Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data
2.2. Models
2.3. Evaluation of Predictive Performance of Models
3. Results
3.1. Model Fitting
3.2. Comparison of Model Performance
4. Discussion
4.1. Interpretation of Model Fit and Variables
4.2. Comparison of Model Performance
4.3. Height Increment vs. Height Growth Models
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Weiskittel, A.R.; Kershaw, J.A.; Vanclay, J.K.; Hann, D.W. Forest Growth and Yield Modeling; Wiley-Blackwell: Chichester, UK, 2011. [Google Scholar]
- Burkhart, H.E.; Tomé, M. Modeling Forest Stand Development. In Modeling Forest Trees and Stands; Springer: Dordrecht, The Netherlands, 2012; pp. 233–244. ISBN 978-90-481-3170-9. [Google Scholar]
- Köhl, M.; Scott, C.T.; Zingg, A. Evaluation of permanent sample surveys for growth and yield studies: A Swiss example. For. Ecol. Manag. 1995, 71, 187–194. [Google Scholar] [CrossRef]
- Walters, D.K.; Ek, A.R. Whole stand yield and density equations for fourteen forest types in Minnesota. North. J. Appl. For. 1993, 10, 75–85. [Google Scholar] [CrossRef]
- Lacerte, V.; Larocque, G.R.; Woods, M.; Parton, W.J.; Penner, M. Calibration of the forest vegetation simulator (FVS) model for the main forest species of Ontario, Canada. Ecol. Model. 2006, 199, 336–349. [Google Scholar] [CrossRef]
- Westfall, J.A. Predicting past and future diameter growth for trees in the northeastern United States. Can. J. For. Res. 2006, 36, 1551–1562. [Google Scholar] [CrossRef]
- Russell, M.B.; Weiskittel, A.R.; Kershaw, J.A., Jr. Benchmarking and calibration of Forest Vegetation Simulator individual tree attribute predictions across the northeastern United States. North. J. Appl. For. 2013, 30, 75–84. [Google Scholar] [CrossRef]
- Zianis, D.; Muukkonen, P.; Mäkipää, R.; Mencuccini, M. Biomass and Stem Volume Equations for Tree Species in Europe; Finnish Society of Forest Science, Finnish Forest Research Institute: Helsinki, Finland, 2005; ISBN 9514019830. [Google Scholar]
- Stage, A. Prognosis Model for Stand Development; U.S. Dept. of Agriculture, Forest Service, Intermountain Forest and Range Experiment Station: Ogden, UT, USA, 1973. [Google Scholar]
- Pretzsch, H.; Biber, P.; Ďurský, J. The single tree-based stand simulator SILVA: Construction, application and evaluation. For. Ecol. Manag. 2002, 162, 3–21. [Google Scholar] [CrossRef]
- Dixon, G.E. Essential FVS: A User’s Guide to the Forest Vegetation Simulator; Internal Rep; US Department of Agriculture, Forest Service, Forest Management Service Center: Fort Collins, CO, USA, 2002; p. 226. [Google Scholar]
- Hann, D.W.; Hanus, M.L. Enhanced Height-Growth-Rate Equations for Undamaged and Damaged Trees in Southwest Oregon; Forestry Communications Group, Oregon State University: Corvallis, OR, USA, 2002. [Google Scholar]
- Crookston, N.L.; Dixon, G.E. The forest vegetation simulator: A review of its structure, content, and applications. Comput. Electron. Agric. 2005, 49, 60–80. [Google Scholar] [CrossRef]
- Crecente-Campo, F.; Soares, P.; Tomé, M.; Diéguez-Aranda, U. Modelling annual individual-tree growth and mortality of Scots pine with data obtained at irregular measurement intervals and containing missing observations. For. Ecol. Manag. 2010, 260, 1965–1974. [Google Scholar] [CrossRef] [Green Version]
