If They Come, Where will We Build It? Land-Use Implications of Two Forest Conservation Policies in the Deep Creek Watershed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. The CLUE-S Modeling System
2.2.1. Calibration
2.2.2. Validation
2.3. Scenarios
3. Results
3.1. Simulation Results
3.1.1. Business as Usual (BAU)
3.1.2. Conservation without Area Restriction (C)
3.1.3. Area Restriction without Conservation (AR)
3.1.4. Conservation with Area Restriction-(CAR)
3.2. Agricultural Land Reserve, Agricultural and Forest Land Impacts
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Robinson, P.A. Field of Dreams; Universal Pictures: New York, NY, USA, 1989. [Google Scholar]
- Statistics Canada. CANSIM Table 36-10-0402-01. Available online: www.statscan.gc.ca (accessed on 31 May 2019).
- Stefanick, L. Baby stumpy and the war in the woods: Competing frames of British Columbia forests. BC Stud. B. C. Q. 2001, 130, 41–68. [Google Scholar]
- Cormier, J.; Tindall, D.B. Wood Frames: Framing the Forests in British Columbia. Sociol. Focus 2005, 38, 1–24. [Google Scholar] [CrossRef]
- Hanna, K.S. Regulation and land-use conservation: A case study of the British Columbia Agricultural Land Reserve. J. Soil Water Conserv. 1992, 52, 166–170. [Google Scholar]
- Tatebe, K.; Robert, N.; Liu, R.; delle Rosa, A.; Wirsching, E.; Mullinix, K.; Richard Bullock, F.; Bullock, R. Protection is Not Enough: Policy Precedents to Increase Agricultural Use of BC’s Farmland; A White Paper; The Institute for Sustainable Food Systems, British Columbia, Kwantlen Polytechnic University: Vancouver, BC, Canada, 2018. [Google Scholar]
- Androkovich, R.; Desjardins, I.; Tarzwell, G.; Tsigaris, P. Land Preservation in British Columbia: An Empirical Analysis of the Factors Underlying Public Support and Willingness to Pay. J. Agric. Appl. Econ. 2008, 40, 999–1013. [Google Scholar] [CrossRef] [Green Version]
- BC Agricultural Land Commission. Available online: http://www.alc.gov.bc.ca (accessed on 31 May 2019).
- BC Ministry of Agriculture. Available online: https://www2.gov.bc.ca/gov/content/governments/organizational-structure/ministries-organizations/ministries/agriculture (accessed on 31 May 2019).
- Forest, Land, N.R.O. and R.D. Available online: https://www2.gov.bc.ca/gov/content/governments/organizational-structure/ministries-organizations/ministries/forests-lands-natural-resource-operations-and-rural-development (accessed on 31 May 2019).
- Province of British Columbia. Local Government Act; Province of British Columbia: Victoria, BC, Canada, 2015.
- Verburg, P.H.; Soepboer, W.; Veldkamp, A.; Limpiada, R.; Espaldon, V.; Mastura, S.S.A. Modeling the Spatial Dynamics of Regional Land Use: The CLUE-S Model. Environ. Manag. 2002, 30, 391–405. [Google Scholar] [CrossRef]
- Verburg, P.H.; Overmars, K.P. Dynamic Simulation of Land-Use Change Trajectories with the Clue-S Model. In Modelling Land-Use Change; Springer Netherlands: Dordrecht, The Netherlands, 2007; pp. 321–337. [Google Scholar]
- Ping, J.; Nichol, C.; Wei, A. Numerical Groundwater Modeling in the Deep Creek Watershed (Final); I.K. Barber School of Arts and Sciences, The University of British Columbia: Kelowna, BC, Canada, 2010. [Google Scholar]
- Demarchi, D.A. The British Columbia Ecoregion Classification; Ecosystem Information Section, Ministry of Environment: Victoria, BC, Canada, 2011.
- Statistics Canada. Census Profile 2011: Armstrong, British Columbia. Available online: http://www12.statcan.gc.ca/census-recensement/2011/dp-pd/prof/ (accessed on 15 February 2013).
