The Phenological Growth Stages of Sapindus mukorossi According to BBCH Scale
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Site and Plant Material
2.2. The BBCH Scale
3. Results
3.1. Principal Growth Stage 0: Bud Development
3.2. Principal Growth Stage 1: Leaf Development
3.3. Principal Growth Stage 3: Shoot Development
3.4. Principal Growth Stage 5: Inflorescence Emergence
3.5. Principal Growth Stage 6: Flowering
3.6. Principal Growth Stage 7: Fruit Development
3.7. Principal Growth Stage 8: Maturity of Fruit and Seed
3.8. Principal Growth Stage 9: Senescence and Beginning of the Dormancy
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jia, L.; Sun, C. Research progress of biodiesel tree Sapindus mukorossi. J. China Agric. Univ. 2012, 17, 191–196. [Google Scholar]
- Liu, J.; Sun, C.; He, Q.; Jia, L.; Weng, X.; Yu, J. Research progress in sapindus L. Germplasm resources. World For. Res. 2017, 30, 12–18. [Google Scholar]
- Jim, C.Y.; Chen, W.Y. Pattern and divergence of tree communities in Taipei’s main urban green spaces. Landsc. Urban Plan. 2008, 84, 312–323. [Google Scholar] [CrossRef]
- Wan, L.; Zhang, Y.; Cheng, D.; Zheng, C.; Huang, Y. The photosynthetic carbon fixation characteristics of common tree species for highway greening in southern Jiangsu. J. Sichuan Univ. 2018, 55, 881–888. [Google Scholar]
- Chhetri, A.B.; Tango, M.S.; Budge, S.M.; Watts, K.C.; Islam, M.R. Non-edible plant oils as new sources for biodiesel production. Int. J. Mol. Sci. 2008, 9, 169–180. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wu, Z. Analysis and extraction of the components of seed oil of Sapindus mulorossi. J. Agric. Sci. 2010, 31, 48–50. [Google Scholar]
- Misra, R.D.; Murthy, M.S. Performance, emission and combustion evaluation of soapnut oil-diesel blends in a compression ignition engine. Fuel 2011, 90, 2514–2518. [Google Scholar] [CrossRef]
- Sun, C.; Jia, L.; Xi, B.; Wang, L.; Weng, X. Natural variation in fatty acid composition of Sapindus spp. Seed oils. Ind. Cr. Prod. 2017, 102, 97–104. [Google Scholar] [CrossRef]
- Kuo, Y.; Huang, H.; Yang, K.L.; Hsu, Y.; Lee, K.; Chang, F.; Wu, Y. New Dammarane-Type Saponins from the Galls of Sapindus mukorossi. J. Agric. Food Chem. 2005, 53, 4722–4727. [Google Scholar] [CrossRef] [PubMed]
- Ni, W.; Hua, Y.; Liu, H.Y.; Teng, R.W.; Kong, Y.C.; Hu, X.Y.; Cheng, C.X. Tirucallane-type triterpenoid saponins from the roots of Sapindus mukorossi. Chem. Pharm. Bull. 2006, 54, 1443. [Google Scholar] [CrossRef]
- Huang, H.; Wu, M.; Tsai, W.; Liao, S.; Liaw, C.; Hsu, L.; Wu, Y.; Kuo, Y. Triterpenoid saponins from the fruits and galls of Sapindus mukorossi. Phytochemistry 2008, 69, 1609–1616. [Google Scholar] [CrossRef] [PubMed]
- Kanchanapoom, T.; Kasai, R.; Yamasaki, K. Acetylated triterpene saponins from the Thai medicinal plant, Sapindus emarginatus. Cheminform 2010, 33, 1195–1197. [Google Scholar] [CrossRef]
- Dhar, R.; Dawar, H.; Garg, S.; Basir, S.F.; Talwar, G.P. Effect of volatiles from neem and other natural products on gonotrophic cycle and oviposition of Anopheles stephensi and An. Culicifacies (Diptera: Culicidae). J. Med. Entomol. 1996, 33, 195–201. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.; Khaja, M.N.; Aara, A.; Khan, A.A.; Habeeb, M.A.; Devi, Y.P.; Narasu, M.L.; Habibullah, C.M. Hepatoprotective activity of Sapindus mukorossi and Rheum emodi extracts: In vitro and in vivo studies. World J. Gastroenterol. 2008, 14, 2566–2571. [Google Scholar] [CrossRef] [PubMed]
