Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover
Abstract
:1. Introduction
1.1. UAS Image-Based Point Clouds in Forestry
1.2. Describing the Terrain
- using information contained in the point cloud to describe the terrain;
- using a description of the terrain derived from an alternate source; and
- extracting information from the point cloud without description of the a terrain.
1.3. Aims and Objectives
2. Materials and Methods
2.1. Study Area and Reference Data
2.2. Data Collection and Point Cloud Generation
2.3. Ground Filtering
2.4. DTM Creation
2.5. DTM Evaluation
2.6. Changes to Forest Characteristics
3. Results
3.1. Pointcloud Co-Registration
3.2. Manual Ground Identification and Terrain Modelling
3.3. Ground Filter Performance and Effects on Terrain Modelling
3.4. Effects on Vegetation Metrics
4. Discussion
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wallace, L.; Lucieer, A.; Malenovskỳ, Z.; Turner, D.; Vopěnka, P. Assessment of forest structure using two UAV techniques: A comparison of airborne laser scanning and structure from motion (SfM) point clouds. Forests 2016, 7, 62. [Google Scholar] [CrossRef]
- Giannetti, F.; Chirici, G.; Gobakken, T.; Næsset, E.; Travaglini, D.; Puliti, S. A new approach with DTM- independent metrics for forest growing stock prediction using UAV photogrammetric data. Remote Sens. Environ. 2018, 213, 195–205. [Google Scholar] [CrossRef]
- Mlambo, R.; Woodhouse, I.H.; Gerard, F.; Anderson, K. Structure from Motion (SfM) photogrammetry with drone data: A low cost method for monitoring greenhouse gas emissions from forests in developing countries. Forests 2017, 8, 68. [Google Scholar] [CrossRef]
- Puliti, S.; Saarela, S.; Gobakken, T.; Ståhl, G.; Næsset, E. Combining UAV and Sentinel-2 auxiliary data for forest growing stock volume estimation through hierarchical model-based inference. Remote Sens. Environ. 2018, 204, 485–497. [Google Scholar] [CrossRef]
- Dandois, J.P.; Olano, M.; Ellis, E.C. Optimal altitude, overlap, and weather conditions for computer vision UAV estimates of forest structure. Remote Sens. 2015, 7, 13895–13920. [Google Scholar] [CrossRef]
- Frey, J.; Kovach, K.; Stemmler, S.; Koch, B. UAV Photogrammetry of Forests as a Vulnerable Process. A Sensitivity Analysis for a Structure from Motion RGB-Image Pipeline. Remote Sens. 2018, 10, 912. [Google Scholar] [CrossRef]
- Torresan, C.; Berton, A.; Carotenuto, F.; Di Gennaro, S.F.; Gioli, B.; Matese, A.; Miglietta, F.; Vagnoli, C.; Zaldei, A.; Wallace, L. Forestry applications of UAVs in Europe: A review. Int. J. Remote Sens. 2017, 38, 2427–2447. [Google Scholar] [CrossRef]
- Puliti, S.; Ene, L.T.; Gobakken, T.; Næsset, E. Use of partial-coverage UAV data in sampling for large scale forest inventories. Remote Sens. Environ. 2017, 194, 115–126. [Google Scholar] [CrossRef]
- Mohan, M.; Silva, C.A.; Klauberg, C.; Jat, P.; Catts, G.; Cardil, A.; Hudak, A.T.; Dia, M. Individual tree detection from unmanned aerial vehicle (UAV) derived canopy height model in an open canopy mixed conifer forest. Forests 2017, 8, 340. [Google Scholar] [CrossRef]
