Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine
Abstract
:1. Introduction
2. Methods
2.1. Data
2.2. Volume Equations
- V = total volume (inside or outside bark, m3) of a tree;
- D = outside bark diameter at breast height (DBH; m);
- H = total tree height (m);
- ε is an error term;
- β and γ are fixed-effects parameters to be estimated.
3. Results and Discussion
4. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Burkhart, H.E.; Tome, M. Modeling Forest Trees and Stands; Springer: Dordrecht, NL, USA, 2012; 457p. [Google Scholar]
- Temesgen, H.; Affleck, D.; Poudel, K.; Gray, A.; Sessions, J. A review of the challenges and opportunities in estimating above ground forest biomass using tree-level models. Scand. J. For. Res. 2015, 30, 326–335. [Google Scholar] [CrossRef]
- Schlesinger, W.H. Biogeochemistry, an Analysis of Global Change; Academic Press: New York, NY, USA, 1991. [Google Scholar]
- Garber, S.M.; Maguire, D.A. Modeling stem taper of three central Oregon species using nonlinear mixed effects models and autoregressive error structures. For. Ecol. Manag. 2003, 179, 507–522. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J. Modeling stand density effects on taper for jack pine and black spruce plantations using dimensional analysis. For. Sci. 2009, 55, 268–282. [Google Scholar]
- Sharma, M. Incorporating stand density effects in modelling the taper of red pine plantations. Can. J. For. Res. 2020. [Google Scholar] [CrossRef]
- Bluhm, A.A.; Garber, S.M.; Hibbs, D.F. Taper Equation and Volume Tables for Plantation-Grown Red Alder; General Technical Report. PNW-GTR-735; U.S. Department of Agriculture, Forest Service, Pacific Northwest Research Station: Portland, OR, USA, 2007; 74p.
- Hilt, D.E.; Dale, M.E. Stem Form Changes in Upland Oaks after Thinning; Res. Pap. NE-433; U.S. Department of Agriculture, Forest Service, Northeastern Forest Experiment Station: Broomall, PA, USA, 1979; 7p.
- Larson, P.R. Stem form development of forest trees. For. Sci. Monogr. 1963, 5, 41. [Google Scholar] [CrossRef]
- Valenti, M.A.; Cao, Q.V. A comparison of the effects of one-step and twostep pruning on loblolly pine stem form. South. J. Appl. For. 1986, 10, 251–253. [Google Scholar] [CrossRef] [Green Version]
- Sharma, M. Inside and outside bark volume models for jack pine (Pinus banksiana) and black spruce (Picea mariana) plantations in Ontario, Canada. For. Chron. 2019, 95, 50–57. [Google Scholar] [CrossRef]
- Statutes of Ontario. Crown Forest Sustainability Act, revised. R.S.O. 1998. Chapter 25 and Ontario Regulation 167/95; Government (provincial) of Ontario: Toronto, ON, Canada, 1995.
- [OMNRF] Ontario Ministry of Natural Resources and Forestry. Sustainable Growth: Ontario’s Forest Sector Strategy 2020; Ontario Ministry of Natural Resources and Forestry: Sault Ste. Marie, ON, Canada, 2020.
- McLaughlin, J.A.; Hsiang, T.; Halicki Hayden, G.; Greifenhagen, S. Mortality in Southern Ontario Red Pine Plantations: Causes, Consequences, and Management Options; Forest Research Report No. 69; Ontario Ministry of Natural Resources, Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 2010.