- Statistics Canada. Census Profile 2011: Township of Spallumcheen, British Columbia; Statistics Canada: Ottawa, ON, Canada, 2011.
- BC Stats. British Columbia Population Projections 2010 to 2036; BC Stats: Victoria, BC, Canada, 2010.
- Chipeniuk, R. Planning for Amenity Migration in Canada. Mt. Res. Dev. 2004, 24, 327–335. [Google Scholar] [CrossRef]
- Senese, D. Amenity resources and rural change in the Okanagan Valley of British Columbia. In The Rural-Urban Fringe in Canada: Conflict & Controversy; Beesley, K., Ed.; Rural Development Institute, Brandon University: Brandon, MB, Canada, 2010; ISBN 978-1-895397-82-6. [Google Scholar]
- Verburg, P. The CLUE-S Model, Tutorial CLUE-S (version 2.4) and DYNA-CLUE (version 2); Institute for Environmental Studies, Free University Amsterdam: Amsterdam, The Netherlands, 2007. [Google Scholar]
- Neumann, K.; Stehfest, E.; Verburg, P.H.; Siebert, S.; Müller, C.; Veldkamp, T. Exploring global irrigation patterns: A multilevel modelling approach. Agric. Syst. 2011, 104, 703–713. [Google Scholar] [CrossRef]
- Hurkmans, R.T.W.L.; Terink, W.; Uijlenhoet, R.; Moors, E.J.; Troch, P.A.; Verburg, P.H. Effects of land use changes on streamflow generation in the Rhine basin. Water Resour. Res 2009, 45, 6405. [Google Scholar] [CrossRef]
- Wassenaar, T.; Gerber, P.; Verburg, P.H.; Rosales, M.; Ibrahim, M.; Steinfeld, H. Projecting land use changes in the Neotropics: The geography of pasture expansion into forest. Glob. Environ. Chang. 2007, 17, 86–104. [Google Scholar] [CrossRef]
- Castella, J.-C.; Boissau, S.; Trung, T.N.; Quang, D.D. Agrarian transition and lowland–upland interactions in mountain areas in northern Vietnam: Application of a multi-agent simulation model. Agric. Syst. 2005, 86, 312–332. [Google Scholar] [CrossRef]
- Kucsicsa, G.; Popovici, E.-A.; Bălteanu, D.; Grigorescu, I.; Dumitraşcu, M.; Mitrică, B. Future land use/cover changes in Romania: Regional simulations based on CLUE-S model and CORINE land cover database. Landsc. Ecol. Eng. 2019, 15, 75–90. [Google Scholar] [CrossRef]
- Huang, D.; Huang, J.; Liu, T. Delimiting urban growth boundaries using the CLUE-S model with village administrative boundaries. Land Use Policy 2019, 82, 422–435. [Google Scholar] [CrossRef]
- Mohammady, M.; Moradi, H.R.; Zeinivand, H.; Temme, A.J.A.M.; Yazdani, M.R.; Pourghasemi, H.R. Modeling and assessing the effects of land use changes on runoff generation with the CLUE-s and WetSpa models. Theor. Appl. Climatol. 2018, 133, 459–471. [Google Scholar] [CrossRef]
- Hughes, J.D.; Liu, J. MIKE SHE: Software for Integrated Surface Water/Ground Water Modeling. Ground Water 2008, 46, 797–802. [Google Scholar] [CrossRef]
- Neilsen, D.; Duke, G.; Taylor, B.; Byrne, J.; Kienzle, S.; Van der Gulik, T. Development and Verification of Daily Gridded Climate Surfaces in the Okanagan Basin of British Columbia. Can. Water Resour. J. 2010, 35, 131–154. [Google Scholar] [CrossRef] [Green Version]
- Sustainable Agriculture Management Branch. Regional District of North Okanagan Agricultural Overview; Sustainable Agriculture Management Branch, British Columbia Ministry of Agriculture: Victoria, BC, Canada, 2008.