- Boisvenue, C.; Temesgen, H.; Marshall, P. Selecting a small tree height growth model for mixed-species stands in the southern interior of British Columbia, Canada. For. Ecol. Manag. 2004, 202, 301–312. [Google Scholar] [CrossRef]
- Fang, Z.; Bailey, R.L. Nonlinear mixed effects modeling for slash pine dominant height growth following intensive silvicultural treatments. For. Sci. 2001, 47, 287–300. [Google Scholar]
- Calegario, N.; Daniels, R.F.; Maestri, R.; Neiva, R. Modeling dominant height growth based on nonlinear mixed-effects model: A clonal Eucalyptus plantation case study. For. Ecol. Manag. 2005, 204, 11–21. [Google Scholar] [CrossRef]
- Temesgen, H.; Monleon, V.J.; Hann, D.W. Analysis and comparison of nonlinear tree height prediction strategies for Douglas-fir forests. Can. J. For. Res. 2008, 38, 553–565. [Google Scholar] [CrossRef] [Green Version]
- Wang, Y.; LeMay, V.M.; Baker, T.G. Modelling and prediction of dominant height and site index of Eucalyptus globulus plantations using a nonlinear mixed-effects model approach. Can. J. For. Res. 2007, 37, 1390–1403. [Google Scholar] [CrossRef]
- Bechtold, W.A.; Patterson, P.L. The Enhanced Forest Inventory and Analysis Program-National Sampling Design and Estimation Procedures; Gen. Tech. Rep. SRS-80; U.S. Department of Agriculture, Forest Service, Southern Research Station: Asheville, NC, USA, 2005. [Google Scholar]
- Burrill, E.; Wilson, A.; Turner, J.; Pugh, S.; Menlove, J.; Christiansen, G.; Conkling, B.; David, W. The Forest Inventory and Analysis Database: Database Description and User Guide Version 8.0 for Phase 2; US Department of Agriculture Forest Service: Washington, DC, USA, 2018. [Google Scholar]
- Barrett, T.M. Optimizing efficiency of height modeling for extensive forest inventories. Can. J. For. Res. 2006, 36, 2259–2269. [Google Scholar] [CrossRef]
- McRoberts, R.E.; Woodall, C.W.; Lessard, V.C.; Holdaway, M.R. Diameter growth models for inventory applications. In Proceedings of the Second Forest Vegetation Simulator Conference, Fort Collins, CO, USA, 12–14 February 2002; pp. 158–163. [Google Scholar]
- Weiskittel, A.R.; Garber, S.M.; Johnson, G.P.; Maguire, D.A.; Monserud, R.A. Annualized diameter and height growth equations for Pacific Northwest plantation-grown Douglas-fir, western hemlock, and red alder. For. Ecol. Manag. 2007, 250, 266–278. [Google Scholar] [CrossRef]
- Trincado, G.; VanderSchaaf, C.L.; Burkhart, H.E. Regional mixed-effects height-diameter models for loblolly pine (Pinus taeda L.) plantations. Eur. J. For. Res. 2007, 126, 253–262. [Google Scholar] [CrossRef]
- Gonda, H.E. Height-diameter and volume equations, growth intercept and needle length site quality indicators, and yield equations for young ponderosa pine plantations in Neuquén, Patagonia, Argentina. Ph.D. Thesis, Oregon State University, Corvallis, OR, USA, 1998. [Google Scholar]
- Hasenauer, H.; Monserud, R.A. Biased predictions for tree height increment models developed from smoothed ‘data’. Ecol. Model. 1997, 98, 13–22. [Google Scholar] [CrossRef]
