |
N/(ha−1) | 525.00–2450.00 | 1245.00 | 523.07 | 725.00–2725.00 | 1640.83 | 576.43 |
G/(m2·ha−1) | 17.01–42.78 | 26.58 | 5.36 | 4.70–46.07 | 20.61 | 8.68 |
V/(m3·ha−1) | 108.33–355.54 | 206.27 | 50.49 | 22.85–556.20 | 180.09 | 118.78 |
Types | Unimodal Plots | Multimodal Plots |
---|---|---|
All (n = 49) | 23 | 26 |
Chinese fir (n = 20) | 6 | 14 |
Eucalypt (n = 29) | 17 | 12 |
Responses | SET1 | SET2 | SET3 | SET4 | SET5 | SET6 | SET7 | SET8 | SET9 | SET10 | SET11 | SET12 | SET13 | SET14 | SET15 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
V | √ | √ | √ | √ | √ | ||||||||||
G | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
H | √ | √ | √ | √ | √ | √ | √ | √ | √ | ||||||
DBH | √ | √ | √ | √ | √ | √ | √ | √ | |||||||
N | √ | √ | √ | √ | √ |
Classification Methods | Forest Types | Predictors | Overall Accuracy (%) | Kappa Coefficient | Prediction Accuracy | Metrics Used | |||
---|---|---|---|---|---|---|---|---|---|
R2 | RMSE | rRMSE (%) | |||||||
LiDAR predictions | All | BC | 48.98 | 0.45 | 0.28 | 0.09 | 37.85 | hcv, Lkurt, d3, Oligo | |
GC+LA | 59.18 | 0.59 | GC: 0.52 | 0.11 | 20.95 | hmax, hCURT, d9, CG | |||
LA: 0.35 | 0.10 | 35.80 | h50, h75, d9, Rumple | ||||||
Species-specific | Chinese fir | BC | 65.31 | 0.50 | 0.72 | 0.06 | 14.92 | h95, hvar, Oligo, CG | |
Eucalypt | 0.32 | 0.10 | 32.30 | h50, h75, CRR, CvLAD | |||||
Chinese fir | GC + LA | 77.55 | 0.55 | GC: 0.90 | 0.06 | 10.78 | h75, hmean, Lkurt, Eu | ||
LA: 0.45 | 0.08 | 34.29 | h95, hvar, Oligo, CG | ||||||
Eucalypt | GC: 0.68 | 0.09 | 17.48 | hcv, CRR, Close, CvLAD | |||||
LA: 0.56 | 0.08 | 28.96 | Lkurt, CvLAD, Rumple, VCI |
Forest Types | FTR | Predictors | Metrics Used | R2 | RMSE | rRMSE (%) | |
---|---|---|---|---|---|---|---|
Undifferentiated modality | All (n = 49) | 20/29 | b | h95, hvar, d5, CRR | 0.80 | 2.26 | 14.42 |
c | d1, d3, d7, d9 | 0.66 | 0.97 | 21.99 | |||
Chinese fir (n = 20) | / | b | h50, hcv, hstd, Oligo | 0.94 | 1.04 | 5.65 | |
c | h75, hmean, OG, CvLAD | 0.80 | 0.55 | 16.39 | |||
Eucalypt (n = 29) | / | b | hvar, hCURT, Lcv, d5 | 0.95 | 0.99 | 7.17 | |
c | h25, hmean, hmax, d7 | 0.75 | 0.74 | 14.94 | |||
Differentiated modality | Unimodal plots (n = 28) | 7/21 | b | hmax, Lcv, CvLAD, VCI | 0.87 | 1.74 | 12.26 |
c | d1, d3, d7, d9 | 0.83 | 0.71 | 15.21 | |||
Multimodal plots (n = 21) | 13/8 | p1 | hmax, Close, Rumple, VCI | 0.58 | 0.15 | 29.21 | |
p2 | hmax, CRR, Eu, Rumple | 0.71 | 0.13 | 25.89 | |||
b1 | hmean, hmax, d5, Filled | 0.77 | 2.49 | 18.74 | |||
c1 | h95, hmax, hkurt, CvLAD | 0.71 | 18.29 | 20.53 | |||
b2 | h50, h95, d5, d7 | 0.83 | 2.44 | 12.22 | |||
c2 | hmean, Lcv, d9, Close | 0.61 | 47.42 | 26.66 |
Differentiation | Methods | Models Id | Plot Types | Ground-Estimated Diameter Distributions | LiDAR-Predicted Diameter Distributions | ||
---|---|---|---|---|---|---|---|
Mean eR | Mean eP | Mean eR | Mean eP | ||||
Undifferentiated plots | UWM | Model 1 | All plots (n = 49) | 33.85 | 0.17 | 52.31 | 0.26 |
Model 2 | Chinese fir plots (n = 20) | 42.15 | 0.21 | 44.98 | 0.22 | ||
Model 3 | Eucalypt plots (n = 29) | 28.12 | 0.14 | 41.36 | 0.21 | ||
Differentiated plots | GM | Model 4 | All plots (n = 49) | 25.28 | 0.13 | 40.85 | 0.20 |
UWM | Model 5 | Unimodal plots (n = 28) | 26.76 | 0.13 | 41.36 | 0.21 | |
FMM | Model 6 | Multimodal plots (n = 21) | 21.65 | 0.11 | 39.98 | 0.20 |
k | MSN | RF | ||
---|---|---|---|---|
Mean eR | Mean eP | Mean eR | Mean eP | |
1 | 62.16 | 0.31 | 58.08 | 0.29 |
3 | 56.38 | 0.28 | 55.61 | 0.26 |
5 | 53.86 | 0.27 | 54.13 | 0.27 |
7 | 54.64 | 0.28 | 56.28 | 0.28 |
9 | 64.11 | 0.35 | 60.10 | 0.30 |
Method | Model Id | Plot Types | Imputations | Response Configurations | Responses | CV-R2 | rRMSE (%) | Mean eR | Mean eP |
---|---|---|---|---|---|---|---|---|---|
KNN | Model 7 | All plots (n = 49) | RF | SET14 | DBH | 0.87 | 11.41 | 52.19 | 0.26 |
Model 8 | Chinese fir plots (n = 20) | RF | SET7 | G | 0.51 | 25.09 | 50.37 | 0.25 | |
H | 0.87 | 5.40 | |||||||
DBH | 0.70 | 10.25 | |||||||
Model 9 | Eucalypt plots (n = 29) | MSN | SET14 | DBH | 0.85 | 10.10 | 48.93 | 0.24 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Cao, L.; Mulverhill, C.; Liu, H.; Pang, Y.; Li, Z. Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests. Forests 2019, 10, 125. https://doi.org/10.3390/f10020125
Zhang Z, Cao L, Mulverhill C, Liu H, Pang Y, Li Z. Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests. Forests. 2019; 10(2):125. https://doi.org/10.3390/f10020125
Chicago/Turabian StyleZhang, Zhengnan, Lin Cao, Christopher Mulverhill, Hao Liu, Yong Pang, and Zengyuan Li. 2019. "Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests" Forests 10, no. 2: 125. https://doi.org/10.3390/f10020125
APA StyleZhang, Z., Cao, L., Mulverhill, C., Liu, H., Pang, Y., & Li, Z. (2019). Prediction of Diameter Distributions with Multimodal Models Using LiDAR Data in Subtropical Planted Forests. Forests, 10(2), 125. https://doi.org/10.3390/f10020125