Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Locations and Sampling Methodology
2.2. Above- and Belowground Biomass Carbon Estimation
2.3. Total and Potential Carbon Pools
2.4. Soil Sampling and Analysis
3. Results
3.1. Tree Inventory
3.2. Carbon Stocks
3.3. Estimated Potential Carbon Stocks
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Species | Component 1 | Equation 2 | Citation |
---|---|---|---|
A. nilotica | A | 10−1.0646 * D2H0.9098 | Rawat et al. (2008) |
A. nilotica | B | 10−1.3952 * D2H0.8253 | Rawat et al. (2008) |
D. sissoo | A | 101.536 * D2H2.929 | Tyagi et al. (2009) |
D. sissoo | B | 101.087 * D2H2.913 | Tyagi et al. (2009) |
C. reticulata | A | −6.64 + 0.279 * BA + 0.000514 * BA2 | Schroth et al. (2002) |
E. camaldulensis | A | e−2.2660 * D2.4663 | Hawkins (1987) |
M. azedarach | A | 42.31 + 9.52 * 10−5 * D2H | Roy et al. (2006) |
P. deltoides | A | 173.144 * (1 + e(2.956-(0.120*D)))−1 | Das and Chtervaudi (2005) |
P. deltoides | B | 69.105 * (1 + e (3.273-(0.077*D)))−1 | Das and Chtervaudi (2005) |
S. cumini | A | 10−1.2066 * D2H0.9872 | Rai (1984) |
Tropical moist 3 | A | e−3.1141 * D2H0.9719 | Brown et al. (1989) |
References
- Pakistan Bureau of Statistics. A Report on Population Census. 2017. Available online: http://www.pbs.gov.pk/content/population census. (accessed on 12 September 2017).
- Pakistan Economic Survey. Agriculture; 2016; pp. 1–22. Available online: http://www.finance.gov.pk/survey/chapters_17/Pakistan_ES_2016_17_pdf.pdf (accessed on 1 March 2017).
- Mendelsohn, R. The impact of climate change on agriculture in Asia. J. Integr. Agric. 2014, 13, 660–665. [Google Scholar] [CrossRef]
- Sajjad, A.; Liu, Y.; Ishaq, M.; Shah, T.; Abdullah Ilyas, A.; Din, I.U. Climate change and its impact on the yield of major food crops: Evidence from Pakistan. Foods 2017, 6, 39. [Google Scholar]
- Food and Agricultural Organization; International Fund for Agricultural Development; World Food Programme. The State of Food Insecurity in the World 2015. In Meeting the 2015 International Hunger Targets: Taking Stock of Uneven Progress; FAO: Rome, Italy, 2015; pp. 1–62. Available online: http://www.fao.org/3/a i4646e.pdf (accessed on 1 September 2017).
- Zubair, M.; Garforth, C. Farm level tree planting in Pakistan: The role of farmers, perceptions and attitudes. Agrofor. Syst. 2006, 66, 217–229. [Google Scholar] [CrossRef]
- Farooq, T.H.; Nawaz, M.F.; Khan, M.W.; Gilani, M.M.; Buajan, S.; Iftikhar, J.; Tunon, N.; Wu, P. Potentials of agroforestry and constraints faced by the farmers in its adoption in District Nankana Sahib, Pakistan. Int. J. Dev. Sustain. 2017, 6, 586–593. [Google Scholar]