- Sustainable Agriculture Management Branch. Columbia Shuswap Regional District Agricultural Overview; Sustainable Agriculture Management Branch, British Columbia Ministry of Agriculture: Victoria, BC, Canada, 2009.
- Anputhas, M.; Janmaat, J.A.; Nichol, C.F.; Wei, X. Modelling spatial association in pattern based land use simulation models. J. Environ. Manag. 2016, 181, 465–476. [Google Scholar] [CrossRef] [PubMed]
- Mertens, B.; Poccard-Chapuis, R.; Piketty, M.-G.; Lacques, A.-E.; Venturieri, A. Crossing spatial analyses and livestock economics to understand deforestation processes in the Brazilian Amazon: The case of Sao Felix do Xingu in South Para. Agric. Econ. 2002, 27, 269–294. [Google Scholar]
- Aguiar, A.P.D.; Câmara, G.; Escada, M.I.S. Spatial statistical analysis of land-use determinants in the Brazilian Amazonia: Exploring intra-regional heterogeneity. Ecol. Modell. 2007, 209, 169–188. [Google Scholar] [CrossRef]
- Van der Gulik, T.W.; Neilsen, D.; Fretwell, R. Agriculture Water Demand Model: Report for the Okanagan Basin; British Columbia Ministry of Agriculture: Victoria, BC, Canada, 2010.
- Province of British Columbia. Okanagan—Agricultural Land Use Inventory. Available online: https://www2.gov.bc.ca/gov/content/industry/agriculture-seafood/agricultural-land-and-environment/strengthening-farming/planning-for-agriculture/agricultural-land-use-inventories/okanagan (accessed on 1 January 2010).
- Ng, V. GIS Technical ALUI Reference Manual; British Columbia Ministry of Agriculture: Victoria, BC, Canada, 2010.
- BC Ministry of Agriculture. AgFocus Field Guide; BC Ministry of Agriculture: Victoria, BC, Canada, 2017.
- BC Ministry of Agriculture. AgFocus: A Surveyor’s Guide to Conducting a Land Use Inventory; BC Ministry of Agriculture: Victoria, BC, Canada, 2014.
- Geographic Data BC GeoBC. Available online: http://geobc.gov.bc.ca (accessed on 1 February 2014).
- Soil Lanscapes of Canada Working Group. Soil Landscapes of Canada Version 3.2; Soil Lanscapes of Canada Working Group, Canadian Soil Information Service, Government of Canada: Ottawa, ON, Canada, 2010.
- Yellow Pages Canada Canada411. Available online: www.canada411.ca (accessed on 1 February 2014).
- Amato, U.; Antoniadis, A.; Carfora, M.F.; Colandrea, P.; Cuomo, V.; Franzese, M.; Pignatti, S.; Serio, C. Statistical Classification for Assessing PRISMA Hyperspectral Potential for Agricultural Land Use. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 615–625. [Google Scholar] [CrossRef]
- Riveiro-Valiño, J.A.; Álvarez-López, C.J.; Marey-Pérez, M.F. The use of discriminant analysis to validate a methodology for classifying farms based on a combinatorial algorithm. Comput. Electron. Agric. 2009, 66, 113–120. [Google Scholar] [CrossRef]
- Davidson, N.J.; Close, D.C.; Battaglia, M.; Churchill, K.; Ottenschlaeger, M.; Watson, T.; Bruce, J. Eucalypt health and agricultural land management within bushland remnants in the Midlands of Tasmania, Australia. Biol. Conserv. 2007, 139, 439–446. [Google Scholar] [CrossRef]
- NASA Landsat Science. Available online: https://landsat.gsfc.nasa.gov/ (accessed on 31 May 2019).