- Kangas, A.S. Methods for assessing uncertainty of growth and yield predictions. Can. J. For. Res. 1999, 29, 1357–1364. [Google Scholar] [CrossRef]
- Leak, W.B. Relationships of Tree Age to Diameter in Old-Growth Northern Hardwoods and Spruce-Fir; US Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Fort Collins, CO, USA, 1985. [Google Scholar]
- António, N.; Tomé, M.; Tomé, J.; Soares, P.; Fontes, L. Effect of tree, stand, and site variables on the allometry of Eucalyptus globulus tree biomass. Can. J. For. Res. 2007, 37, 895–906. [Google Scholar] [CrossRef]
- Shaiek, O.; Loustau, D.; Trichet, P.; Meredieu, C.; Bachtobji, B.; Garchi, S.; Aouni, M.H.E.L. Generalized biomass equations for the main aboveground biomass components of maritime pine across contrasting environments. Ann. For. Sci. 2011, 68, 443–452. [Google Scholar] [CrossRef] [Green Version]
- Garcia, O. A stochastic differential equation model for the height growth of forest stands. Biometrics 1983, 39, 1059–1072. [Google Scholar] [CrossRef]
- DeBell, D.S.; Clendenen, G.W.; Harrington, C.A.; Zasada, J.C. Tree growth and stand development in short-rotation Populus plantings: 7-year results for two clones at three spacings. Biomass Bioenergy 1996, 11, 253–269. [Google Scholar] [CrossRef]
- Spiecker, H. Overview of Recent Growth Trends in European Forests. In Forest Growth Responses to the Pollution Climate of the 21st Century; Sheppard, L.J., Cape, J.N., Eds.; Springer: Dordrecht, The Netherlands, 1999; pp. 33–46. ISBN 978-94-017-1578-2. [Google Scholar]
- Huang, S.; Titus, S.J. An individual tree height increment model for mixed white spruce–aspen stands in Alberta, Canada. For. Ecol. Manag. 1999, 123, 41–53. [Google Scholar] [CrossRef]
- Woudenberg, S.W.; Conkling, B.L.; O’Connell, B.M.; LaPoint, E.B.; Turner, J.A.; Waddell, K.L. The Forest Inventory and Analysis Database: Database Description and Users Manual Version 4.0 for Phase 2; Gen. Tech. Rep. RMRS-GTR-245; U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station: Fort Collins, CO, USA, 2010. [Google Scholar]
- Salas, C.; Stage, A.R.; Robinson, A.P. Modeling Effects of Overstory Density and Competing Vegetation on Tree Height Growth. Soc. Am. For. 2008, 54, 107–122. [Google Scholar]
- Vospernik, S.; Monserud, R.A.; Sterba, H. Do individual-tree growth models correctly represent height:diameter ratios of Norway spruce and Scots pine? For. Ecol. Manag. 2010, 260, 1735–1753. [Google Scholar] [CrossRef] [Green Version]
- Nunifu, T.K. Compatible diameter and height increment models for lodgepole pine, trembling aspen, and white spruce. Can. J. For. Res. 2009, 39, 180–192. [Google Scholar] [CrossRef]
- Richards, F.J. A flexible growth function for empirical use. J. Exp. Bot. 1959, 10, 290–301. [Google Scholar] [CrossRef]
- Atkinson, A.C. Plots, Transformations and Regression; An Introduction to Graphical Methods of Diagnostic Regression Analysis; Clarendon Press: Oxford, UK, 1985; ISBN 519.536 A875. [Google Scholar]
- Hyndman, R.J.; Grunwald, G.K. Applications: Generalized Additive Modelling of Mixed Distribution Markov Models with Application to Melbourne’s Rainfall. Aust. N. Z. J. Stat. 2000, 42, 145–158. [Google Scholar] [CrossRef]