- Yasin, G.; Nawaz, M.F.; Siddiqui, M.T.; Niazi, N.K. Biomass, carbon stocks and CO2 sequestration in three different aged irrigated Populus Deltoides bartr. ex marsh. bund planting agroforestry systems. App. Ecol. Env. Res. 2018, 16, 6239–6252. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Shah, S.A.A.; Gul, S.; Afzal, S.; Ahmad, I.; Ghaffar, A. Carbon sequestration and production of Eucalyptus Camaldulensis plantations on marginal sandy agricultural lands. Pak. J. Agric. Sci. 2017, 54, 335–342. [Google Scholar]
- Alao, J.S.; Shuaibu, R.B. Agroforestry practices and concepts in sustainable land use systems in Nigeria. J. Hort. 2013, 5, 156–159. [Google Scholar]
- Makundi, W.R.; Sathaye, J.A. GHG mitigation potential and cost in tropical forestry-relative role for agroforestry. Env. Dev. Sustain. 2004, 6, 235–260. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Haile, S.G. Soil carbon sequestration in tropical agroforestry systems: A feasibility appraisal. Environ. Sci. Policy 2009, 12, 1099–1111. [Google Scholar] [CrossRef]
- Sanchez, P.A. Linking climate change research with food security and poverty reduction in the tropics. Agric. Ecosyst. Environ. 2000, 82, 371–383. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Kumar, B.M.; Nair, V.D. Agroforestry as a strategy for carbon sequestration. J. Plant. Nutr. Soil Sci. 2009, 172, 10–23. [Google Scholar] [CrossRef]
- Zomer, R.J.; Neufeldt, H.; Xu, J.; Ahrends, A.; Bossio, D.; Trabucco, A.; van Noordwijk, M.; Wang, M. Global tree cover and biomass carbon on agricultural land: The contribution of agroforestry to global and national carbon budgets. Sci. Rep. 2016, 6, 29987. [Google Scholar]
- Smith, P. Carbon sequestration in croplands: The potential in Europe and the global context. Eur. J. Agron. 2004, 20, 229–236. [Google Scholar] [CrossRef]
- Schroeder, P. Carbon storage benefits of agroforestry systems. Agrofor. Syst. 1994, 27, 89–97. [Google Scholar] [CrossRef]
- Chauhan, S.K.; Sharma, S.C.; Beri, V.; Yadav, S.; Gupta, N. Yield and carbon sequestration potential of Wheat (Triticum aestivum) Poplar (Populus deltoides) based Agri-Silvicultural system. Indian. J. Agric. Sci. 2010, 80, 129–135. [Google Scholar]
- Kaur, B.; Gupta, S.R.; Singh, G. Carbon storage and nitrogen cycling in silvipastoral system on sodic soil Northwestern India. Agrofor. Syst. 2002, 54, 21–29. [Google Scholar] [CrossRef]
- Luedeling, E.; Sileshi, G.; Beedy, T.; Dietz, J. Carbon sequestration potential of agroforestry systems in Africa. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B.M., Nair, P.K.R., Eds.; Springer Science+Business Media: Dordrecht, The Netherlands, 2010; Volume 8, pp. 61–83. [Google Scholar]
- Ajit Dhyani, S.K.; Ramnewaj Handa, A.K.; Prasad, R.; Alam, B.; Rizvi, R.H.; Gupta, G.; Pandey, K.K.; Jain, A. Modeling analysis of potential carbon sequestration under existing agroforestry systems in three districts of Indo-Gangetic plains in India. Agrofor. Syst. 2013, 87, 1129–1146. [Google Scholar] [CrossRef]