- Hwang, T.; Wang, C.; Kuo, Y.; Huang, H.; Wu, Y.; Kuo, L.; Wu, Y. The hederagenin saponin SMG-1 is a natural FMLP receptor inhibitor that suppresses human neutrophil activation. Biochem. Pharm. 2010, 80, 1190–1200. [Google Scholar] [CrossRef] [PubMed]
- Ma, S.; Fu, L.; He, S.; Lu, X.; Wu, Y.; Ma, Z.; Zhang, X. Potent herbicidal activity of Sapindus mukorossi Gaertn. Against Avena fatua L. And Amaranthus retroflexus L. Ind. Cr. Prod. 2018, 122, 1–6. [Google Scholar] [CrossRef]
- Gao, Y.; Jia, L.; Gao, S.; Su, S.; Duan, J.; Weng, Z. Reasonable canopy light intensity and high light efficiency regulation of sapindus mukorossi. Sci. Silv. Sin. 2016, 52, 29–38. [Google Scholar]
- Gao, Y.; Gao, S.; Jia, L.; Dai, T.; Wei, X.; Duan, J.; Liu, S.; Weng, X. Canopy characteristics and light distribution in Sapindus mukorossi Gaertn. Are influenced by crown architecture manipulation in the hilly terrain of Southeast China. Sci. Hortic. 2018, 240, 11–22. [Google Scholar]
- Sun, C.; Wang, L.; Liu, J.; Zhao, G.; Gao, S.; Xi, B.; Duan, J.; Weng, X.; Jia, L. Genetic structure and biogeographic divergence among Sapindus species: An inter-simple sequence repeat-based study of germplasms in China. Ind. Cr. Prod. 2018, 118, 1–10. [Google Scholar] [CrossRef]
- Wei, X.; Dai, T.; Liu, S.; Jia, L. Effects of formula fertilization on leaf nutrient dynamics and yield of Sapindus mukorossi Gaertn. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2018, 42, 17–24. [Google Scholar]
- Gao, Y.; Jia, L.; Su, S.; Dai, L.; Weng, Z.; Guo, Y.; Weng, X. Phenology and Blossom-fruiting Characteristics of Sapindus mukorossi. J. Northest For. Univ. 2015, 43, 34–40. [Google Scholar]
- Diao, S.; Jiang, J.; Yi, H.; Yue, H.; Dong, X.; Sun, H.; Shao, W. Flowering phenology of the multipurpose tree species Sapindus mukorossi Gaertn. In low mountain areas of Zhejiang Province. Acta Ecol. Sin. 2016, 36, 6226–6234. [Google Scholar]
- Meier, U.; Bleiholder, H.; Buhr, L.; Feller, C.; Hacks, H.; Hess, M.; Lancashire, P.D.; Schnock, U.; Stauss, R.; Boom, T.V.D. The BBCH system to coding the phenological growth stages of plants-history and publications. J. Cultiv. Plant. 2009, 2, 41–52. [Google Scholar]
- Troitzky, N.N. Vorläufige Untersuchungsmittel der experimentell-biologischen Station für angewandte Entomologie. In Jahreszeitlicher Verlauf der Entwicklungsstadien bei Obstarten in Beziehung zu Jahreswitterung und Pflanzenschutzmaßnahmen; Kolbe, W., Ed.; Pflanzenschutz-Nachrichten Bayer: Leningrad, Germany, 1925; Volume 32, pp. 97–163. [Google Scholar]
- Fleckinger, J. Les stades vegétatifs des arbres fruitiers, en rapport avec le traitements. Pomol. Fr. Suppl. 1948, 81–93. [Google Scholar]
- Large, E.C. Growth stages in cereals illustration of the feekes scale. Plant Pathol. 1954, 4, 128–129. [Google Scholar] [CrossRef]
- Zadoks, J.C.; Changt, T.T.; Konzak, C.F. A decimal code for the growth stages of cereals. Weed Res. 1974, 14, 415–421. [Google Scholar] [CrossRef]
- Lancashire, P.D.; Bleiholder, H.; Boom, T.V.D.; Langelüddeke, P.; Stauss, R.; Weber, E.; Witzenberger, A. A uniform decimal code for growth stages of crops and weeds. Ann. Appl. Biol. 1991, 119, 561–601. [Google Scholar] [CrossRef]
