Seed Availability Does Not Ensure Regeneration in Northern Ecosystems of the Endangered Limber Pine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sampling Methods
2.3. Statistical Analysis
2.3.1. Model Identification
2.3.2. Age Structure Analysis
3. Results
3.1. Modeling Results of Regeneration Density
3.2. Evaluation of Covariates in the Final Model
3.2.1. Seed Availability
3.2.2. Substrate
3.2.3. Microsite
3.2.4. Ecosystem
3.2.5. Disease
3.2.6. Competition
3.3. Age Structure
4. Discussion
4.1. Evaluation of Hypothesis Tests
4.2. Processes Facilitating Regeneration
4.2.1. Seed Availability
4.2.2. Substrate Availability
4.3. Processes Inhibiting Regeneration
4.4. Conservation Biology of Limber Pine
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hutching, M.J. Plant Ecology, 2nd ed.; Crawley, M.J., Ed.; Blackwell Science Ltd.: Cambridge, UK, 1997. [Google Scholar]
- Muller-Landau, H.C. The tolerance-fecundity trade-off and the maintenance of diversity in seed size. PNAS 2010, 107, 4242–4247. [Google Scholar] [CrossRef] [PubMed]
- Koenig, W.D.; Knops, J.M.H. Scale of mast-seeding and tree-ring growth. Nature 1998, 396, 225–226. [Google Scholar] [CrossRef]
- Peters, V.S.; Macdonald, S.E.; Dale, M.R.T. The interaction between masting and fire is key to white spruce regeneration. Ecology 2005, 86, 1744–1750. [Google Scholar] [CrossRef]
- Peters, V.S.; Gelderman, M.; Visscher, D.R. Resiliency in masting systems: Do evolved seed escape strategies benefit an endangered pine? Ecosphere 2017, 8, 1–19. [Google Scholar] [CrossRef]
- Johnson, E.A. Fire and Vegetation Dynamics: Studies from the North American Boreal Forest, 1st ed.; Cambridge University Press: Cambridge, UK, 1992. [Google Scholar]
- Tomback, D.F.; Arno, S.F.; Keane, R.E. Whitebark Pine Communities: Ecology and Restoration; Island Press: Washington, DC, USA, 2001. [Google Scholar]
- Greene, D.F.; Johnson, E.A. Tree recruitment from burn edges. Can. J. For. Res. 2000, 30, 1264–1274. [Google Scholar] [CrossRef]
- Charron, I.; Greene, D.F. Post-wildfire seedbeds and tree establishment in the southern mixedwood boreal forest. Can. J. For. Res. 2002, 32, 1607. [Google Scholar] [CrossRef]
- Coates, D.K.; Haeussler, S.; Lindeburgh, S.; Pojar, R.; Stock, A.J. Ecology and Silviculture of Interior Spruce in British Columbia; British Columbia, Forestry Canada British Columbia Ministry of Forests: Victoria, BC, Canada, 1994; p. 182.
- Tomback, D.F.; Achuff, P.; Schoettle, A.W.; Schwandt, J.W.; Mastrogiuseppe, R.J. The Magnificent High-Elevation Five-Needle White Pines: Ecological Roles and Future Outlook. In The Future of High-Elevation, Five-Needle White Pines in Western North America, Proceedings of The High Five Symposium, Missoula, MT, USA, 28–30 June 2010; Keane, R.E., Tomback, D.F., Murray, M.P., Smith, C.M., Eds.; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2011; Proceedings RMRS-P-63, 2–28. [Google Scholar]
- Webster, K.L.; Johnson, E.A. The importance of regional dynamics in local populations of limber pine (Pinus flexilis). Ecoscience 2000, 7, 175–182. [Google Scholar] [CrossRef]
- Schoettle, A.W.; Rochelle, S.G. Morphological variation of Pinus flexilis (Pinaceae), a bird-dispersed pine, across a range of elevations. Am. J. Bot. 2000, 87, 1797–1806. [Google Scholar] [CrossRef]
- Steele, R. Pinus flexilis James. In Silvics of North America, Volume 1, Conifers; Agriculture Handbook, No. 654; Burns, R.M., Honkala, B.H., Tech. Coordinator, Eds.; U.S. Dept. of Agric.: Washington, DC, USA, 1990; pp. 348–354. [Google Scholar]
- Smith, C.M.; Wilson, B.; Rasheed, S.; Walker, R.; Carolin, T.; Sheppard, B. Whitebark pine and white pine blister rust in the Rocky Mountains of Canada and northern Montana. Can. J. For. Res. 2008, 38, 982–992. [Google Scholar] [CrossRef]
- Alberta Limber Pine Recovery Plan 2014–2019. Available online: https://open.alberta.ca/publications/978146011848 (accessed on 20 December 2018).