- Hosmer, D.W., Jr.; Lemeshow, S.; Sturdivant, R.X. Applied Logistic Regression; John Wiley & Sons: Hoboken, NJ, USA, 2013. [Google Scholar]
- Davidian, M. Nonlinear Models for Repeated Measurement Data; Routledge: Abingdon-on-Thames, UK, 2017; ISBN 0203745507. [Google Scholar]
- Zeger, S.; Liang, L. Longitudinal data analysis using generalized linear models. Biometrika 1986, 73, 13–22. [Google Scholar]
- McCullagh, P. Generalized Linear Models; CRC Press: Boca Raton, FL, USA, 2019. [Google Scholar]
- Bolker, B.M.; Brooks, M.E.; Clark, C.J.; Geange, S.W.; Poulsen, J.R.; Stevens, M.H.H.; White, J.-S.S. Generalized linear mixed models: A practical guide for ecology and evolution. Trends Ecol. Evol. 2009, 24, 127–135. [Google Scholar] [CrossRef]
- Stone, M. Cross-Validatory Choice and Assessment of Statistical Predictions. J. R. Stat. Soc. Ser. B 1974, 36, 111–133. [Google Scholar] [CrossRef]
- Duan, N. Smearing estimate: A nonparametric retransformation method. J. Am. Stat. Assoc. 1983, 78, 605–610. [Google Scholar] [CrossRef]
- Thomas, S.C. Asymptotic height as a predictor of growth and allometric characteristics in Malaysian rain forest trees. Am. J. Bot. 1996, 83, 556–566. [Google Scholar] [CrossRef]
- LeBlanc, D.C. Relationships between breast-height and whole-stem growth indices for red spruce on Whiteface Mountain, New York. Can. J. For. Res. 1990, 20, 1399–1407. [Google Scholar] [CrossRef]
- Kaufmann, M.R.; Ryan, M.G. Physiographic, stand, and environmental effects on individual tree growth and growth efficiency in subalpine forests. Tree Physiol. 1986, 2, 47–59. [Google Scholar] [CrossRef]
- Wang, J.R.; Kimmins, J.P. Height growth and competitive relationship between paper birch and Douglas-fir in coast and interior of British Columbia. For. Ecol. Manag. 2002, 165, 285–293. [Google Scholar] [CrossRef]
- Chen, H.; Klinka, K.; Kabzems, R. Height growth and site index models for trembling aspen (Populus tremuloides Michx.) in northern British Columbia. For. Ecol. Manag. 1998, 102, 157–165. [Google Scholar] [CrossRef]
- Uzoh, F.C.C.; Oliver, W.W. Individual tree height increment model for managed even-aged stands of ponderosa pine throughout the western United States using linear mixed effects models. For. Ecol. Manag. 2006, 221, 147–154. [Google Scholar] [CrossRef]
- Williams, M.S.; Bechtold, W.A.; LaBau, V.J. Five instruments for measuring tree height: An evaluation. South. J. Appl. For. 1994, 18, 76–82. [Google Scholar] [CrossRef] [Green Version]
- Larjavaara, M.; Muller-Landau, H.C. Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods Ecol. Evol. 2013, 4, 793–801. [Google Scholar] [CrossRef]
- Ryan, M.G.; Yoder, B.J. Hydraulic Limits to Tree Height and Tree Growth. Bioscience 1997, 47, 235–242. [Google Scholar] [CrossRef] [Green Version]
- Mullahy, J. Specification and testing of some modified count data models. J. Econom. 1986, 33, 341–365. [Google Scholar] [CrossRef]
- Zorn, C.J.W. An analytic and empirical examination of zero-inflated and hurdle Poisson specifications. Sociol. Methods Res. 1998, 26, 368–400. [Google Scholar] [CrossRef]