- Fraser, B.; Congalton, R. Issues in Unmanned Aerial Systems (UAS) Data Collection of Complex Forest Environments. Remote Sens. 2018, 10, 908. [Google Scholar] [CrossRef]
- Montealegre, A.L.; Lamelas, M.T.; de la Riva, J. A comparison of open-source LiDAR filtering algorithms in a Mediterranean forest environment. IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 2015, 8, 4072–4085. [Google Scholar] [CrossRef]
- Snavely, N.; Seitz, S.M.; Szeliski, R. Photo tourism: Exploring photo collections in 3D. ACM Trans. Graph. 2006, 25, 835–846. [Google Scholar] [CrossRef]
- Graham, A.; Coops, N.; Wilcox, M.; Plowright, A. Evaluation of Ground Surface Models Derived from Unmanned Aerial Systems with Digital Aerial Photogrammetry in a Disturbed Conifer Forest. Remote Sens. 2019, 11, 84. [Google Scholar] [CrossRef]
- Goodbody, T.; Coops, N.; Hermosilla, T.; Tompalski, P.; Pelletier, G. Vegetation Phenology Driving Error Variation in Digital Aerial Photogrammetrically Derived Terrain Models. Remote Sens. 2018, 10, 1554. [Google Scholar] [CrossRef]
- Jensen, J.L.; Mathews, A.J. Assessment of image-based point cloud products to generate a bare earth surface and estimate canopy heights in a woodland ecosystem. Remote Sens. 2016, 8, 50. [Google Scholar] [CrossRef]
- Leitold, V.; Keller, M.; Morton, D.C.; Cook, B.D.; Shimabukuro, Y.E. Airborne lidar-based estimates of tropical forest structure in complex terrain: Opportunities and trade-offs for REDD+. Carbon Balanc. Manag. 2015, 10, 3. [Google Scholar] [CrossRef]
- Simpson, J.E.; Smith, T.E.; Wooster, M.J. Assessment of Errors Caused by Forest Vegetation Structure in Airborne LiDAR-Derived DTMs. Remote Sens. 2017, 9, 1101. [Google Scholar] [CrossRef]
- Jayathunga, S.; Owari, T.; Tsuyuki, S. The use of fixed–wing UAV photogrammetry with LiDAR DTM to estimate merchantable volume and carbon stock in living biomass over a mixed conifer–broadleaf forest. Int. J. Appl. Earth Observ. Geoinf. 2018, 73, 767–777. [Google Scholar] [CrossRef]
- Puliti, S.; rka, H.O.; Gobakken, T.; Næsset, E. Inventory of small forest areas using an unmanned aerial system. Remote Sens. 2015, 7, 9632–9654. [Google Scholar] [CrossRef]
- Schlömer, T.; Heck, D.; Deussen, O. Farthest-point optimized point sets with maximized minimum distance. In Proceedings of the ACM SIGGRAPH Symposium on High Performance Graphics, Vancouver, BC, Canada, 5–7 August 2011; ACM: New York, NY, USA, 2011; pp. 135–142. [Google Scholar]
- Rusu, R.B.; Marton, Z.C.; Blodow, N.; Dolha, M.; Beetz, M. Towards 3D point cloud based object maps for household environments. Rob. Auton. Syst. 2008, 56, 927–941. [Google Scholar] [CrossRef]
- Isenburg, M. LAStools-Efficient Tools for LiDAR Processing. 2012. Available online: http:http://www.cs.unc.edu/~{}isenburg/lastools/ (accessed on 9 October 2012).
- Zhang, W.; Qi, J.; Wan, P.; Wang, H.; Xie, D.; Wang, X.; Yan, G. An easy-to-use airborne LiDAR data filtering method based on cloth simulation. Remote Sens. 2016, 8, 501. [Google Scholar] [CrossRef]