- Smith, C.; Langor, D.; Myrholm, C.; Weber, J.; Gillies, C.; Stuart-Smith, J. Changes in blister rust infection and mortality in limber pine over time. Can. J. For. Res. 2013, 43, 919–928. [Google Scholar] [CrossRef]
- Alberta Sustainable Resource Development and Alberta Conservation Association. Status of the Limber Pine (Pinus flexilis) in Alberta; Alberta Wildlife Status Report No. 62; ASRD: Edmonton, AB, Canada, 2007; p. 17. [Google Scholar]
- Kearns, H.S.J.; Jacobi, W.R. The distribution and incidence of white pine blister rust in central and southeastern Wyoming and northern Colorado. Can. J. For. Res. 2007, 37, 462–472. [Google Scholar] [CrossRef]
- Lanner, R.M.; Vander Wall, S.B. Dispersal of limber pine seed by Clark’s nutcracker. J. For. 1980, 78, 637–639. [Google Scholar]
- Tomback, D.F. Dispersal of whitebark pine seeds by Clark’s nutcracker: A mutualism hypothesis. J. Anim. Ecol. 1982, 51, 451–467. [Google Scholar] [CrossRef]
- Lorenz, T.J.; Sullivan, K.A.; Bakian, A.V.; Aubry, C.A. Cache-site selection in Clark’s nutcracker (Nucifraga columbiana). Auk 2011, 128, 237–247. [Google Scholar] [CrossRef]
- Baumeister, D.; Callaway, R.M. Facilitation by Pinus flexilis during succession: A hierarchy of mechanisms benefits other plant species. Ecology 2006, 87, 1816–1830. [Google Scholar] [CrossRef]
- Casper, A.M.A.; Jacobi, W.R.; Schoettle, A.W.; Burns, K.S. Restoration planting options for limber pine (Pinus flexilis James) in the Southern Rocky Mountains. J. Torrey Bot. Soc. 2016, 143, 21–37. [Google Scholar] [CrossRef]
- Coop, J.D.; Schoettle, A.W. Regeneration of rocky mountain bristlecone pine (Pinus aristata) and limber pine (Pinus flexilis) three decades after stand-replacing fires. For. Ecol. Manage. 2009, 257, 893–903. [Google Scholar] [CrossRef]
- Rebertus, A.J.; Burns, B.R.; Veblen, T.T. Stand dynamics of Pinus flexilis-dominated subalpine forests in the Colorado Front Range. J. Veg. Sci. 1991, 2, 445–458. [Google Scholar] [CrossRef]
- Shankman, D.; Daly, C. Forest regeneration above tree limit depressed by fire in the Colorado Front Range. Bull. Torrey Bot. Club 1988, 115, 272–279. [Google Scholar] [CrossRef]
- McKinney, S.T.; Fiedler, C.E.; Tomback, D.F. Invasive pathogen threatens bird-pine mutualism: Implications for sustaining a high-elevation ecosystem. Ecol. Appl. 2009, 19, 597–607. [Google Scholar] [CrossRef]
- Turnbull, L.A.; Rees, M.; Crawley, M.J. Are plant populations seed-limited? A review of seed sowing experiments. Oikos 2000, 88, 225–238. [Google Scholar] [CrossRef]
- Clark, C.J.; Poulsen, J.R.; Levey, D.J.; Osenberg, C.W. Are plant populations seed limited? A critique and meta-analysis of seed addition experiments. Am. Nat. 2007, 170, 128–142. [Google Scholar] [PubMed]
- Natural Regions Committee. Natural Regions and Subregions of Alberta; Downing, D.J., Pettapiece, W.W., Eds.; Government of Alberta: Edmonton, AB, Canada, 2006; Pub. No. T/852.
- Alberta Agriculture and Foresty. Interpolated Weather Data since 1961 for Alberta. Available online: https://agriculture.alberta.ca/acis/township-data-viewer.jsp (accessed on 19 January 2019).
- Whitebark Pine Ecosystem Foundation. 2014 Whitebark Pine and Limber Pine Range Maps. Available online: http://whitebarkfound.org (accessed on 8 February 2019).