- Hack, H.; Bleiholder, H.; Buhr, L.; Meier, U.; Schnock-Fricke, U.; Weber, E.; Witzenberger, A. Einheitliche Codierung der phänologischen Entwicklungsstadien monound dikotyler Pflanzen-Erweiterte BBCH-Skala, Allgemein. Nachrichtenbl. Deut. Pflanzenschutzd. 1992, 44, 265–270. [Google Scholar]
- Wei, Y.Z.; Zhang, H.N.; Li, W.C.; Xie, J.H.; Wang, Y.C.; Liu, L.Q.; Shi, S.Y. Phenological growth stages of lychee (Litchi chinensis Sonn.) using the extended BBCH-scale. Sci. Hortic. 2013, 161, 273–277. [Google Scholar] [CrossRef]
- Pham, V.; Herrero, M.; Hormaza, J.I. Phenological growth stages of longan (Dimocarpus longan) according to the BBCH scale. Sci. Hortic. 2015, 189, 201–207. [Google Scholar] [CrossRef]
- Liu, K.; Li, H.; Yuan, C.; Huang, Y.; Chen, Y.; Liu, J. Identification of phenological growth stages of sugar apple (Annona squamosa L.) using the extended BBCH-scale. Sci. Hortic. 2015, 181, 76–80. [Google Scholar] [CrossRef]
- Fadón, E.; Herrero, M.; Rodrigo, J. Flower development in sweet cherry framed in the BBCH scale. Sci. Hortic. 2015, 192, 141–147. [Google Scholar] [CrossRef] [Green Version]
- Ramírez, F.; Davenport, T.L. The phenology of the capuli cherry [Prunus serotina subsp. Capuli (Cav.) McVaugh] characterized by the BBCH scale, landmark stages and implications for urban forestry in Bogotá, Colombia. Urban For. Urban Green. 2016, 19, 202–211. [Google Scholar]
- García-Carbonell, S.; Yagüe, B.; Bleiholder, H.; Hack, H.; Meier, U.; Agustí, M. Phenological growth stages of the persimmon tree (Diospyros kaki). Ann. Appl. Biol. 2002, 141, 73–76. [Google Scholar] [CrossRef]
- Salinero, M.C.; Vela, P.; Sainz, M.J. Phenological growth stages of kiwifruit (Actinidia deliciosa ‘Hayward’). Sci. Hortic. 2009, 1, 27–31. [Google Scholar] [CrossRef]
- Kishore, K. Phenological growth stages of jackfruit (Artocarpus heterophyllus) according to the extended BBCH scale. Ann. Appl. Biol. 2018, 172, 366–374. [Google Scholar] [CrossRef]
- Kalvāns, A.; Sīle, T.; Kalvāne, G. Phenological model of bird cherry Padus racemosa with data assimilation. Int. J. Biometeorol. 2017, 61, 2047–2058. [Google Scholar] [CrossRef]
- Zamani-Noor, N.; Rodemann, B. Reducing the build-up of Plasmodiophora brassicae inoculum by early management of oilseed rape volunteers. Plant Path. 2018, 67, 426–432. [Google Scholar] [CrossRef]
- Tsialtas, J.T.; Theologidou, G.S.; Kaaoglanidis, G.S. Effect of pyraclostrobin on disease control, leaf physiology, seed yield and quality of sunflower. Cr. Prot. 2017, 99, 151–159. [Google Scholar] [CrossRef]
- Pannacci, E.; Tei, F. Guiducci M: Evaluation of mechanical weed control in legume crops. Cr. Prot. 2018, 104, 52–59. [Google Scholar] [CrossRef]
- Piotr, S.; Jan, B.; Kamila, N.; Tadeusz, M.; Hubert, W.; Pawel, O. Assessment of the influence of fertilisation and environmental conditions on maize health. Plant Prot. Sci. 2018, 54, 174–182. [Google Scholar] [CrossRef] [Green Version]
- Palliotti, A.; Frioni, T.; Tombesi, S.; Sabbatini, P.; Cruz-Castillo, J.G.; Lanari, V.; Silvestroni, O.; Gatti, M.; Poni, S. Double-Pruning grapevines as a management tool to delay berry ripening and control yield. Am. J. Enol. Vitic. 2017, 68, 412–421. [Google Scholar] [CrossRef]
- National meteorological information center. Available online: http://data.cma.cn/site/index.html (accessed on 19 January 2019).