- Jiang, L.; Brooks, J.R. Taper, volume, and weight equations for red pine in West Virginia. North. J. Appl. For. 2008, 25, 151–153. [Google Scholar] [CrossRef] [Green Version]
- Max, T.A.; Burkhart, H.E. Segmented polynomial regression applied to taper equations. For. Sci. 1976, 22, 283–289. [Google Scholar]
- Li, R.; Weiskittel, A.R.; Dick, A.R.; Kershaw, J.A.; Seymour, R.S. Regional stem taper equations for eleven conifer species in the Acadian Region of North America: Development and assessment. North. J. Appl. For. 2012, 29, 5–14. [Google Scholar] [CrossRef] [Green Version]
- Kozak, A. My last words on taper equations. For. Chron. 2004, 80, 507–514. [Google Scholar] [CrossRef] [Green Version]
- Hayden, J.; Kerley, D.; Carr, T.K.; Hallarn, J. Field Manual for Establishing and Measuring Permanent Sample Plots; Ontario Ministry of Natural Resources, Ontario Forest Research Institute: Sault Ste. Marie, ON, Canada, 1995. [Google Scholar]
- Subedi, N.; Sharma, M. Evaluating height–age determination methods for jack pine and black spruce plantations using stem analysis data. North. J. Appl. For. 2010, 27, 50–55. [Google Scholar] [CrossRef] [Green Version]
- Avery, T.E.; Burkhart, H.E. Forest Measurements; McGraw-Hill: New York, NY, USA, 2002; 456p. [Google Scholar]
- Sharma, M.; Oderwald, R.G. Dimensionally compatible volume and taper equations. Can. J. For. Res. 2001, 31, 797–803. [Google Scholar] [CrossRef]
- Sharma, M.; Oderwald, R.G.; Amateis, R.L. A consistent system of equations for tree and stand volume. For. Ecol. Manag. 2002, 165, 183–191. [Google Scholar] [CrossRef]
- Newnham, R.M. A modification to the combined-variable formulas for computing tree volumes. J. For. 1967, 65, 719–720. [Google Scholar]
- Gregoire, T.G. Generalized error structure for forestry yield models. For. Sci. 1987, 33, 423–444. [Google Scholar]
- Schielzeth, H.; Nakagawa, S. Nested by design: Model fitting and interpretation in a mixed model era. Methods Ecol. Evol. 2013, 4, 14–24. [Google Scholar] [CrossRef]
- Sharma, M.; Parton, J. Height-diameter equations for boreal tree species in Ontario using a mixed-effects modeling approach. For. Ecol. Manag. 2007, 249, 187–198. [Google Scholar] [CrossRef]
- Subedi, N.; Sharma, M. Individual-tree diameter growth equation for black spruce and jack pine plantations in northern Ontario. For. Ecol. Manag. 2011, 261, 2140–2148. [Google Scholar] [CrossRef]
- Diéguez-Aranda, U.; Burkhart, H.E.; Amateis, R.L. Dynamic site model for loblolly pine (Pinus taeda L.) plantations in the United States. For. Sci. 2006, 52, 262–272. [Google Scholar]
- Subedi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Glob. Chang. Biol. 2013, 19, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Vonesh, E.F.; Chinchilli, V.M. Linear and Nonlinear Models for the Analysis of Repeated Measurements; Marcel Dekker Inc.: New York, NY, USA, 1997; 560p. [Google Scholar]
- Pinheiro, J.C.; Bates, D.M. Mixed-Effects Models in S and S-PLUS; Springer: New York, NY, USA, 2000. [Google Scholar]
- SAS Institute; SAS Institute Inc.: Cary, NC, USA, 2004.
- Akaike, H. A Bayesian analysis of the minimum AIC procedure. Ann. Inst. Stat. Math. 1978, 30, 9–14. [Google Scholar] [CrossRef]
Variable | Frequency | Mean | St. Dev | Minimum | Maximum |
---|---|---|---|---|---|
BA (m2 ha−1) | 30 | 43.81 | 12.55 | 16.87 | 69.95 |
Trees ha−1 | 30 | 1070 | 559 | 150 | 2450 |
DBH (cm) | 150 | 25.95 | 7.73 | 10.70 | 48.20 |
Height (m) | 150 | 21.51 | 4.21 | 11.18 | 30.90 |
IB volume (m3) | 150 | 0.5930 | 0.4245 | 0.0515 | 1.9841 |
OB volume (m3) | 150 | 0.6828 | 0.4820 | 0.0588 | 2.2881 |
Volume | Equation (2) | Equation (3) | Equation (4) | |||
---|---|---|---|---|---|---|
R2 | MSE | R2 | MSE | R2 | MSE | |
Inside bark | 0.9867 | 0.00242 | 0.9814 | 0.00334 | 0.9868 | 0.00241 |
Outside bark | 0.9865 | 0.00245 | 0.9873 | 0.00296 | 0.9896 | 0.00246 |
Parameter | Inside Bark | Outside Bark |