- Boughorbel, S.; Jarray, F.; El-Anbari, M. Optimal classifier for imbalanced data using Matthews Correlation Coefficient metric. PLoS ONE 2017, 12, e0177678. [Google Scholar] [CrossRef] [PubMed]
- Stereńczak, K.; Ciesielski, M.; Balazy, R.; Zawiła-Niedźwiecki, T. Comparison of various algorithms for DTM interpolation from LIDAR data in dense mountain forests. Eur. J. Remote Sens. 2016, 49, 599–621. [Google Scholar] [CrossRef] [Green Version]
- Iqbal, I.; Osborn, J.; Stone, C.; Lucieer, A.; Dell, M.; McCoull, C. Evaluating the robustness of point clouds from small format aerial photography over a Pinus radiata plantation. Aust. For. 2018, 81, 162–176. [Google Scholar] [CrossRef]
Site | Location | Vegetation Description | Terrain Description |
---|---|---|---|
EMP01 | 35°34′54″ S, 72°13′53″ W | Pine plantation with overlapping crowns, little understory but some significant woody debris and leaf litter. | Small change in gradient throughout plot. |
EMP02 | 35°35′55″ S, 72°15′02″ W | Disturbed remnant native forest, large areas of moderate to dense understory. | Little change in gradient across plot, local mounds around trees. |
ENS01 | 41°10′53″ S, 72°27′44″ W | Open, sparse canopy cover, little or no understory, area subject to recent landslide, vegetation generally in poor health | Flat, little change in gradient. |
ENS02 | 41°08′09″ S, 72°32′24″ W | Remnant native forest, complex canopy structure, many areas of moderate to dense understory and significant woody debris. | Steep slope, high frequency of terrain height change within plot. |
FRT01 | 41°07′28″ S, 73°01′44″ W | Remnant native forest,complex canopy cover with mid-layers, sparse understory, some woody debris. | Small change in gradient with some depressions spread throughout plot |
PNT01 | 35°27′36″ S, 72°17′42″ W | Burnt pine forest, consisting largely of charred stems, no understorey and minimal regrowth, woody debris or leaf litter. | Consistent change in gradient across slope. Some holes present, randomly distributed around plot. |
Method | Parameter | Purpose | Range min:step:max |
---|---|---|---|
Lasground | step (m) | Defines the size of the initial search area for ground points. | 0.01:0.01:1.0 |
spike (m) | The threshold at which spikes get removed. | 0.1:0.04:0.2 | |
offset (m) | The maximum offset in meters up to which points above the current ground estimate get included. | 0.01:0.01:0.5 | |
bulge (m) | defines how high coarse triangles in the initial TIN can rise above there neighbours | 0.1:0.04:0.21 | |
CSF | Grid Resolution (m) | The horizontal distance between two neighboring particles | 0.01:0.01:1.0 |
Rigidness | The rigidness of the cloth | 1:1:3 | |
Time step | controls the displacement of particles from gravity during each iteration | 0.1:0.1:1.5 | |
Class Threshold (m) | The distance from the final cloth to which points are attributed as ground | 0.01:0.01:0.10 |
Site Points | Control Points | Check | Nadir RMSE | Oblique RMSE | Composite RMSE | |||