- Hanus, M.L.; Hann, D.W.; Marshall, D.D. Predicting Height to Crown Base for Undamaged and Damaged Trees in Southwest Oregon; Oregon State University, Forest Research Laboratory: Corvallis, OR, USA, 2000. [Google Scholar]
- Changyong, F.; Hongyue, W.; Naiji, L.U.; Tian, C.; Hua, H.E.; Ying, L.U. Log-transformation and its implications for data analysis. Shanghai Arch. Psychiatry 2014, 26, 105. [Google Scholar]
- Agarwal, D.K.; Gelfand, A.E.; Citron-Pousty, S. Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 2002, 9, 341–355. [Google Scholar] [CrossRef]
- Kuhn, M.; Johnson, K. Applied Predictive Modeling; Springer: Berlin/Heidelberg, Germany, 2013; Volume 26. [Google Scholar]
- Hall, D.B. Zero-inflated Poisson and binomial regression with random effects: A case study. Biometrics 2000, 56, 1030–1039. [Google Scholar] [CrossRef]
- Kempes, C.P.; West, G.B.; Crowell, K.; Girvan, M. Predicting Maximum Tree Heights and Other Traits from Allometric Scaling and Resource Limitations. PLoS ONE 2011, 6, e20551. [Google Scholar] [CrossRef] [Green Version]
PP (n = 6977) | RA (n = 2172) | |||||
---|---|---|---|---|---|---|
Minimum | Mean (SD) | Maximum | Minimum | Mean (SD) | Maximum | |
Tree-level | ||||||
∆HT (m) | −6.71 | 1.81 (1.60) | 15.24 | −7.62 | 3.33 (3.36) | 17.68 |
DBH (cm) | ||||||
Time 1 Time 2 | 2.54 2.54 | 33.02 (22.05) 35.91 (21.90) | 149.61 147.83 | 2.54 3.56 | 22.97 (9.74) 26.76 (9.64) | 79.76 82.55 |
Height (m) | ||||||
Time 1 Time 2 | 1.52 2.13 | 16.54 (9.46) 18.35 (9.16) | 56.69 57.91 | 3.56 3.66 | 18.33 (5.86) 21.67 (5.39) | 43.28 46.03 |
Compacted crown ratio (%) ¹ | 1.00 | 54.01 (18.38) | 99.00 | 5.00 | 37.14 (16.48) | 95.00 |
Crown class code | Factor with 2 levels (dominant/intermediate) | |||||
Number trees per class: 5889/1088 | Number trees per class: 1795/377 | |||||
Plot-Level | ||||||
Basal area (m2 ha−1) | 2.14 | 22.98 (10.82) | 63.50 | 4.12 | 34.65 (15.94) | 112.97 |
Elevation (m) | 1300 | 4386 (1108.33) | 6700 | 100 | 932.9 (691.55) | 3100 |
Slope (percent) | 0.00 | 18.63 (16.85) | 110.00 | 0.00 | 31.42 (25.42) | 100.00 |
Aspect (cosine value of degree) | −1.00 | 0.18 (0.76) | 1.00 | −1.00 | 0.23 (0.72) | 1.00 |
Site productivity 2 | Factor with 3 levels (0–3.5, 3.5–8.4, >8.4 m3 ha−1 year−1) | |||||
Number trees per class: 107/4223/2647 | Number trees per class: 1719/431/22 |
Model | Plot-Level Random Effect | Negative Height Increment Strategy | Predicted Height Increment | SASProcedure | References |
---|---|---|---|---|---|
(1) Baseline | No | Data used as is | Positive | GLM | [22] |
(2) Nonlinear exponential | Yes | Data used as is | Positive | NLMIXED | [44] |
(3) Log-transformed linear | Yes | Constant added | Positive/negative | GLM | [45] |
(4) Gamma | Yes | Constant added | Positive/negative | GLIMMIX | [46] |
(5) Quasi-Poisson | Yes | Replaced by zero | Positive | GLIMMIX | [47] |
(6) Zero-inflated Poisson | Yes | Replaced by zero | Positive | NLMIXED | [47] |
Model Coefficients | ||||||
---|---|---|---|---|---|---|
Nonlinear | Log-Trans-Formed Linear | Gamma | Quasi-Poisson | Zero-Inflated Poisson | ||
Fixed Effects | Zero Model | |||||
RA | ||||||
Intercept | 3.4546 | 3.9072 | 3.8864 | 3.0068 | 3.6571 | −4.5326 |