---|---|---|
α | 0.004663 (0.0019) | 0.007818 (0.0040) |
β | 0.3467 (0.0040) | 0.3966 (0.0046) |
δ * | 5.1808 (0.3968) | 3.1145 (0.4059) |
Mean square error (MSE) | 1.0534 (0.6003) | 0.1099 (0.0655) |
var (b1) | 0.00024 (0.00009) | 0.00015 (0.00008) |
Akaike Information Criteria | −601.7 | −526.3 |
Attribute | Class | Number of Samples | Bias | Standard Error | Bias | Standard Error |
---|---|---|---|---|---|---|
Volume Equation | Taper Equation | |||||
Inside bark | ||||||
Diameter class (cm) | <10.0 | 8 | −0.00244 | 0.00573 | −0.00028 | 0.00777 |
10.1–15.0 | 30 | 0.00174 | 0.01193 | 0.00173 | 0.01588 | |
15.1–20.0 | 33 | 0.00115 | 0.01629 | 0.00072 | 0.02109 | |
20.1–25.0 | 36 | −0.00089 | 0.02729 | 0.00102 | 0.03913 | |
25.1–30.0 | 23 | −0.00080 | 0.06759 | 0.01153 | 0.08355 | |
>30.0 | 20 | 0.00594 | 0.08652 | −0.01696 | 0.08767 | |
Height class (m) | <10.0 | 10 | −0.00715 | 0.01203 | −0.00409 | 0.01183 |
10.1–15.0 | 35 | 0.00812 | 0.02211 | −0.00377 | 0.01974 | |
15.1–20.0 | 79 | −0.00348 | 0.04215 | 0.00013 | 0.05415 | |
>20.0 | 26 | −0.01030 | 0.08026 | 0.01316 | 0.07392 | |
Outside bark | ||||||
Diameter class (cm) | <10.0 | 8 | 0.00007 | 0.00808 | 0.00278 | 0.00797 |
10.1–15.0 | 30 | −0.00335 | 0.03240 | −0.00391 | 0.03385 | |
15.1–20.0 | 33 | 0.00543 | 0.01717 | 0.00259 | 0.02064 | |
20.1–25.0 | 36 | 0.00269 | 0.03085 | 0.00062 | 0.03804 | |
25.1–30.0 | 23 | 0.00519 | 0.06790 | 0.00217 | 0.07809 | |
>30.0 | 20 | −0.03052 | 0.07318 | −0.03787 | 0.08113 | |
Height class (m) | <10.0 | 10 | −0.00306 | 0.00914 | 0.00041 | 0.01009 |
10.1–15.0 | 35 | −0.00681 | 0.03221 | −0.00592 | 0.03261 | |
15.1–20.0 | 79 | 0.00057 | 0.04395 | −0.00335 | 0.05305 | |
>20.0 | 26 | −0.00002 | 0.06610 | −0.00875 | 0.07100 |
Attribute | Class | Number of Samples | Percent Bias | RMSE | Percent Bias | RMSE |
---|---|---|---|---|---|---|
Volume Equation | Taper Equation | |||||
Inside bark | ||||||
Diameter class (cm) | <10.0 | 8 | 1.981599 | 0.000003 | −0.879850 | 0.000005 |
10.1–15.0 | 30 | −0.004290 | 0.000141 | −0.132240 | 0.000247 | |
15.1–20.0 | 33 | 0.351295 | 0.000259 | 0.339498 | 0.000432 | |
20.1–25.0 | 36 | 0.605689 | 0.000725 | −0.422200 | 0.001514 | |
25.1–30.0 | 23 | −1.079664 | 0.004370 | −0.016150 | 0.006809 | |
>30.0 | 20 | 1.490422 | 0.007222 | 1.566733 | 0.007589 | |
Height class (m) | <10.0 | 10 | 2.405103 | 0.000181 | 1.271123 | 0.000143 |
10.1–15.0 | 35 | −2.198865 | 0.000541 | 0.936038 | 0.000393 | |
15.1–20.0 | 79 | 0.211925 | 0.001766 | 0.083021 | 0.002895 | |
>20.0 | 26 | 0.231115 | 0.006300 | −1.387300 | 0.005428 | |
Outside bark | ||||||
Diameter class (cm) | <10.0 | 8 | 0.317776 | 0.000005 | −3.107620 | 0.000006 |
10.1–15.0 | 30 | 3.763040 | 0.001026 | 3.940651 | 0.001123 | |
15.1–20.0 | 33 | −0.914390 | 0.000315 | −0.308040 | 0.000420 | |
20.1–25.0 | 36 | 0.172080 | 0.000932 | 0.053490 | 0.001407 | |
25.1–30.0 | 23 | −0.134682 | 0.004437 | 0.529548 | 0.005838 | |
>30.0 | 20 | 1.937543 | 0.006020 | 2.481481 | 0.007686 | |
Height class (m) | <10.0 | 10 | 1.656506 | 0.000008 | −1.758550 | 0.000009 |
10.1–15.0 | 35 | 3.043298 | 0.001054 | 3.987845 | 0.001068 | |
15.1–20.0 | 79 | −0.163150 | 0.001907 | 0.374246 | 0.002790 | |
>20.0 | 26 | −0.549210 | 0.004201 | 0.206676 | 0.004923 |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, M. Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine. Forests 2020, 11, 1050. https://doi.org/10.3390/f11101050
Sharma M. Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine. Forests. 2020; 11(10):1050. https://doi.org/10.3390/f11101050
Chicago/Turabian StyleSharma, Mahadev. 2020. "Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine" Forests 11, no. 10: 1050. https://doi.org/10.3390/f11101050
APA StyleSharma, M. (2020). Increasing Volumetric Prediction Accuracy—An Essential Prerequisite for End-Product Forecasting in Red Pine. Forests, 11(10), 1050. https://doi.org/10.3390/f11101050