Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.)
Abstract
:1. Introduction
2. Materials and methods
2.1. Site Description
2.2. Sample Collection
2.3. Stable Carbon and Nitrogen Isotope Analyses
2.4. Statistical Analysis
3. Results
3.1. Variations of P. crassifolia Leaf δ13C and δ15N Values with Leaf and Tree Ages
3.2. Relationship Between Leaf δ13C, δ15N and N, P Concentrations as well as C:N Ratio
3.3. Relative Importance of Leaf Age, Tree Age, Tree Height as well as Leaf Nutrients on the δ13C and δ15N Values
3.4. Relationship Between δ15N and δ13C in P. crassifolia Leaves
4. Discussion
4.1. Leaf δ13C Changed with Leaf Age and Tree Age
4.2. Leaf δ15N Values Changed with Leaf Age and Tree Age
4.3. Relationships between the δ13C, δ15N Values and Leaf Nutrients
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dawson, T.E.; Mambelli, S.; Plamboeck, A.H.; Templer, P.H.; Tu, K.P. Stable isotopes in plant ecology. Ann. Rev. Ecol. Syst. 2002, 33, 507–559. [Google Scholar] [CrossRef]
- Gatica, M.G.; Aranibar, J.N.; Pucheta, E. Environmental and species-specific controls on δ13C and δ15N in dominant woody plants from central-western Argentinian drylands. Austral Ecology 2017, 42, 533–543. [Google Scholar] [CrossRef]
- Voronin, P.Y.; Mukhin, V.A.; Velivetskaya, T.A.; Ignat’ev, A.V.; Kuznetsov, V.V. Isotope composition of carbon and nitrogen in tissues and organs of Betula pendula. Russ. J. Plant Physiol. 2017, 64, 184–189. [Google Scholar] [CrossRef]
- Farquhar, G.D.; And, J.R.E.; Hubick, K.T. Carbon isotope discrimination and photosynthesis. Ann. Rev. Plant Physiol. Plant Mol. Biol. 1989, 40, 503–537. [Google Scholar] [CrossRef]
- Ma, F.; Liang, W.Y.; Zhou, Z.N.; Xiao, G.J.; Liu, J.L.; He, J.; Jiao, B.Z.; Xu, T.T. Spatial variation in leaf stable carbon isotope composition of three Caragana species in Northern China. Forests 2018, 9, 297. [Google Scholar] [CrossRef]
- Krishnan, P.; Black, T.A.; Jassal, R.S.; Chen, B.; Nesic, Z. Interannual variability of the carbon balance of three different-aged Douglas-fir stands in the Pacific Northwest. J. Geophys. Res. Biogeosci. 2015, 114, 355. [Google Scholar] [CrossRef]
- Acosta-Rangel, A.; Avila-Lovera, E.; Guzman, M.E.D.; Torres, L.; Haro, R.; Arpaia, M.L.; Focht, E.; Santiago, L.S. Evaluation of leaf carbon isotopes and functional traits in avocado reveals water-use efficient cultivars. Agric. Ecosyst. Environ. 2018, 263, 60–66. [Google Scholar] [CrossRef]
- Aguilar-Romero, R.; Pineda-Garcia, F.; Paz, H.; Gonzalez-Rodriguez, A.; Oyama, K. Differentiation in the water-use strategies among oak species from central Mexico. Tree Physiol. 2017, 37, 915–925. [Google Scholar] [CrossRef]
- Zhang, C.Z.; Zhang, J.B.; Zhang, H.; Zhao, J.H.; Wu, Q.C.; Zhao, Z.H.; Cai, T.Y. Mechanisms for the relationships between water-use efficiency and carbon isotope composition and specific leaf area of maize (Zea mays, L.) under water stress. Plant Growth Regul. 2015, 77, 233–243. [Google Scholar] [CrossRef]
- Li, M.C.; Zhu, J.J.; Zhang, M.; Song, L.N. Foliar δ15N variations with stand ages in temperate secondary forest ecosystems, Northeast China. Scand. J. For. Res. 2013, 28, 428–435. [Google Scholar] [CrossRef]