- Hernández, F.; Legua, P.; Melgarejo, P.; Martínez, R.; Martínez, J.J. Phenological growth stages of jujube tree (Ziziphus jujube): Codification and description according to the BBCH scale. Ann. Appl. Biol. 2014, 2015, 136–142. [Google Scholar] [CrossRef]
- Martinelli, T.; Andrzejewska, J.; Salis, M.; Sulas, L. Phenological growth stages of Silybum marianum according to the extended BBCH scale. Ann. Appl. Biol. 2015, 166, 53–66. [Google Scholar] [CrossRef]
- Zhou, Q.; Fu, D. Preliminary Studies on the Reproductive Biology of Xanthoceras sorbifolia. Sci. Silvae Sin. 2010, 46, 158–162. [Google Scholar]
- Wang, H. Study on the cytology mechanism of flower sexual differentiation in longan. Master’s Thesis, Fujian Agriculture and Forestry University, Fuzhou, China, 2008. [Google Scholar]
- Ao, Y.; Wang, Y.; Chen, L.; Wang, T.; Yu, H.; Zhang, Z. Identification and comparative profiling of microRNAs in wild-type Xanthoceras sorbifolia and its double flower mutant. Genes Genom. 2012, 34, 561–568. [Google Scholar] [CrossRef]
- Hegele, M.; Sritontip, C.; Chattrakul, A.; Tiyayon, P.; Naphrom, D.; Sringarm, K.; Sruamsiri, P.; Manochai, P.; Wünsche, J.N.; Dongliang, Q. Hormonal control of flower induction in litchi and longan. Acta Hortic. 2010, 863, 305–314. [Google Scholar] [CrossRef]
- Manochai, P.; Sruamsiri, P.; Wiriya-Alongkorn, W.; Naphrom, D.; Hegele, M.; Bangerth, F. Year around off-season flower induction in longan (Dimocarpus longan Lour.) trees by KClO3 applications: Potentials and problems. Sci. Hortic. 2005, 104, 379–390. [Google Scholar] [CrossRef]
- Cutler, R.W.; Chundet, R.; Handa, T.; Anuntalabhochai, S. Development of sequence characterized DNA markers linked to a temperature dependence for flower induction in lychee (Litchi chinensis Sonn.) cultivars. Sci. Hortic. 2006, 107, 264–270. [Google Scholar] [CrossRef]
- Matsumoto, T.K.; Nagao, M.A.; Mackey, B. Off-season flower induction of longan with potassium chlorate, sodium chlorite, and sodium hypochlorite. Horttechnology 2007, 17, 296–300. [Google Scholar] [CrossRef]
- Liu, Z.; Su, M.; Zhuang, Y. Cellulase and pectinase activities and ABA content in drop fruits of longan. J. Trop. Subtrop. Bot. 1997, 5, 39–42. [Google Scholar]
- Yang, W.; Zhu, X.; Deng, S.; Wang, H.; Hu, G.; Wu, H.; Huang, X. Developmental problems in over-winter off-season longan fruit. I: Effect of temperatures. Sci. Hortic. 2010, 126, 351–358. [Google Scholar] [CrossRef]
- Yang, Z.; Zhong, X.; Fan, Y.; Wang, H.; Li, J.; Huang, X. Burst of reactive oxygen species in pedicel-mediated fruit abscission after carbohydrate supply was cut off in longan (Dimocarpus longan). Front. Plant Sci. 2015, 6, 360. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Zhang, H.; Liu, L.; Li, W.; Wei, Y.; Shi, S. Validation of reference genes for RT-qPCR studies of gene expression in preharvest and postharvest longan fruits under different experimental conditions. Front. Plant Sci. 2016, 7, 780. [Google Scholar] [CrossRef] [PubMed]
BBCH Code | Description |
---|---|
Principal growth stage 0: Bud development | |
00 | Bud dormancy |
01 | Beginning of bud swelling |
03 | End of bud swelling |
05 | First green bud scale visible |
07 | Beginning of bud burst |
09 | End of bud burst |
Principal growth stage 1: Leaf development | |
10 | First compound leaves separate |
11 | First leaves unfold and petiole elongate |