- Rogeau, M.P.P.; Flannigan, M.D.; Hawkes, B.C.; Parisien, M.A.; Arthur, R. Spatial and temporal variations of fire regimes in the Canadian Rocky Mountains and foothills of southern Alberta. Int. J. Wildland Fire 2016, 25, 1117–1130. [Google Scholar] [CrossRef]
- Bourchier, R.J. Forest Disease Survey: Alberta and Rocky Mountain National Parks. In Annual Report of the Forest Insect and Disease Survey; Department of Agriculture Canada: Ottawa, ON, Canada, 1952. [Google Scholar]
- Zurr, A.F.; Ieno, E.N.; Walker, N.J.; Saveliev, A.A.; Smith, G.M. Mixed Effects Models and Extensions in Ecology with R, 1st ed.; Springer-Verlag: New York, NY, USA, 2009. [Google Scholar]
- Warton, D.I. Many zeros does not mean zero inflation: Comparing the goodness-of-fit of parametric models to multivariate abundance data. Environmetrics 2005, 16, 275–289. [Google Scholar] [CrossRef]
- Burnham, K.P.; Anderson, D.R. Model Selection and Multimodel Inference: A Practical Information-Theoretic Approach, 2nd ed.; Springer-Verlag: New York, NY, USA, 2002. [Google Scholar]
- Akaike, H. Information theory and an extension of the maximum likelihood principle. In Second International Symposium on Information Theory; Petrov, B.N., Csaki, F., Eds.; Akademiai Kiado: Budapest, Hungary, 1973; pp. 257–281. [Google Scholar]
- Nakagawa, S.; Schielzeth, H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 2013, 4, 133–142. [Google Scholar] [CrossRef]
- Johnson, P.C.D. Extension of Nakagawa and Schielzeth’s R2 GLMM to random slopes models. Methods Ecol. Evol. 2014, 5, 944–946. [Google Scholar] [CrossRef] [PubMed]
- Bolker, B.M.; R Development Core Team. bbmle: Tools for General Maximum Likelihood Estimation. R Package Version 1.0.20. 2017. Available online: https://CRAN.R-project.org/package=bbmle (accessed on 19 January 2019).
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef] [PubMed]
- Brooks, M.E.; Kristensen, K.; van Benthem, K.J.; Magnusson, A.; Berg, C.W.; Nielsen, A.; Skaug, H.J.; Maechle, R.M.; Bolker, B.M. glmmTMB Balances Speed and Flexibility Among Packages for Zero-inflated Generalized Linear Mixed Modeling. R J. 2017, 9, 378–400. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2018; Available online: https://www.R-project.org/ (accessed on 19 January 2019).
- Lüdecke, D. ggeffects: Create Tidy Data Frames of Marginal Effects for ‘ggplot’ from Model Outputs. R Package Version 0.3.3. 2018. Available online: https://CRAN.R-project.org/package=ggeffects (accessed on 19 January 2019).
- Bates, D.; Maechler, M.; Bolker, B.; Walker, S. In Fitting linear mixed-effects models using lme4. J. Stat. Soft. 2015, 67, 1–48. [Google Scholar] [CrossRef]
- The R Foundation: The R Project for Statistical Computing. Available online: https://www.R-project.org/ (accessed on 20 December 2018).
- Zar, J.H. Biostatistical Analysis; Prentice Hall: Upper Saddle River, NJ, USA, 1996. [Google Scholar]
- Tomback, D.F.; Linhart, Y.B. The evolution of bird-dispersed pines. Evol. Ecol. 1990, 4, 185–219. [Google Scholar] [CrossRef]
- Peters, V.S. Northern limber pine populations—Seed or substrate limited? Nutcracker Notes 2014, 26, 12–14. [Google Scholar]
- Moyes, A.B.; Castanha, C.; Germino, M.J.; Kueppers, L.M. Warming and the dependence of limber pine (Pinus flexilis) establishment on summer soil moisture within and above its current elevation range. Oecologia 2013, 171, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Cleaver, C.M.; Jacobi, W.R.; Burns, K.S.; Means, R.E. Limber Pine Regeneration and White Pine Blister Rust in the Central and Southern Rocky Mountains. For. Sci. 2016, 63, 151–164. [Google Scholar] [CrossRef]