- Pontius, R.G.; Huffaker, D.; Denman, K. Useful techniques of validation for spatially explicit land-change models. Ecol. Modell. 2004, 179, 445–461. [Google Scholar] [CrossRef]
- Pontius, R.G. Statistical Methods to Partition Effects of Quantity and Location During Comparison of Categorical Maps at Multiple Resolutions. Photogramm. Eng. Remote Sens. 2002, 68, 1041–1049. [Google Scholar]
- Pontius, R.G.; Castella, J.-C.; de Nijs, T.; Duan, Z.; Fotsing, E.; Goldstein, N.; Kok, K.; Koomen, E.; Lippitt, C.D.; McConnell, W.; et al. Lessons and Challenges in Land Change Modeling Derived from Synthesis of Cross-Case Comparisons. In Trends in Spatial Analysis and Modelling; Springer: Cham, Switzerland, 2018; pp. 143–164. [Google Scholar]
- Regional District of Columbia Shuswap. Official Community Plan; Regional District of Columbia Shuswap: Shuswap, BC, Canada, 2011. [Google Scholar]
- Climate Action Secretariat. Carbon Tax; British Columbia Ministry of Agriculture and Food: Victoria, BC, Canada, 2012.
- Regional District of North Okanagan. Official Community Plan; Regional District of North Okanagan: Vernon, BC, Canada, 2012. [Google Scholar]
- O’Farrell, P.J.; Anderson, P.M. Sustainable multifunctional landscapes: A review to implementation. Curr. Opin. Environ. Sustain. 2010, 2, 59–65. [Google Scholar] [CrossRef]
- Hobbs, R.J.; Higgs, E.; Hall, C.M.; Bridgewater, P.; Chapin, F.S.; Ellis, E.C.; Ewel, J.J.; Hallett, L.M.; Harris, J.; Hulvey, K.B.; et al. Managing the whole landscape: Historical, hybrid, and novel ecosystems. Front. Ecol. Environ. 2014, 12, 557–564. [Google Scholar] [CrossRef]
- Klein, J.A.; Wolf, S.A. Toward Multifunctional Landscapes: Cross-Sectional Analysis of Management Priorities in New York’s Northern Forest. Rural Sociol. 2007, 72, 391–417. [Google Scholar] [CrossRef]
- Li, X.; Parrott, L. An improved Genetic Algorithm for spatial optimization of multi-objective and multi-site land use allocation. Comput. Environ. Urban Syst. 2016, 59, 184–194. [Google Scholar] [CrossRef]
- Prestele, R.; Arneth, A.; Bondeau, A.; de Noblet-Ducoudré, N.; Pugh, T.A.M.; Sitch, S.; Stehfest, E.; Verburg, P.H. Current challenges of implementing anthropogenic land-use and land-cover change in models contributing to climate change assessments. Earth Syst. Dyn. 2017, 8, 369–386. [Google Scholar] [CrossRef] [Green Version]
- Robinson, D.T.; Di Vittorio, A.; Alexander, P.; Arneth, A.; Barton, C.M.; Brown, D.G.; Kettner, A.; Lemmen, C.; O’Neill, B.C.; Janssen, M.; et al. Modelling feedbacks between human and natural processes in the land system. Earth Syst. Dyn. 2018, 9, 895–914. [Google Scholar] [CrossRef] [Green Version]
- Jin, G.; Chen, K.; Wang, P.; Guo, B.; Dong, Y.; Yang, J. Trade-offs in land-use competition and sustainable land development in the North China Plain. Technol. Forecast. Soc. Chang. 2019, 141, 36–46. [Google Scholar] [CrossRef]
- Lotze-Campen, H.; Verburg, P.H.; Popp, A.; Lindner, M.; Verkerk, P.J.; Moiseyev, A.; Schrammeijer, E.; Helming, J.; Tabeau, A.; Schulp, C.J.E.; et al. A cross-scale impact assessment of European nature protection policies under contrasting future socio-economic pathways. Reg. Environ. Chang. 2018, 18, 751–762. [Google Scholar] [CrossRef]
- Adams, V.M.; Pressey, R.L.; Stoeckl, N. Navigating trade-offs in land-use planning: Integrating human well-being into objective setting. Ecol. Soc. 2014, 19, art53. [Google Scholar] [CrossRef]
- Adams, V.M.; Pressey, R.L.; Álvarez-Romero, J.G. Using Optimal Land-Use Scenarios to Assess Trade-Offs between Conservation, Development, and Social Values. PLoS ONE 2016, 11, e0158350. [Google Scholar] [CrossRef]
- Bakker, K.; Cook, C. Water Governance in Canada: Innovation and Fragmentation. Int. J. Water Resour. Dev. 2011, 27, 275–289. [Google Scholar] [CrossRef]
- Zelli, F.; van Asselt, H. Introduction: The Institutional Fragmentation of Global Environmental Governance: Causes, Consequences, and Responses. Glob. Environ. Polit. 2013, 13, 1–13. [Google Scholar] [CrossRef]
- BC Agriculture and Food Climate Action Initiative. Available online: https://www.bcagclimateaction.ca/ (accessed on 31 May 2019).
- Latimer, S.; Peatt, S. Designing and Implementing Ecosystem Connectivity in the Okanagan; Okanagan Collaborative Conservation Program: Kelowna, BC, Canada, 2014. [Google Scholar]
- Cannings, R.J. The South Okanagan Valley: A national treasure at risk. In Proceedings of the Conference on the Biology and Management of Species and Habitats at Risk, Kamloops, BC, Canada, 15–19 February 2000. [Google Scholar]
- Tian, Q.; Holland, J.H.; Brown, D.G. Social and economic impacts of subsidy policies on rural development in the Poyang Lake Region, China: Insights from an agent-based model. Agric. Syst. 2016, 148, 12–27. [Google Scholar] [CrossRef]
- Zhang, Q.; Song, C.; Chen, X. Effects of China’s payment for ecosystem services programs on cropland abandonment: A case study in Tiantangzhai Township, Anhui, China. Land Use Policy 2018, 73, 239–248. [Google Scholar] [CrossRef]
- Kinzig, A.P.; Perrings, C.; Chapin, F.S.; Polasky, S.; Smith, V.K.; Tilman, D.; Turner, B.L.; Coe, M.T.; Daily, G.C.; Gibbs, H.K.; et al. Paying for Ecosystem Services—Promise and Peril. Science 2011, 334, 603–604. [Google Scholar] [CrossRef] [PubMed]
- Bryan, B.A. Incentives, land use, and ecosystem services: Synthesizing complex linkages. Environ. Sci. Policy 2013, 27, 124–134. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; Bilsborrow, R.E.; Zhang, Q.; Li, J.; Song, C. Effects of payment for ecosystem services and agricultural subsidy programs on rural household land use decisions in China: Synergy or trade-off? Land Use Policy 2019, 81, 785–801. [Google Scholar] [CrossRef]
- Bateman, I.J.; Harwood, A.R.; Mace, G.M.; Watson, R.T.; Abson, D.J.; Andrews, B.; Binner, A.; Crowe, A.; Day, B.H.; Dugdale, S.; et al. Bringing ecosystem services into economic decision-making: Land use in the United Kingdom. Science 2013, 341, 45–50. [Google Scholar] [CrossRef] [PubMed]
- Agent-Based Models of Land-Use and Land-Cover Change; Parker, D.C.; Berger, T.; Manson, S.M.; McConnell, W.J. (Eds.) LUCC International Project Office: Irvine, CA, USA, 2001. [Google Scholar]
- Matthews, R.B.; Gilbert, N.G.; Roach, A.; Polhill, J.G.; Gotts, N.M. Agent-based land-use models: A review of applications. Landsc. Ecol. 2007, 22, 1447–1459. [Google Scholar] [CrossRef]
- Irwin, E.; Campbell, J.; Wilson, R.; Faggian, A.; Moore, R.; Irwin, N. Human adaptations in food, energy, and water systems. J. Environ. Stud. Sci. 2016, 6, 127–139. [Google Scholar] [CrossRef]
- Alberti, M.; Asbjornsen, H.; Baker, L.A.; Brozovic, N.; Drinkwater, L.E.; Drzyzga, S.A.; Jantz, C.A.; Fragoso, J.; Holland, D.S.; Kohler, T.A.; et al. Research on Coupled Human and Natural Systems (CHANS): Approach, Challenges, and Strategies. Bull. Ecol. Soc. Am. 2011, 92, 218–228. [Google Scholar] [CrossRef]
- Ren, Y.; Lü, Y.; Comber, A.; Fu, B.; Harris, P.; Wu, L. Spatially explicit simulation of land use/land cover changes: Current coverage and future prospects. Earth-Sci. Rev. 2019, 190, 398–415. [Google Scholar] [CrossRef]
- Walsh, S.J.; Mena, C.F. Interactions of social, terrestrial, and marine sub-systems in the Galapagos Islands, Ecuador. Source 2016, 113, 14536–14543. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Verburg, P.H.; Alexander, P.; Evans, T.; Magliocca, N.R.; Malek, Z.; Rounsevell, M.D.A.; van Vliet, J. Beyond land cover change: Towards a new generation of land use models. Curr. Opin. Environ. Sustain. 2019, 38, 77–85. [Google Scholar] [CrossRef]
- Tammi, I.; Mustajärvi, K.; Rasinmäki, J. Integrating spatial valuation of ecosystem services into regional planning and development. Ecosyst. Serv. 2017, 26, 329–344. [Google Scholar] [CrossRef] [Green Version]
- Hein, L.; van Koppen, K.; de Groot, R.S.; van Ierland, E.C. Spatial scales, stakeholders and the valuation of ecosystem services. Ecol. Econ. 2006, 57, 209–228. [Google Scholar] [CrossRef]
- Zhao, M.; He, Z.; Zhao, M.; He, Z. Evaluation of the Effects of Land Cover Change on Ecosystem Service Values in the Upper Reaches of the Heihe River Basin, Northwestern China. Sustainability 2018, 10, 4700. [Google Scholar] [CrossRef]
- Henríquez-Dole, L.; Usón, T.J.; Vicuña, S.; Henríquez, C.; Gironás, J.; Meza, F. Integrating strategic land use planning in the construction of future land use scenarios and its performance: The Maipo River Basin, Chile. Land Use Policy 2018, 78, 353–366. [Google Scholar] [CrossRef]
- Ariti, A.T.; van Vliet, J.; Verburg, P.H. Farmers’ participation in the development of land use policies for the Central Rift Valley of Ethiopia. Land Use Policy 2018, 71, 129–137. [Google Scholar] [CrossRef]
- Van Berkel, D.B.; Verburg, P.H. Combining exploratory scenarios and participatory backcasting: Using an agent-based model in participatory policy design for a multi-functional landscape. Landsc. Ecol. 2012, 27, 641–658. [Google Scholar] [CrossRef] [PubMed]
- Schaller, L.; Targetti, S.; Villanueva, A.J.; Zasada, I.; Kantelhardt, J.; Arriaza, M.; Bal, T.; Fedrigotti, V.B.; Giray, F.H.; Häfner, K.; et al. Agricultural landscapes, ecosystem services and regional competitiveness—Assessing drivers and mechanisms in nine European case study areas. Land Use Policy 2018, 76, 735–745. [Google Scholar] [CrossRef]
- Zasada, I.; Häfner, K.; Schaller, L.; van Zanten, B.T.; Lefebvre, M.; Malak-Rawlikowska, A.; Nikolov, D.; Rodríguez-Entrena, M.; Manrique, R.; Ungaro, F.; et al. A conceptual model to integrate the regional context in landscape policy, management and contribution to rural development: Literature review and European case study evidence. Geoforum 2017, 82, 1–12. [Google Scholar] [CrossRef]
Transition Probability Impact | |||||
---|---|---|---|---|---|
Variables | Cultivation Area | Farm Area | Forest and Range | Pasture and Forage | Residential and Built Area |
Constant | – | – | – | – | + |
Socioeconomic | |||||
Dist. to highway | NS | NS | + | NS | – |
Dist. to urban ctr. | + | NS | NS | NS | – |
Dist. to paved road | – | – | + | NS | NS |
Population density | – | NS | – | – | + |
Biophysical | |||||
Slope | – | – | + | – | NS |
Depth to groundwater | – | – | + | – | – |
North aspect | NS | NS | NS | + | NS |
South aspect | + | NS | NS | NS | NS |
East aspect | NS | + | NS | NS | NS |
Percentage sand | NS | + | NS | NS | + |
Spatial | |||||
Dist. to lake/reservoir | NS | NS | + | NS | – |
Dist. to River | + | NS | – | NS | NS |
Spatial assoc. | + | + | Excld | + | NS |
Area Restriction | Forest and Range Land | ||
Free to Chang | Conserved | ||
Not imposed | Business As Usual (BAU) | Conservation without area restriction (C) | |
Imposed | Area restriction without Conservation (AR) | Conservation with area restriction (CAR) |
2050 | |||||
---|---|---|---|---|---|
Land-Use Category | Agricultural Land | Forest and Range | Residential and Built Area | Remain as Original in % | |
Business as Usual-BAU | |||||
2010 | Agricultural land | 343 (312) 1 | 0 (0) | 7 (7) | 98 (98) |
Forest and Range | 98 (69) | 510 (28) | 51 (19) | 77 (24) | |
Residential and Built area | 0 (0) | 0 (0) | 103 (61) | 100 (100) | |
In 2050 | 441 (381) | 510 (28) | 161 (87) | 86 (81) | |
Conservation without Area Restriction-C | |||||
2010 | Agricultural land | 308 (288) | 8 (6) | 34 (25) | 88 (90) |
Forest and Range | 50 (43) | 585 (61) | 24 (12) | 89 (53) | |
Residential and Built area | 0 (0) | 0 (0) | 103 (61) | 100 (100) | |
In 2050 | 358 (331) | 593 (67) | 161 (98) | 90 (83) | |
Area restriction without Conservation-AR | |||||
2010 | Agricultural land | 345 (314) | 0 (0) | 5 (5) | 99 (98) |
Forest and Range | 92 (62) | 510 (26) | 53 (28) | 77 (22) | |
Residential and Built area | 0 (0) | 0 (0) | 103 (61) | 100 (100) | |
In 2050 | 441 (376) | 510 (26) | 161 (94) | 86 (81) | |
Conservation with Area Restriction-CAR | |||||
2010 | Agricultural land | 312 (289) | 4 (4) | 34 (26) | 89 (91) |
Forest and Range | 46 (40) | 589 (59) | 24 (17) | 89 (51) | |
Residential and Built area | 0 (0) | 0 (0) | 103 (61) | 100 (100) | |
In 2050 | 358 (329) | 593 (63) | 161 (104) | 90 (82) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anputhas, M.; Janmaat, J.; Nichol, C.; Wei, A. If They Come, Where will We Build It? Land-Use Implications of Two Forest Conservation Policies in the Deep Creek Watershed. Forests 2019, 10, 581. https://doi.org/10.3390/f10070581
Anputhas M, Janmaat J, Nichol C, Wei A. If They Come, Where will We Build It? Land-Use Implications of Two Forest Conservation Policies in the Deep Creek Watershed. Forests. 2019; 10(7):581. https://doi.org/10.3390/f10070581
Chicago/Turabian StyleAnputhas, Markandu, Johannus Janmaat, Craig Nichol, and Adam Wei. 2019. "If They Come, Where will We Build It? Land-Use Implications of Two Forest Conservation Policies in the Deep Creek Watershed" Forests 10, no. 7: 581. https://doi.org/10.3390/f10070581
APA StyleAnputhas, M., Janmaat, J., Nichol, C., & Wei, A. (2019). If They Come, Where will We Build It? Land-Use Implications of Two Forest Conservation Policies in the Deep Creek Watershed. Forests, 10(7), 581. https://doi.org/10.3390/f10070581