- Nizami, S.M. The inventory of the carbon stocks in sub-tropical forest of Pakistan for reporting under Kyoto Protocol. J. Res. 2012, 23, 377–384. [Google Scholar] [CrossRef]
- Ahmad, A.; Mirza, S.N.; Nizami, S.M. Assessment of biomass and carbon stocks in coniferous forest of Dir Kohistan, KPK. Pak. J. Agric. Sci. 2014, 51, 335–340. [Google Scholar]
- Ahmad, A.; Nizami, S.M. Carbon stocks of different land uses in the Kumrat Valley, Hindu Kush Region of Pakistan. J. Res. 2014, 26, 57–64. [Google Scholar] [CrossRef]
- Sajjad, S.; Ashraf, M.I.; Adnan, A.; Rahman, Z. The Bela forest ecosystem of District Jhelum, a potential carbon sink. Pak J. Bot. 2017, 48, 121–129. [Google Scholar]
- Cairns, M.A.; Brown, S.; Helmer, E.H.; Baumgardner, G.A. Root biomass allocation in the world’s upland forests. Oecologia 1997, 111, 1–11. [Google Scholar] [CrossRef]
- Ravindranath, N.H.; Ostwald, M. Methods for Below-Ground Biomass. In Carbon Inventory Methods: Handbook for Greenhouse gas Inventory, Carbon Mitigation and Roundwood Production Projects; Springer Science & Business Media: Dordrecht, The Netherlands, 2008; Volume 29, pp. 149–156. [Google Scholar]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues. A Synthesis. Forests 2012, 3, 332–352. [Google Scholar] [CrossRef]
- Nawaz, M.F.; Yousaf, M.T.B.; Yasin, G.; Gul, S.; Ahmed, I.; Abdullah, M.; Rafay, M.; Tanvir, M.A.; Asif, M.; Afzal, S. Agroforestry status and its role to sequester atmospheric CO2 under semi-arid climatic conditions in Pakistan. Appl. Ecol. Environ. Res. 2018, 16, 645–661. [Google Scholar] [CrossRef]
- Murthy, I.K.; Gupta, M.; Tomar, S.; Munsi, M.; Tiwari, R.; Hegde, G.T. Carbon sequestration potential of agroforestry systems in India. J. Earth Sci. Clim. Chang. 2013, 4, 1–7. [Google Scholar] [CrossRef]
- Walkley, A.J.; Black, I.A. An examination of the Degtjareff method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Sci. 1934, 37, 29–38. [Google Scholar] [CrossRef]
- De Joa Carlos, M.S.; Carlos, C.C.; Warren, A.D.; Lal, R.; Filho, S.P.V.; Piccolo, M.C.; Feigl, B.E. Organic matter dynamics and carbon sequestration rates for a tillage chrono sequence in a Brazilian Oxisol. Soil. Sci. Soc. Am. J. 2001, 65, 1486–1499. [Google Scholar]
- Albrecht, A.; Kandji, S.T. Carbon sequestration in tropical agroforestry systems. Agric. Ecosyst. Environ. 2003, 99, 15–27. [Google Scholar] [CrossRef]
- Marone, D.; Poirier, V.; Coyea, M.; Olivier, A.; Munson, A.D. Carbon storage in agroforestry systems in the semi-arid zone of Niayes, Senegal. Agrofor. Syst. 2017, 91, 941–954. [Google Scholar] [CrossRef]
- Takimoto, A.; Nair, P.K.; Nair, V.D. Carbon stock and sequestration potential of traditional and improved agroforestry systems in the West African Sahel. Agric. Ecosyst. Environ. 2008, 125, 159–166. [Google Scholar] [CrossRef]
- Viswanath, S.; Lubina, P.A.; Subbanna, S.; Sandhya, M.C. Traditional Agroforestry Systems and Practices: A Review. Adv. Agric. Res. Technol. J. 2018, 2, 18–29. [Google Scholar]
- Sekhar, N.U. Traditional versus improved agroforestry systems in Vietnam: A comparison. Land Degrad. Dev. 2007, 18, 89–97. [Google Scholar] [CrossRef]
- Nair, P.K.R.; Nair, V.D.; Kumar, B.M.; Showalter, J.M. Carbon sequestration in agroforestry systems. Adv. Agron. 2010, 108, 237–246. [Google Scholar]
- Pathak, H.; Byjesh, K.; Chakrabarti, B.; Agarawal, P.K. Potential and cost of carbon sequestration in Indian agriculture: Estimates from long term experiments. Field Crop. Res. 2011, 120, 102–111. [Google Scholar] [CrossRef]
- De Stefano, A.; Jacobson, M.G. Soil carbon sequestration in agroforestry systems: A meta-analysis. Agrofor. Syst. 2018, 92, 285–299. [Google Scholar] [CrossRef]
- Oelbermann, M.; Voroney, R.P.; Gordon, A.M. Carbon sequestration in tropical and temperate agroforestry systems: A review with examples from Costa Rica and Southern Canada. Agric. Ecosyst. Environ. 2004, 104, 359–377. [Google Scholar] [CrossRef]
- Swamy, S.L.; Puri, S. Biomass production and carbon sequestration of Gmelina arborea in plantation and agroforestry system in India. Agrofor. Syst. 2005, 64, 181–195. [Google Scholar] [CrossRef]
- Kimaro, A.A.; Isaac, M.E.; Chamsharma, S.A.O. Carbon pools in tree biomass and soils under rotational woodlot systems in eastern Tanzania. In Carbon Sequestration Potential of Agroforestry Systems: Opportunities and Challenges; Kumar, B.M., Nair, P.K.R., Eds.; Springer Science+Business Media, B.V.: Dordrecht, The Netherlands, 2010; Volume 8, pp. 129–144. [Google Scholar]
District | Tehsil | Number of 0.405 ha Plots | DBH (cm) | Height (m) | Tree Age (year) | Tree Density (trees ha−1) | Tree Basal Area (m2 ha−1) | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | Mean | Range | SD | |||
Chiniot | Bhawana | 80 | 10.86 | 0−27.05 | 6.99 | 5.96 | 0−15.85 | 3.72 | 3.53 | 0−11 | 2.28 | 21.59 | 0−101.31 | 18.99 | 0.30 | 0−1.50 | 0.32 |
Chiniot | 90 | 11.79 | 0−25.06 | 6.39 | 6.05 | 0−11.91 | 2.58 | 4.15 | 0−10 | 2.11 | 27.26 | 0−123.55 | 21.26 | 0.44 | 0−3.33 | 0.61 | |
Lalian | 80 | 11.73 | 0−29.32 | 6.60 | 6.44 | 0−12.91 | 3.31 | 3.98 | 0−15 | 2.52 | 41.14 | 0−91.43 | 26.02 | 0.68 | 0−2.87 | 0.70 | |
Faisalabad | Faisalabad | 60 | 10.02 | 0−23.89 | 6.30 | 5.90 | 0−14.42 | 3.04 | 3.36 | 0−11 | 2.13 | 17.96 | 0−56.83 | 12.60 | 0.20 | 0−1.29 | 0.26 |
Jaranwala | 250 | 10.38 | 0−27.71 | 6.33 | 6.04 | 0−15.77 | 3.48 | 3.62 | 0−13 | 2.37 | 28.21 | 0−116.14 | 21.38 | 0.39 | 0−2.38 | 0.38 | |
Jhumra | 70 | 8.60 | 0−24.75 | 6.52 | 5.17 | 0−12.58 | 3.47 | 2.97 | 0−9 | 2.03 | 27.18 | 0−135.91 | 25.69 | 0.35 | 0−3.30 | 0.57 | |
Samundri | 250 | 11.97 | 0−26.53 | 6.07 | 6.68 | 0−13.80 | 3.20 | 4.38 | 0−14 | 2.57 | 20.40 | 0−76.60 | 15.52 | 0.32 | 0−2.12 | 0.31 | |
Tandlianwala | 170 | 9.96 | 0−30.87 | 6.82 | 5.56 | 0−14.72 | 3.45 | 3.56 | 0−13 | 2.66 | 25.17 | 0−98.84 | 21.65 | 0.31 | 0−2.16 | 0.35 | |
Sargodha | Bhalwal | 140 | 9.86 | 0−22.43 | 5.34 | 6.07 | 0−12.66 | 2.84 | 4.10 | 0−12 | 2.14 | 39.87 | 0−276.76 | 43.59 | 0.37 | 0−2.21 | 0.37 |
Kot Momin | 100 | 9.89 | 0−23.95 | 6.27 | 5.83 | 0−11.71 | 3.27 | 4.43 | 0−10 | 2.65 | 51.47 | 0−358.30 | 85.51 | 0.29 | 0−1.69 | 0.34 | |
Sahiwal | 60 | 11.77 | 0−31.66 | 7.21 | 6.57 | 0–15.13 | 3.68 | 4.30 | 0−12 | 2.69 | 18.08 | 0−49.42 | 12.84 | 0.29 | 0−1.08 | 0.26 | |
Sargodha | 250 | 9.67 | 0−26.68 | 6.84 | 5.32 | 0−14.67 | 3.30 | 3.75 | 0−14 | 2.87 | 19.41 | 0−244.63 | 35.30 | 0.21 | 0−2.61 | 0.33 | |
Shahpur | 75 | 10.16 | 0−23.82 | 6.30 | 6.28 | 0−12.15 | 3.53 | 4.36 | 0−13 | 2.91 | 35.81 | 0−331.12 | 63.60 | 0.36 | 0−3.27 | 0.53 | |
Silanwali | 75 | 10.15 | 0−23.24 | 7.19 | 6.03 | 0−14.11 | 3.85 | 4.02 | 0−10 | 2.59 | 28.13 | 0−271.82 | 53.44 | 0.25 | 0−1.41 | 0.27 |
Tehsil | |||
---|---|---|---|
Bhawana | Chiniot | Lalian | |
No. of Plots Measured (0.405 ha) | 80 | 90 | 80 |
Total Tree Carbon Stock (Mg ha−1) | 0.58 (0.007–2.68) | 0.77 (0.001–5.11) | 1.41 (0.01–8.79) |
Total Tehsil Area (ha) | 64,151 | 78,593 | 112,072 |
Total Estimated Tehsil Tree Carbon Stock (Mg) | 37,802 | 60,567 | 15,886 |
Total Estimated Tehsil Soil Carbon Stock (Mg) | 1,077,813 | 1,352,179 | 1,799,920 |
Total Estimated Tehsil Tree and Soil Carbon Stock (Mg) | 1,115,615 | 1,412,746 | 1,815,806 |
Tehsil | |||||
---|---|---|---|---|---|
Faisalabad | Jaranwala | Jhumra | Samundri | Tandlianwala | |
No. of Plots Measured (0.405 ha) | 60 | 250 | 70 | 250 | 170 |
Total Tree Carbon Stock (Mg ha−1) | 0.39 (0.01–1.92) | 0.98 (0.0003–6.79) | 0.80 (0.002–3.76) | 0.75 (0.02–4.05) | 0.84 (0.005–5.75) |
Total Tehsil Area (ha) | 118,600 | 177,005 | 43,720 | 90,386 | 128,463 |
Total Estimated Tehsil Tree Carbon Stock (Mg) | 46,254 | 173,465 | 34,976 | 67,790 | 107,909 |
Total Estimated Tehsil Soil Carbon Stock (Mg) | 1,900,175 | 2,842,199 | 738,350 | 1,361,699 | 2,123,865 |
Total Estimated Tehsil Tree and Soil Carbon Stock (Mg) | 1,946,429 | 3,015,664 | 773,326 | 1,429,489 | 2,231,774 |
Tehsil | ||||||
---|---|---|---|---|---|---|
Bhalwal | Kot Momin | Sahiwal | Sargodha | Shahpur | Silanwali | |
No. of Plots Measured (0.405 ha) | 140 | 100 | 60 | 250 | 75 | 75 |
Total Tree Carbon Stock (Mg ha−1) | 0.90 (0.001–4.26) | 0.71 (0.007–3.02) | 0.59 (0.01–2.72) | 0.58 (0.005–4.11) | 0.78 (0.0003–5.18) | 0.57 (0.03–2.14) |
Total Tehsil Area (ha) | 109,500 | 102,000 | 82,900 | 153,600 | 76,900 | 60,700 |
Total Estimated Tehsil Tree Carbon Stock (Mg) | 98,954 | 72,469 | 49,277 | 89,562 | 60,464 | 35,096 |
Total Estimated Tehsil Soil Carbon Stock (Mg) | 1,830,933 | 1,663,054 | 1,328,712 | 2,465,308 | 1,280,071 | 978,730 |
Total Estimated Tehsil Tree and Soil Carbon Stock (Mg) | 1,929,887 | 1,735,523 | 1,377,989 | 2,554,869 | 1,340,535 | 1,013,826 |
Tehsil | Total | |||
---|---|---|---|---|
Bhawana | Chiniot | Lalian | ||
Tree Density (trees ha−1) | 22 ± 17 | 27 ± 22 | 41 ± 26 | - |
Potential Tree Density (trees ha−1) | 63 ± 39 | 71 ± 43 | 83 ± 40 | - |
Potential Mean Tree C Stock (Mg ha−1) | 1.69 ± 1.35 | 2.01 ± 1.54 | 2.84 ± 2.11 | - |
Tehsil Area (ha) | 64,151 | 78,593 | 112,073 | 254,817 |
Total Potential Tehsil C Stock (Mg) | 108,573 ± 86,891 | 157,618 ± 120,667 | 318,811 ± 236,096 | 585,003 ± 279,019 |
Tehsil | Total | |||||
---|---|---|---|---|---|---|
Faisalabad | Jaranwala | Jhumra | Samundri | Tandlianwala | ||
Tree Density (trees ha−1) | 18 ± 15 | 28 ± 22 | 27 ± 17 | 20 ± 13 | 25 ± 8 | - |
Potential Tree Density (trees ha−1) | 42 ± 23 | 69 ± 42 | 53 ± 33 | 44 ± 22 | 65 ± 22 | - |
Potential Mean Tree C Stock (Mg ha−1) | 0.91 ± 0.53 | 2.39 ± 1.87 | 1.56 ± 1.53 | 2.15 ± 1.33 | 2.17 ± 1.46 | - |
Tehsil Area (ha) | 118,600 | 177,005 | 43,720 | 90,386 | 128,463 | 558,174 |
Total Potential Tehsil C Stock (Mg) | 108,166 ± 67,745 | 424,285 ± 330,915 | 68,202 ± 66,958 | 194,729 ± 119,845 | 278,668 ± 187,810 | 1,074,050 ± 410,138 |
Tehsil | Total | ||||||
---|---|---|---|---|---|---|---|
Bhalwal | Kot Momin | Sahiwal | Sargodha | Shahpur | Silanwali | ||
Tree Density (trees ha−1) | 39 ± 31 | 51 ± 38 | 18 ± 17 | 19 ± 14 | 35 ± 30 | 28 ± 24 | - |
Potential Tree Density (trees ha−1) | 71 ± 42 | 65 ± 43 | 45 ± 21 | 56 ± 30 | 76 ± 36 | 53 ± 31 | - |
Potential Mean Tree C Stock (Mg ha−1) | 1.60 ± 1.23 | 0.89 ± 0.80 | 1.47 ± 0.73 | 1.67 ± 1.26 | 1.66 ± 0.94 | 1.07 ± 0.72 | - |
Tehsil Area (ha) | 109,500 | 102,000 | 82,900 | 153,600 | 76,900 | 60,700 | 585,600 |
Total Potential Tehsil C Stock (Mg) | 175,497 ± 134,918 | 91,457 ± 81,896 | 121,736 ± 63,371 | 257,028 ± 193,390 | 127,301 ± 72,192 | 65,188 ± 43,527 | 838,208 ± 270,983 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yasin, G.; Nawaz, M.F.; Martin, T.A.; Niazi, N.K.; Gul, S.; Yousaf, M.T.B. Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan. Forests 2019, 10, 640. https://doi.org/10.3390/f10080640
Yasin G, Nawaz MF, Martin TA, Niazi NK, Gul S, Yousaf MTB. Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan. Forests. 2019; 10(8):640. https://doi.org/10.3390/f10080640
Chicago/Turabian StyleYasin, Ghulam, Muhammad Farrakh Nawaz, Timothy Ancel Martin, Nabeel Khan Niazi, Sadaf Gul, and Muhammad Talha Bin Yousaf. 2019. "Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan" Forests 10, no. 8: 640. https://doi.org/10.3390/f10080640
APA StyleYasin, G., Nawaz, M. F., Martin, T. A., Niazi, N. K., Gul, S., & Yousaf, M. T. B. (2019). Evaluation of Agroforestry Carbon Storage Status and Potential in Irrigated Plains of Pakistan. Forests, 10(8), 640. https://doi.org/10.3390/f10080640