- Shepherd, B.; Jones, B.; Sissons, R.; Cochrane, J.; Park, J.; Smith, C.M.; Stafl, N. Ten years of monitoring illustrates a cascade of effects of white pine blister rust and focuses whitebark pine restoration in the Canadian Rocky and Columbia Mountains. Forests 2018, 9, 138. [Google Scholar] [CrossRef]
- Donnegan, J.A.; Rebertus, A.J. Rates and mechanisms of subalpine forest succession along an environmental gradient. Ecology 1999, 80, 1370–1384. [Google Scholar] [CrossRef]
- Parent, S.; Morin, H.; Messier, C. Effects of adventitious roots on age determination in Balsam fir (Abies balsamea) regeneration. CJFR 2000, 30, 513–518. [Google Scholar]
- Keane, R.E.; Parsons, R.A. Restoring whitebark pine forests of the northern Rocky Mountains, USA. Ecol. Restor. 2010, 28, 56–70. [Google Scholar] [CrossRef]
- Leirfallom, S.B.; Keane, R.E.; Tomback, D.F.; Dobrowski, S.Z. The effects of seed source health on whitebark pine (Pinus albicaulis) regeneration density after wildfire. Can. J. For. Res. 2015, 45, 1597–1606. [Google Scholar] [CrossRef]
- Dawe, D. Post-Fire Regeneration of Endangered Limber Pine (Pinus flexilis) at the Northern Extent of its Range. Master’s Thesis, University of Alberta, Edmonton, AB, Canada, June 2019. [Google Scholar]
Stand | Live Stand Composition | Mortality | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P. flex BA (m2/ha) | P. cont | P. glau | P. menz | P. trem | P. flex Relative Abundance (% Total BA) | P. flex (m2/ha) | P. flex Relative Abundance (% Total BA) | Latitude° | Longitude° | Aspect° | Slope° | |
Northern Ecosystem | ||||||||||||
KP1 | 8.3 | 0.2 | 0.8 | 0.0 | 0.0 | 89.3 | 1.2 | 100.0 | 52.005 | −116.466 | 124 | 15.0 |
KP2 | 4.7 | 0.3 | 3.5 | 0.0 | 0.0 | 54.9 | 0.0 | 0.0 | 52.002 | −116.466 | 135 | 5.0 |
KP3 | 3.8 | 0.0 | 2.5 | 0.0 | 0.0 | 60.5 | 0.2 | 54.5 | 52.046 | −116.397 | 270 | 22.0 |
KP4 | 2.7 | 3.8 | 0.2 | 0.0 | 0.0 | 40.0 | 0.3 | 100.0 | 52.054 | −116.390 | 200 | 13.0 |
KP4B | 5.4 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 4.2 | 100.0 | 52.049 | −116.388 | 221 | 35.0 |
KP5 | 1.7 | 3.0 | 0.2 | 0.0 | 0.0 | 34.5 | 0.0 | 0.0 | 52.247 | −116.435 | 146 | 28.0 |
KP6 | 4.5 | 0.0 | 1.2 | 0.0 | 0.0 | 79.4 | 0.0 | 0.0 | 52.255 | −116.395 | 124 | 26.0 |
KP7 | 5.3 | 0.0 | 2.3 | 0.0 | 2.5 | 52.5 | 0.0 | 0.0 | 52.271 | −116.385 | 169 | 36 |
KP8 | 6.0 | 3.5 | 0.0 | 0.0 | 0.0 | 63.2 | 1.2 | 100.0 | 52.007 | −116.460 | 116 | 23.0 |
Southern Ecosystem | ||||||||||||
Charolais | 5.7 | 0.0 | 0.0 | 0.7 | 0.0 | 89.5 | 3.0 | 100.0 | 49.678 | −114.008 | 259 | 33.0 |
Calvin | 8.2 | 0.0 | 0.0 | 4.0 | 0.0 | 67.1 | 0.7 | 100.0 | 49.858 | −114.240 | 270 | 21.5 |
Lundbreck | 7.3 | 0.0 | 0.0 | 0.7 | 0.0 | 91.7 | 2.2 | 67.7 | 49.584 | −114.189 | 214 | 20.0 |
East Sharples | 5.0 | 0.0 | 0.0 | 6.2 | 1.7 | 39.0 | 0.5 | 71.4 | 49.916 | −114.993 | 259 | 10.0 |
Heath Creek | 5.5 | 0.0 | 0.0 | 0.3 | 0.0 | 94.3 | 0.8 | 100.0 | 49.786 | −114.059 | 270 | 38.0 |
Ross | 5.7 | 0.0 | 0.0 | 2.2 | 0.0 | 72.3 | 3.0 | 90.9 | 49.594 | −114.233 | 243 | 14.0 |
Welsch | 2.5 | 0.0 | 0.0 | 1.2 | 0.0 | 68.2 | 4.2 | 100.0 | 49.681 | −114.953 | 260 | 22.0 |
Simps | 11.2 | 0.0 | 0.0 | 0.0 | 0.0 | 100.0 | 3.7 | 100.0 | 49.667 | −114.783 | 265 | 23.0 |