---|---|---|---|---|---|---|---|---|
H (cm) | V (cm) | H (cm) | V (cm) | H (cm) | V (cm) | |||
PNT01 | 5 | 4 | 2.1 | 1.7 | 2.1 | 2.1 | 2.0 | 1.8 |
FRT01 | 4 | 2 | 3.2 | 1.2 | 3.9 | 1.5 | 3.7 | 1.2 |
EMP01 | 8 | 4 | 2.1 | 2.2 | 2.0 | 2.4 | 1.9 | 2.1 |
EMP02 | 6 | 4 | 2.3 | 1.4 | 2.5 | 1.7 | 0.7 | 2.1 |
ENS01 | 5 | 3 | 3.8 | 2.1 | 3.8 | 2.4 | 3.9 | 2.1 |
ENS02 | 5 | 2 | 1.4 | 1.6 | 1.4 | 2.1 | 1.5 | 1.2 |
Site | Image Network | Canopy Cover (%) | Ground (%) | RMSE (m) | ||
---|---|---|---|---|---|---|
nadir | 59 | 21 | 0.19 | 0.51 | 0.44 | |
EMP01 | oblique | 60 | 12 | 0.20 | 0.84 | 0.59 |
composite | 64 | 26 | 0.17 | 0.39 | 0.36 | |
nadir | 92 | 7 | 0.07 | 3.78 | 3.70 | |
EMP02 | oblique | 88 | 6 | 0.08 | 4.34 | 3.68 |
composite | 93 | 8 | 0.06 | 3.26 | 3.61 | |
nadir | 30 | 91 | 0.08 | 0.07 | 0.13 | |
ENS01 | oblique | 40 | 90 | 0.09 | 0.07 | 0.11 |
composite | 40 | 94 | 0.07 | 0.05 | 0.09 | |
nadir | 98 | 3 | 0.14 | 3.10 | 2.16 | |
ENS02 | oblique | 97 | 3 | 0.14 | 2.20 | 1.57 |
composite | 98 | 4 | 0.10 | 1.90 | 1.49 | |
nadir | 91 | 1 | 0.30 | 10.15 | 4.73 | |
FRT01 | oblique | 88 | 1 | 0.38 | 11.08 | 4.49 |
composite | 95 | 1 | 0.19 | 9.46 | 4.87 | |
nadir | 1 | 97 | 0.06 | 0.05 | 0.08 | |
PNT01 | oblique | 1 | 98 | 0.06 | 0.03 | 0.02 |
composite | 1 | 98 | 0.05 | 0.04 | 0.07 |
(a) Cloth Simulation Filter | ||||||||
Site | Technology | MCC | RMSE (m) | (m) | Optimum | |||
res | rigid | ts | ct | |||||
nadir | 0.87 | 0.30 | 0.47 | 0.05 | 2 | 0.50 | 0.06 | |
EMP01 | oblique | 0.83 | 0.64 | 0.79 | 0.05 | 3 | 0.50 | 0.06 |
composite | 0.88 | 0.28 | 0.38 | 0.05 | 3 | 0.50 | 0.06 | |
nadir | 0.72 | 0.36 | 3.20 | 0.05 | 3 | 0.30 | 0.04 | |
EMP02 | oblique | 0.72 | 0.47 | 3.73 | 0.05 | 3 | 0.30 | 0.04 |
composite | 0.68 | 0.27 | 2.90 | 0.05 | 3 | 0.30 | 0.04 | |
nadir | 0.95 | 0.13 | 0.07 | 0.05 | 1 | 0.70 | 0.06 | |
ENS01 | oblique | 0.96 | 0.08 | 0.07 | 0.05 | 1 | 0.70 | 0.06 |
composite | 0.96 | 0.07 | 0.05 | 0.05 | 1 | 0.70 | 0.06 | |
nadir | 0.47 | 0.42 | 2.34 | 0.05 | 3 | 0.30 | 0.06 | |
ENS02 | oblique | 0.49 | 0.45 | 1.67 | 0.05 | 3 | 0.30 | 0.06 |
composite | 0.52 | 0.38 | 1.48 | 0.05 | 3 | 0.30 | 0.06 | |
nadir | 0.69 | 0.29 | 11.28 | 0.25 | 1 | 0.30 | 0.06 | |
FRT01 | oblique | 0.61 | 0.41 | 10.89 | 0.25 | 3 | 0.30 | 0.06 |
composite | 0.61 | 0.55 | 9.28 | 0.25 | 3 | 0.30 | 0.06 | |
nadir | 0.79 | 0.06 | 0.04 | 0.05 | 2 | 0.50 | 0.06 | |
PNT01 | oblique | 0.72 | 0.06 | 0.03 | 0.05 | 1 | 0.50 | 0.06 |
composite | 0.80 | 0.05 | 0.04 | 0.05 | 1 | 0.50 | 0.06 | |
(b) lasground | ||||||||
Site | Technology | MCC | RMSE (m) | (m) | Optimum | |||
step | offset | bulge | spike | |||||
nadir | 0.89 | 0.20 | 0.44 | 0.05 | 0.41 | 0.05 | 0.17 | |
EMP01 | oblique | 0.82 | 2.43 | 0.68 | 0.15 | 0.41 | 0.01 | 0.17 |
composite | 0.89 | 0.19 | 0.31 | 0.10 | 0.41 | 0.01 | 0.17 | |
nadir | 0.66 | 1.31 | 3.43 | 0.03 | 0.41 | 0.01 | 0.09 | |
EMP02 | oblique | 0.61 | 2.36 | 3.72 | 0.04 | 0.41 | 0.01 | 0.09 |
composite | 0.62 | 0.72 | 2.92 | 0.03 | 0.41 | 0.01 | 0.09 | |
nadir | 0.95 | 0.46 | 0.07 | 0.10 | 0.31 | 0.09 | 0.17 | |
ENS01 | oblique | 0.95 | 0.08 | 0.06 | 0.10 | 0.31 | 0.13 | 0.17 |
composite | 0.95 | 0.08 | 0.05 | 0.10 | 0.31 | 0.09 | 0.17 | |
nadir | 0.35 | 4.73 | 2.50 | 0.04 | 0.41 | 0.01 | 0.13 | |
ENS02 | oblique | 0.44 | 3.74 | 1.75 | 0.03 | 0.41 | 0.01 | 0.13 |
composite | 0.45 | 3.25 | 1.60 | 0.03 | 0.41 | 0.01 | 0.13 | |
nadir | 0.22 | 13.48 | 8.62 | 0.05 | 0.41 | 0.05 | 0.13 | |
FRT01 | oblique | 0.15 | 15.02 | 10.61 | 0.05 | 0.41 | 0.09 | 0.13 |
composite | 0.25 | 11.83 | 8.60 | 0.05 | 0.41 | 0.05 | 0.13 | |
nadir | 0.76 | 0.06 | 0.05 | 0.01 | 0.31 | 0.01 | 0.09 | |
PNT01 | oblique | 0.67 | 0.06 | 0.03 | 0.01 | 0.41 | 0.01 | 0.17 |
composite | 0.76 | 0.05 | 0.04 | 0.01 | 0.31 | 0.01 | 0.09 |
Site | Image Set | Reference | Manual | CSF | LAStools | ||||
---|---|---|---|---|---|---|---|---|---|
Cover (%) | Height (m) | Cover (%) | Height (m) | Cover (%) | Height (m) | Cover (%) | Height (m) | ||
nadir | 61 | 14.57 | 61 | 14.36 | 61 | 14.30 | 61 | 14.41 | |
EMP01 | oblique | 64 | 13.76 | 64 | 13.57 | 64 | 13.43 | 63 | 12.99 |
composite | 68 | 14.42 | 68 | 14.22 | 68 | 14.17 | 68 | 14.24 | |
nadir | 90 | 8.01 | 90 | 8.01 | 90 | 7.78 | 89 | 7.35 | |
EMP02 | oblique | 86 | 8.10 | 86 | 8.11 | 86 | 7.79 | 84 | 6.78 |
composite | 91 | 8.01 | 91 | 8.02 | 91 | 7.84 | 90 | 7.75 | |
nadir | 38 | 9.85 | 38 | 9.86 | 38 | 9.84 | 38 | 9.83 | |
ENS01 | oblique | 50 | 11.08 | 50 | 11.07 | 50 | 11.07 | 50 | 11.08 |
composite | 50 | 11.05 | 50 | 11.04 | 50 | 11.04 | 50 | 11.03 | |
nadir | 92 | 18.88 | 97 | 18.83 | 97 | 18.58 | 95 | 16.46 | |
ENS02 | oblique | 91 | 18.85 | 96 | 18.80 | 96 | 18.55 | 96 | 17.20 |
composite | 93 | 18.86 | 98 | 18.80 | 97 | 18.65 | 97 | 17.66 | |
nadir | 89 | 21.62 | 90 | 21.57 | 90 | 21.56 | 83 | 8.77 | |
FRT01 | oblique | 89 | 21.57 | 90 | 21.41 | 90 | 21.75 | 81 | 8.36 |
composite | 94 | 21.60 | 94 | 21.64 | 90 | 22.14 | 92 | 10.45 | |
nadir | 1 | 7.05 | 1 | 7.07 | 1 | 7.07 | 1 | 7.07 | |
PNT01 | oblique | 1 | 7.56 | 1 | 7.66 | 1 | 7.64 | 1 | 7.65 |
composite | 1 | 7.59 | 1 | 7.70 | 1 | 7.68 | 1 | 7.68 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wallace, L.; Bellman, C.; Hally, B.; Hernandez, J.; Jones, S.; Hillman, S. Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover. Forests 2019, 10, 284. https://doi.org/10.3390/f10030284
Wallace L, Bellman C, Hally B, Hernandez J, Jones S, Hillman S. Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover. Forests. 2019; 10(3):284. https://doi.org/10.3390/f10030284
Chicago/Turabian StyleWallace, Luke, Chris Bellman, Bryan Hally, Jaime Hernandez, Simon Jones, and Samuel Hillman. 2019. "Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover" Forests 10, no. 3: 284. https://doi.org/10.3390/f10030284
APA StyleWallace, L., Bellman, C., Hally, B., Hernandez, J., Jones, S., & Hillman, S. (2019). Assessing the Ability of Image Based Point Clouds Captured from a UAV to Measure the Terrain in the Presence of Canopy Cover. Forests, 10(3), 284. https://doi.org/10.3390/f10030284