12 | More leaves unfold: First compound leaves at 20% of their final area |
13 | More leaves unfold: First compound leaves at 30% of their final area |
14 | More leaves unfold: First compound leaves at 40% of their final area |
16 | More leaves unfold: First compound leaves at 60% of their final area |
19 | All leaves unfold and petiole elongates to final size |
Principal growth stage 3: Shoot development | |
30 | Beginning of shoot elongation: Shoot axis visible |
31 | 10% of final shoot length |
32 | 20% of final shoot length |
33 | 30% of final shoot length |
34 | 40% of final shoot length |
35 | 50% of final shoot length |
36 | 60% of final shoot length |
38 | 80% of final shoot length |
39 | 90% or more of final shoot length |
Principal growth stage 5: Inflorescence emergence | |
50 | Beginning of reproductive bud swelling |
51 | End of bud swelling and bud burst |
52 | Primary axis elongation |
53 | First side axes elongate about 30% of their final length |
54 | First side axes elongate about 40% of their final length |
56 | First side axes elongate about 60% of their final length |
57 | First side axes elongate about 70% of their final length |
58 | First side axes elongate about 80% of their final length |
59 | First side axes elongate about 90% or more of their final length |
Principal growth stage 6: Flowering | |
60 | First flowers bloom |
61 | Beginning of flowering |
63 | Early flowering: 30% of flowers bloom |
65 | Full flowering |
69 | End of flowering |
Principal growth stage 7: Fruit development | |
70 | No ovary development |
71 | Early ovary growing |
72 | 20% of the biggest fruit size |
75 | 50% of the biggest fruit size |
76 | 60% of the biggest fruit size |
77 | 70% of the biggest fruit size; the second physiological fruit drop occurs |
78 | 80% of the biggest fruit size |
79 | 90% of the biggest fruit size |
Principal growth stage 8: Maturity of fruit and seed | |
81 | Beginning of maturity |
82 | Pericarp becomes wrinkled |
85 | Pericarp turns a little golden yellow and transparent |
87 | Advanced maturity |
89 | Fruits are fully developed and mature |
Principal growth stage 9: Senescence and beginning of dormancy | |
90 | Shoots and leaves stop development |
91 | Beginning of leaf discoloration |
92 | Leaves begin to fall |
93 | Most leaves turn yellow: 30% leaves fall |
94 | 40% leaves fall |
95 | 50% leaves fall |
97 | All leaves fall |
99 | Dormancy |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, G.; Gao, Y.; Gao, S.; Xu, Y.; Liu, J.; Sun, C.; Gao, Y.; Liu, S.; Chen, Z.; Jia, L. The Phenological Growth Stages of Sapindus mukorossi According to BBCH Scale. Forests 2019, 10, 462. https://doi.org/10.3390/f10060462
Zhao G, Gao Y, Gao S, Xu Y, Liu J, Sun C, Gao Y, Liu S, Chen Z, Jia L. The Phenological Growth Stages of Sapindus mukorossi According to BBCH Scale. Forests. 2019; 10(6):462. https://doi.org/10.3390/f10060462
Chicago/Turabian StyleZhao, Guochun, Yuhan Gao, Shilun Gao, Yuanyuan Xu, Jiming Liu, Caowen Sun, Yuan Gao, Shiqi Liu, Zhong Chen, and Liming Jia. 2019. "The Phenological Growth Stages of Sapindus mukorossi According to BBCH Scale" Forests 10, no. 6: 462. https://doi.org/10.3390/f10060462
APA StyleZhao, G., Gao, Y., Gao, S., Xu, Y., Liu, J., Sun, C., Gao, Y., Liu, S., Chen, Z., & Jia, L. (2019). The Phenological Growth Stages of Sapindus mukorossi According to BBCH Scale. Forests, 10(6), 462. https://doi.org/10.3390/f10060462