DBH (cm) | 0.0420 | 0.0140 | 0.0136 | 0.0451 | −0.0883 | |
Height (m) | −0.0238 | −0.0111 | −0.0101 | −0.0296 | −0.0154 | 0.0528 |
Crown class (dominant) | 0.1853 | 0.1726 | 0.5621 | |||
Site productivity (medium) | 0.1158 | 0.1175 | 0.3593 | |||
(high) | −0.0305 | −0.0267 | −0.1018 | |||
Basal area (m3) | −0.0028 | |||||
Slope (degrees) | −0.0030 | −0.0016 | −0.0016 | −0.0053 | 0.0079 | |
Variance of random plot effect | 62.2362 | 0.0240 | 0.0212 | 0.2975 | 0.1930 | |
PP | ||||||
Intercept | 2.1331 | 3.3161 | 3.3201 | 1.2939 | 1.4919 | −3.6185 |
DBH (cm) | 0.0098 ** | 0.0029 | 0.0029 | 0.0100 | 0.0336 ** | |
Height (m) | −0.0090 | −0.0032 | −0.0030 | −0.0110 | −0.0017 | 0.0217 |
Compacted crown ratio (percent) | 0.0085 | 0.0014 | 0.0014 | 0.0066 | 0.0084 | −0.0192 |
Crown class code (dominant) | 0.1153 | 0.1116 | 0.5409 | |||
Site productivity (medium) | 0.1382 | 0.1411 | 0.6489 | |||
(high) | 0.0831 | 0.0789 | 0.3518 | |||
Elevation (m) | −0.0001 | −0.00001 ** | −0.00001 ** | −0.00004 * | 0.0001 * | |
Variance of random plot effect | 17.4055 | 0.0084 | 0.0075 | 0.1948 | 0.1587 |
Mean Bias (m) | RMSE (std. dev) (m) | |||||||
---|---|---|---|---|---|---|---|---|
m = 1 | m = 2 | m = 3 | m = 4 | m = 1 | m = 2 | m = 3 | m = 4 | |
RA | ||||||||
Baseline | 1.41 | 1.42 | 1.43 | 1.44 | 3.31 (0.34) | 3.32 (0.40) | 3.33 (0.44) | 3.35 (0.52) |
Nonlinear | 0.07 | 0.04 | 0.03 | 0.03 | 2.86 (0.52) | 2.74 (0.50) | 2.68 (0.50) | 2.65 (0.49) |
Log-trans-formed linear | 0.00 | −0.01 | −0.01 | 0.00 | 3.43 (1.08) | 2.86 (0.64) | 2.70 (0.59) | 2.60 (0.52) |
Gamma | −0.13 | −0.16 | −0.17 | −0.18 | 2.72 (0.47) | 2.62 (0.46) | 2.56 (0.48) | 2.52 (0.48) |
Quasi-Poisson | 0.23 | 0.18 | 0.19 | 0.18 | 3.02 (1.04) | 2.74 (0.62) | 2.64 (0.55) | 2.57 (0.50) |
Zero-inflated Poisson | 0.13 | 0.12 | 0.11 | 0.10 | 2.90 (0.61) | 2.78 (0.58) | 2.72 (0.57) | 2.68 (0.55) |
PP | ||||||||
Baseline | 0.49 | 0.50 | 0.50 | 0.51 | 1.41 (0.13) | 1.41 (0.16) | 1.40 (0.19) | 1.39 (0.20) |
Nonlinear | 0.05 | 0.04 | 0.04 | 0.03 | 1.43 (0.17) | 1.39 (0.17) | 1.36 (0.18) | 1.34 (0.19) |
Log-trans-formed linear | −0.00 | −0.04 | −0.05 | 0.02 | 1.78 (0.45) | 1.52 (0.27) | 1.42 (0.20) | 1.38 (0.20) |
Gamma | 0.00 | 0.00 | 0.07 | 0.07 | 1.38 (0.14) | 1.34 (0.16) | 1.31 (0.17) | 1.29 (0.18) |
Quasi-Poisson | 0.08 | 0.08 | 0.08 | 0.07 | 1.45 (0.33) | 1.39 (0.24) | 1.35 (0.20) | 1.32 (0.19) |
Zero-inflated Poisson | 0.06 | 0.07 | 0.06 | 0.06 | 1.45 (0.25) | 1.40 (0.21) | 1.37 (0.19) | 1.35 (0.19) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Woo, H.; Eskelson, B.N.I.; Monleon, V.J. Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA. Forests 2020, 11, 2. https://doi.org/10.3390/f11010002
Woo H, Eskelson BNI, Monleon VJ. Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA. Forests. 2020; 11(1):2. https://doi.org/10.3390/f11010002
Chicago/Turabian StyleWoo, Hyeyoung, Bianca N. I. Eskelson, and Vicente J. Monleon. 2020. "Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA" Forests 11, no. 1: 2. https://doi.org/10.3390/f11010002
APA StyleWoo, H., Eskelson, B. N. I., & Monleon, V. J. (2020). Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA. Forests, 11(1), 2. https://doi.org/10.3390/f11010002