Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery
Abstract
:1. Introduction
- (i)
- To determine the impact of silvicultural treatment (i.e., cover removal) on soil conditions;
- (ii)
- to determine and the impact of the forest operation (i.e., traffic) on soil characteristics;
- (iii)
- to compare the impact type and severity associated with different types of logging technology (i.e., mechanization level); and
- (iv)
- to estimate the recovery capacity of soil after disturbance.
2. Materials and Methods
2.1. Study Sites
2.2. Treatment and Logging Methods
- Cimini forest, Traditional Mechanization Level, Area TML (about 10 ha);
- Amiata forest, Intermediate Mechanization Level, