Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber
Abstract
:1. Introduction
2. Preparation of PCF Nanocellulose
2.1. Experimental Materials
2.2. Experimental Methods
2.2.1. Chemical Purification of PCF
2.2.2. Preparation of PCF Nanocellulose
2.2.3. Preparation of PCF Nanocellulose Aerogel
2.2.4. Characterization of Nanometer Cellulose from PCF
Fourier Transform Infrared Spectrometer (FTIR) Test
Micromorphological Test
2.2.5. Characterization of PCF Nanocellulose Aerogels
Density and Porosity
Microstructure of Aerogels
Thermal Stability of Aerogels
Mechanical Properties
3. Results and Discussion
3.1. Effect of Sonication Time and Chloroform Treatment Time on Dewaxing Effect
3.2. Effects of Different Treatment Conditions on the Size and Morphology of Nanocellulose
3.3. Differences in Density and Porosity of Aerogels Prepared by Different Sols
3.4. Structural Differences of Aerogels Prepared by Different Sols
3.5. Differences in Thermal Stability of Aerogels Prepared by Different Sols
3.6. Differences in Mechanical Properties of Aerogels Prepared by Different Sols
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Yin, C.Q.; Zhang, H.T. Morphological structure and application of poplar catkin fiber. Shandong Text. Econ. 2013, 37, 37–38. [Google Scholar]
- Yin, J.; Lv, Y.; Zhang, J.; Su, Y.; Cai, Y. Property and collection application of poplar down fiber. Cotton Text. Technol. 2011, 39, 65–68. [Google Scholar]
- Siró, I.; Plackett, D. Microfibrillated cellulose and new nanocomposite materials: A review. Cellulose 2010, 17, 459–494. [Google Scholar] [CrossRef]
- Nogi, M. Optically Transparent Nanofiber Paper. Adv. Mater. 2010, 21, 1595–1598. [Google Scholar] [CrossRef]
- Huang, C.; Chu, Q.; Xie, Y.; Jin, Y.; Min, D.; Yong, Q. Effect of kraft pulping pretreatment on the chemical composition, enzymatic digestibility, and sugar release of moso bamboo residues. Bioresources 2015, 10, 240–255. [Google Scholar] [CrossRef]
- Huang, C.; Lin, W.; Lai, C.; Li, X.; Jin, Y.; Yong, Q. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. Bioresour. Technol. 2019, 285, 121355. [Google Scholar] [CrossRef]
- Huang, C.; Sun, R.; Chang, H.; Yong, Q.; Jameel, H.; Phillips, R. Production of dissolving grade pulp from tobacco stalk by SO2-ethanol-water (SEW), alkaline extraction and bleaching processes. Bioresources 2019, 14, 5544–5558. [Google Scholar] [CrossRef]
- Teixeira, E.D.M.; Corrêa, A.C.; Manzoli, A.; Leite, F.L.; de Oliverira, C.R.; Mattoso, L.H.C. Cellulose nanofibers from white and naturally colored cotton fibers. Cellulose 2010, 17, 595–606. [Google Scholar] [CrossRef]
- Morais, J.P.S.; Rosa, M.D.; de Souza, M.D.M.; Nascimento, L.D.; do Nascimento, D.M.; Cassales, A.R. Extraction and characterization of nanocellulose structures from raw cotton linter. Carbohydr. Polym. 2013, 91, 229–235. [Google Scholar] [CrossRef] [Green Version]
- Satyamurthy, P.; Jain, P.; Balasubramanya, R.H.; Vigneshwaran, N. Preparation and characterization of cellulose nanowhiskers from cotton fibres by controlled microbial hydrolysis. Carbohydr. Polym. 2011, 83, 122–129. [Google Scholar] [CrossRef]
- Morán, J.I.; Alvarez, V.A.; Cyras, V.P.; Vazquez, A. Extraction of cellulose and preparation of nanocellulose from sisal fibers. Cellulose 2008, 15, 149–159. [Google Scholar] [CrossRef]
- Chen, S.X.; Yong, Q.; Xu, Y.; Zhu, J.J.; Yu, S.Y. Effects of dilute acid pretreatment on fibre components and structure of corn stover. J. Chin. Cereals Oils Assoc. 2011, 26, 13–19. [Google Scholar]
- Huntley, C.J.; Crews, K.D.; Curry, M.L. Chemical functionalization and characterization of cellulose extracted from wheat straw using acid hydrolysis methodologies. Int. J. Polym. Sci. 2015, 2015, 1–9. [Google Scholar] [CrossRef]
- Liu, X.; Dong, H.; Hou, H. Preparation and characterization of cellulose nanocrystals from peanut Shells. Mod. Food Sci. Technol. 2015, 31, 172–176. [Google Scholar] [CrossRef]
- Neto, W.P.F.; Silvério, H.A.; Dantas, N.O.; Pasquini, D. Extraction and characterization of cellulose nanocrystals from agro-industrial residue-Soy hulls. Ind. Crop. Prod. 2013, 42, 480–488. [Google Scholar] [CrossRef]
- Zuluaga, R.; Putaux, J.L.; Cruz, J.; Velez, J.; Mondragon, I.; Ganan, P. Cellulose microfibrils from banana rachis: Effect of alkaline treatments on structural and morphological features. Carbohydr. Polym. 2009, 76, 51–59. [Google Scholar] [CrossRef]
- Fahma, F.; Iwamoto, S.; Hori, N.; Iwata, T.; Takemura, A. Effect of pre-acid-hydrolysis treatment on morphology and properties of cellulose nanowhiskers from coconut husk. Cellulose 2011, 18, 443–450. [Google Scholar] [CrossRef]