- Craine, J.M.; Elmore, A.J.; Aidar, M.P.; Bustamante, M.; Dawson, T.E.; Hobbie, E.A.; Kahmen, A.; Mack, M.C.; McLauchlan, K.K.; Michelsen, A.; et al. Global patterns of foliar nitrogen isotopes and their relationships with climate, mycorrhizal fungi, foliar nutrient concentrations, and nitrogen availability. New Phytol. 2010, 183, 980–992. [Google Scholar] [CrossRef] [PubMed]
- Evans, R.D. Physiological mechanisms influencing plant nitrogen isotope composition. Trends Plant Sci. 2001, 6, 121–126. [Google Scholar] [CrossRef]
- Werth, M.; Mehltreter, K.; Briones, O.; Kazda, M. Stable carbon and nitrogen isotope compositions change with leaf age in two mangrove ferns. Flora 2015, 210, 80–86. [Google Scholar] [CrossRef]
- Ghashghaie, J.; Badeck, F.W. Opposite carbon isotope discrimination during dark respiration in leaves versus roots—A review. New Phytol. 2014, 201, 751–769. [Google Scholar] [CrossRef] [PubMed]
- Eley, Y.; Dawson, L.; Pedentchouk, N. Investigating the carbon isotope composition and leaf wax n-alkane concentration of C3, and C4, plants in Stiffkey saltmarsh, Norfolk, UK. Org. Geochem. 2016, 96, 28–42. [Google Scholar] [CrossRef]
- Vitoria, A.P.; Vieira, T.D.O.; Camargo, P.D.B.; Santiago, L.S. Using leaf δ13C and photosynthetic parameters to understand acclimation to irradiance and leaf age effects during tropical forest regeneration. For. Ecol. Manag. 2016, 379, 50–60. [Google Scholar] [CrossRef]
- Vitoria, A.P.; Avila-Lovera, E.; Tatiane, D.O.V.; Do Couto-Santos, A.P.L.; Pereira, T.J.; Funch, L.S.; Freitas, L.; de Miranda, L.D.; Rodrigues, P.J.F.; Rezende, C.E.; et al. Isotopic composition of leaf carbon (δ13C) and nitrogen (δ15N) of deciduous and evergreen understorey trees in two tropical Brazilian Atlantic forests. J. Trop. Ecol. 2018, 34, 145–156. [Google Scholar] [CrossRef]
- Sun, L.K.; Liu, W.Q.; Liu, G.X.; Chen, T.; Zhang, W.; Wu, X.K.; Zhang, G.S.; Zhang, Y.H.; Li, L.; Zhang, B.G.; et al. Temporal and spatial variations in the stable carbon isotope composition and carbon and nitrogen contents in current-season twigs of Tamarix chinensis Lour. and their relationships to environmental factors in the Laizhou Bay wetland in China. Ecol. Eng. 2016, 90, 417–426. [Google Scholar] [CrossRef]
- Yang, Y.; Siegwolf, R.T.W.; Koerner, C. Species specific and environment induced variation of δ13C and δ15N in Alpine plants. Front. Plant Sci. 2015, 6, 423. [Google Scholar] [CrossRef]
- Zhou, Y.C.; Cheng, X.L.; Fan, J.W.; Harris, W. Relationships between foliar carbon isotope composition and elements of C3 species in grasslands of Inner Mongolia, China. Plant Ecol. 2016, 217, 883–897. [Google Scholar] [CrossRef]
- Li, S.J.; Zhang, Y.F.; Chen, T. Relationships between foliar stable carbon isotope composition and environmental factors and leaf element contents of Pinus tabulaeformis in northwestern China. Chin. J. Plant Ecol. 2011, 35, 596–604. [Google Scholar] [CrossRef]
- Wang, B.; Chen, T.; Wu, G.J.; Xu, G.B.; Zhang, Y.F.; Gao, H.N.; Zhang, Y.; Feng, Q. Qinghai spruce (Picea crassifolia) growth–climate response between lower and upper elevation gradient limits: A case study along a consistent slope in the mid-Qilian Mountains region. Environ. Earth Sci. 2016, 75, 236. [Google Scholar] [CrossRef]
- Coplen, T.B. Guidelines and recommended terms for expression of stable-isotope-ratio and gas-ratio measurement results. Rapid Commun. Mass Spectrom. 2011, 25, 2538–2560. [Google Scholar] [CrossRef] [PubMed]
- Braun, M.T.; Oswald, F.L. Exploratory regression analysis: A tool for selecting models and determining predictor importance. Behav. Res. Methods 2011, 43, 331–339. [Google Scholar] [CrossRef] [PubMed]
- Aljandali, A. Multivariate Methods and Forecasting with IBM® SPSS® Statistics; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Grunsky, E.C. R: A data analysis and statistical programming environment—An emerging tool for the geosciences. Comput. Geosci. 2002, 28, 1219–1222. [Google Scholar] [CrossRef]
- Pei, H.J. Spatial and Temporal Characteristics of Carbon and Nitrogen and Related Mechanism of Sabina przewalskii. and Picea crassifolia Kom. Ph.D. Thesis, Graduate University of Chinese Academy of Sciences, Beijing, China, 2012. [Google Scholar]
- Yun, H.B.; Chen, T.; Liu, X.; Zhang, Y.F.; Xu, G.B.; Gong, D. Relationship between foliar stable carbon isotope composition and physiological factors in Picea crassifolia in the Qilian Mountains. J. Glaciol. Geocryol. 2010, 32, 151–156. [Google Scholar]
- Farquhar, G.D.; O’Leary, M.H.; Berry, J.A. On the Relationship between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves. Aust. J. Plant Physiol. 1982, 9, 281–292. [Google Scholar] [CrossRef]
- Cao, S.K.; Feng, Q.; Su, Y.H.; Chang, Z.Q.; Xi, H.Y. Research on the water use efficiency and foliar nutrient status of Populus euphratica and Tamarix ramosissimain the extreme arid region of China. Environ. Earth Sci. 2011, 62, 1597–1607. [Google Scholar] [CrossRef]
- Terwilliger, V.J.; Kitajima, K.; Le Roux-Swarthout, D.J.; Mulkey, S.; Wright, S.J. Intrinsic water-use efficiency and heterotrophic investment in tropical leaf growth of two neotropical pioneer tree species as estimated from 13C values. New Phytol. 2001, 152, 267–281. [Google Scholar] [CrossRef]
- Cernusak, L.A.; Turner, W.B.L. Leaf nitrogen to phosphorus ratios of tropical trees: Experimental assessment of physiological and environmental controls. New Phytol. 2010, 185, 770–779. [Google Scholar] [CrossRef]
- Ameziane, R.E.; Deleens, E.; Noctor, G.; Morot-Gaudry, J.F.; Limami, M.A. Stage of development is an important determinant in the effect of nitrate on photo-assimilate (13C) partitioning in chicory (Cichorium intybus). J. Exp. Bot. 1997, 48, 25–33. [Google Scholar] [CrossRef]
- Kalcsits, L.A.; Buschhaus, H.A.; Guy, R.D. Nitrogen isotope discrimination as an integrated measure of nitrogen fluxes, assimilation and allocation in plants. Physiol. Plant. 2014, 151, 293–304. [Google Scholar] [CrossRef]
- Tcherkez, G. Natural 15N/14N isotope composition in C3 leaves: Are enzymatic isotope effects informative for predicting the 15N-abundance in key metabolites? Funct. Plant Biol. 2010, 38, 1–12. [Google Scholar] [CrossRef]
- Masclaux-Daubresse, C.; Danielvedele, F.; Dechorgnat, J.; Chardon, F.; Gaufichon, L.; Suzuki, A. Nitrogen uptake, assimilation and remobilization in plants: Challenges for sustainable and productive agriculture. Ann. Bot. 2010, 105, 1141–1157. [Google Scholar] [CrossRef]
- Donovan, L.A.; Ehleringer, J.R. Ecophysiological Differences among Juvenile and Reproductive Plants of Several Woody Species. Oecologia 1991, 86, 594–597. [Google Scholar] [CrossRef]
- Zhou, Y.; Fan, J.; Harris, W.; Zhong, H.; Zhang, W.; Cheng, X. Relationships between C3 plant foliar carbon isotope composition and element contents of grassland species at high altitudes on the Qinghai-Tibet Plateau, China. PLoS ONE 2013, 8, e60794. [Google Scholar] [CrossRef]
- Li, C.Y.; Wu, C.C.; Duan, B.L.; Korpelainen, H.; Luukkanen, O. Age-related nutrient content and carbon isotope composition in the leaves and branches of Quercus aquifolioides along an altitudinal gradient. Trees 2009, 23, 1109–1121. [Google Scholar] [CrossRef]
- Cheng, W.X.; Chen, Q.S.; Xu, Y.Q.; Han, X.G.; Li, L.H. Climate and ecosystem 15N natural abundance along a transect of Inner Mongolian grasslands: Contrasting regional patterns and global patterns. Glob. Biogeochem. Cycles 2009, 23, GB2005. [Google Scholar] [CrossRef]
- Nardoto, G.B.; Pierre, J.; Balbaud, H.; Ehleringer, J.R.; Higuchi, N.; Maria, M.; Martinell, L.A. Understanding the influences of spatial patterns on N availability within the Brazilian Amazon forest. Ecosystem 2008, 11, 1234–1246. [Google Scholar] [CrossRef]
Site code | Elevation (m) | Slope aspect | Latitude | Longitude | MH (m) | M-dbh (cm) |
---|---|---|---|---|---|---|
slg-2 | 2824 | NW | 37°23´17.79" N | 102°30´39.47" E | 10.77 | 27.73 |
slg-3 | 2914 | NE | 37°23´02.92" N | 102°30´48.26" E | 6.53 | 17.09 |
slg-4 | 2828 | NW | 37°23´12.79" N | 102°30´44.58" E | 6.84 | 16.86 |
Nutrient Variables | Leaf Ages | Statistic parameters | |||
---|---|---|---|---|---|
R2(δ13C) | Regression coefficient | R2(δ15N) | Regression coefficient | ||
Leaf N | All leaves | 0.4295 *** | 4.3035 | 0.3829 *** | 3.6156 |
Current-year-old | 0.0894 | −2.0361 | 0.2335 *** | 2.2635 | |
1-year-old | 0.0176 | −0.6792 | 0.1249 * | 1.3664 | |
2-year-old | 0.0007 | 0.0701 | 0.0621 | 0.4335 | |
3-year-old | 0.0617 | −0.5253 | 0.0006 | −0.0327 | |
Leaf P | All leaves | 0.4259 *** | 0.7824 | 0.2641 *** | 0.5462 |
Current-year-old | 0.0836 | −0.5255 | 0.0023 | 0.0604 | |
1-year-old | 0.0127 | 0.0444 | 0.0262 | 0.0477 | |
2-year-old | 0.0319 | 0.0491 | 0.0015 | 0.0073 | |
3-year-old | 0.0029 | 0.0144 | 0.0741 | -0.0473 | |
C:N | All leaves | 0.3848 *** | −19.373 | 0.3597 *** | −0.0216 |
Current-year-old | 0.1768 * | 5.008 | 0.2629 *** | −4.2006 | |
1-year-old | 0.0027 | 1.7585 | 0.2446 *** | −12.641 | |
2-year-old | 0.0198 | −4.9676 | 0.0597 | −5.8591 | |
3-year-old | 0.0131 | 3.1193 | 0.0108 | −1.8541 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, C.; Wang, B.; Chen, T.; Xu, G.; Wu, M.; Wu, G.; Wang, J. Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.). Forests 2019, 10, 310. https://doi.org/10.3390/f10040310
Li C, Wang B, Chen T, Xu G, Wu M, Wu G, Wang J. Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.). Forests. 2019; 10(4):310. https://doi.org/10.3390/f10040310
Chicago/Turabian StyleLi, Caijuan, Bo Wang, Tuo Chen, Guobao Xu, Minghui Wu, Guoju Wu, and Jinxiu Wang. 2019. "Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.)" Forests 10, no. 4: 310. https://doi.org/10.3390/f10040310
APA StyleLi, C., Wang, B., Chen, T., Xu, G., Wu, M., Wu, G., & Wang, J. (2019). Leaf Age Compared to Tree Age Plays a Dominant Role in Leaf δ13C and δ15N of Qinghai Spruce (Picea crassifolia Kom.). Forests, 10(4), 310. https://doi.org/10.3390/f10040310