Hypothesis | Reason | Covariates | Description |
---|---|---|---|
Ecosystem | Climate, geology, and forest composition differs with latitude | ecosystem | Factor for northern or southern ecosystem |
Microsite | Soil moisture and solar insolation vary with aspect and slope | direction slope | Ordinal factor for cardinal aspect (W = 225–314˚, N = 315–44˚, E = 45–134˚, S = 135–224˚) † Arcsine transformed % slope |
Seed limitation | Seed availability may control regeneration | cone | Number of cones produced in 2010 mast year |
BA_lp | Basal area of limber pine | ||
Substrate limitation | Substrate availability may limit | mineral | Mineral soil cover |
germination and survivorship | rock | Rock cover | |
Competition | Seedlings require open conditions | vegetation | Vegetation cover index |
Disease | Seedlings are susceptible to mortality | BA_dead lp | Basal area of dead limber pine |
Model Form | K | LL | AICc | ΔAICc | Wi |
---|---|---|---|---|---|
ZIP | 17 | −135.8 | 308.9 | 0.0 | 0.737 |
ZNB | 18 | −135.6 | 310.9 | 2.1 | 0.258 |
Negative Binomial | 15 | −142.5 | 317.6 | 8.7 | 0.009 |
Poisson | 14 | −155.3 | 340.9 | 32.0 | <0.001 |
Model/Hypothesis | K | LL | AICc | ΔAICc | Wi |
---|---|---|---|---|---|
Simplified Su+Sd|D+C † | 13 | −136.8 | 301.6 | 0.0 | 0.564 |
Su+Sd|D+C | 15 | −135.9 | 304.4 | 2.9 | 0.136 |
Su+Sd|D | 14 | −137.4 | 304.9 | 3.4 | 0.104 |
Su+Sd|C | 14 | −138.0 | 306.2 | 4.6 | 0.056 |
Su+Sd+D|D+C | 16 | −135.8 | 306.6 | 5.0 | 0.046 |
Su+Sd+C|D+C | 16 | −135.9 | 306.7 | 5.2 | 0.043 |
Su+Sd|D+C+Sd | 16 | −135.9 | 306.7 | 5.2 | 0.042 |
Sd|D+C | 13 | −141.3 | 310.5 | 9.0 | 0.006 |
Sd|C | 12 | −143.6 | 312.8 | 11.2 | 0.002 |
Sd|D | 12 | −144.2 | 313.9 | 12.4 | 0.001 |
null|D+C | 11 | −148.5 | 320.4 | 18.9 | <0.001 |
Su|D+C | 13 | −146.6 | 321.2 | 19.7 | <0.001 |
Su|C | 12 | −147.8 | 321.3 | 19.7 | <0.001 |
Su|D | 12 | −148.6 | 322.9 | 21.3 | <0.001 |
Model Part | Effects | Group | Variance | Std. Dev. | |
---|---|---|---|---|---|
Conditional | Random | site:stand | 0.110 | 0.331 | |
stand | 3.15 × 10−9 | 5.62 × 10−5 | |||
Covariate | Coefficient | SE | P | ||
Conditional | Fixed | Intercept | −2.940 | 1.201 | 0.014 |
Ecosystem (South) | −2.191 | 0.529 | <0.001 | ||
Aspect 2 | 0.042 | 1.167 | 0.972 | ||
Aspect 3 | 1.090 | 1.127 | 0.333 | ||
Aspect 4 | 2.349 | 1.133 | 0.038 | ||
Slope | 1.366 | 0.910 | 0.133 | ||
BA limber pine | 0.464 | 0.096 | <0.001 | ||
Rock | 0.024 | 0.007 | <0.001 | ||
Zero-inflated | Intercept | −1.435 | 0.705 | 0.042 | |
Veg | 0.258 | 0.145 | 0.074 | ||
BA Dead limber | 0.551 | 0.293 | 0.060 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Peters, V.S.; Visscher, D.R. Seed Availability Does Not Ensure Regeneration in Northern Ecosystems of the Endangered Limber Pine. Forests 2019, 10, 146. https://doi.org/10.3390/f10020146
Peters VS, Visscher DR. Seed Availability Does Not Ensure Regeneration in Northern Ecosystems of the Endangered Limber Pine. Forests. 2019; 10(2):146. https://doi.org/10.3390/f10020146
Chicago/Turabian StylePeters, Vernon S., and Darcy R. Visscher. 2019. "Seed Availability Does Not Ensure Regeneration in Northern Ecosystems of the Endangered Limber Pine" Forests 10, no. 2: 146. https://doi.org/10.3390/f10020146
APA StylePeters, V. S., & Visscher, D. R. (2019). Seed Availability Does Not Ensure Regeneration in Northern Ecosystems of the Endangered Limber Pine. Forests, 10(2), 146. https://doi.org/10.3390/f10020146