- Habibi, Y.; Mahrouz, M.; Vignon, M.R. Microfibrillated cellulose from the peel of prickly pear fruits. Food Chem. 2009, 115, 423–429. [Google Scholar] [CrossRef]
- Leitner, J.; Hinterstoisser, B.; Wastyn, M.; Keckes, J.; Gindl, W. Sugar beet cellulose nanofibril-reinforced composites. Cellulose 2007, 14, 419–425. [Google Scholar] [CrossRef]
- Cai, J.; Kimura, S.; Wada, M.; Kuga, S.; Zhang, L. Cellulose aerogels from aqueous alkali hydroxide-urea solution. ChemSusChem 2008, 1, 149–154. [Google Scholar] [CrossRef]
- Sehaqui, H.; Salajková, M.; Zhou, Q.; Berglund, L.A. Mechanical performance tailoring of tough ultra-high porosity foams prepared from cellulose I nanofiber suspensions. Soft Matter. 2010, 6, 1824–1832. [Google Scholar] [CrossRef]
- Han, S.J. The Formation Mechanism and Performanse Research of Bamboo Cellulose Aerogels; Zhejiang Agriculture & Forestry University: Linan, China, 2016. [Google Scholar]
- Liu, Y.Z. The Synthesis of Function Materials Based on Nanocellulose and Their Applications; Donghua University: Shanghai, China, 2017. [Google Scholar]
- Xiao, S.L.; Gao, R.A.; Lu, Y.; Li, J.; Sun, Q.F. Fabrication and characterization of nanofibrillated cellulose and its aerogels from natural pine needles. Carbohydr. Polym. 2015, 119, 202–209. [Google Scholar] [CrossRef] [PubMed]
- Jia, L.; Liu, S.; Zhu, L.; Hu, J.; Wang, X. The carbon storage and density of poplar in China. J. Nanjing For. Univ. (Nat. Sci. Ed.) 2013, 37, 1–7. [Google Scholar]
- Eichhorn, S.J.; Sampson, W.W. Relationships between specific surface area and pore size in electrospun polymer fibre networks. J. R. Soc. Interface 2010, 7, 641–649. [Google Scholar] [CrossRef] [PubMed]
- Schwanninger, M.; Rodrigues, J.C.; Pereira, H.; Hinterstoisser, B. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vib. Spectrosc. 2004, 36, 23–40. [Google Scholar] [CrossRef]
- Zhang, X.; Li, Z.; Yu, Y.; Wang, H. Characterizations of poplar catkin fibers and their potential for enzymatic hydrolysis. J. Wood Sci. 2018, 64, 458–462. [Google Scholar] [CrossRef]
- Åkerholm, M.; Salmén, L. The oriented structure of lignin and its viscoelastic properties studied by static and dynamic FT-IR spectroscopy. Holzforschung 2003, 57, 459–465. [Google Scholar] [CrossRef]
- Iwamoto, S.; Nakagaito, A.N.; Yano, H. Nano-fibrillation of pulp fibers for the processing of transparent nanocomposites. Appl. Phys. A 2007, 89, 461–466. [Google Scholar] [CrossRef]
- Svagan, A.J.; Samir, M.A.; Berglund, L.A. Biomimetic foams of high mechanical performance based on nanostructured cell walls reinforced by native cellulose nanofibrils. Adv. Mater. 2008, 20, 1263–1269. [Google Scholar] [CrossRef]
- Li, J.; Lu, Y.; Yang, D.J.; Sun, Q.F.; Liu, Y.X.; Zhao, H.J. Lignocellulose aerogel from wood-ionic liquid solution (1-allyl-3-methylimidazolium chloride) under freezing and thawing conditions. Biomacromolecules 2011, 12, 1860–1867. [Google Scholar] [CrossRef]
- Wu, Y.; Wu, X.; Yang, F.; Xu, L.; Sun, M. Study on the preparation and adsorption property of polyvinyl alcohol/cellulose nanocrystal/graphene composite aerogels (PCGAs). J. Renew. Mater. 2019. accepted. [Google Scholar]
- Sun, S.; Zhao, Z. Influence of acid on the curing process of tannin-sucrose adhesives. Bioresources 2018, 13, 7683–7697. [Google Scholar] [CrossRef]
- Zheng, Q.; Cai, Z.; Gong, S. Green synthesis of polyvinyl alcohol (PVA)–cellulose nanofibril (CNF) hybrid aerogels and their use as superabsorbents. J. Mater. Chem. A 2014, 2, 3110–3118. [Google Scholar] [CrossRef]
Sample | Density (g/cm3) | Porosity (%) |
---|---|---|
2% NaOH/ultrasound 5 min | 0.0034 | 99.77 |
5% NaOH/ultrasound 5 min | 0.0046 | 99.70 |
2% NaOH/ultrasound 10 min | 0.0036 | 99.76 |
5% NaOH/ultrasound 10 min | 0.0044 | 99.71 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Sun, M.; Wu, X.; Shi, T.; Chen, H.; Wang, H. Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber. Forests 2019, 10, 749. https://doi.org/10.3390/f10090749
Wu Y, Sun M, Wu X, Shi T, Chen H, Wang H. Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber. Forests. 2019; 10(9):749. https://doi.org/10.3390/f10090749
Chicago/Turabian StyleWu, Yan, Meng Sun, Xinyu Wu, Tianlin Shi, Hong Chen, and Hankun Wang. 2019. "Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber" Forests 10, no. 9: 749. https://doi.org/10.3390/f10090749
APA StyleWu, Y., Sun, M., Wu, X., Shi, T., Chen, H., & Wang, H. (2019). Preparation of Nanocellulose Aerogel from the Poplar (Populus tomentosa) Catkin Fiber. Forests, 10(9), 749. https://doi.org/10.3390/f10090749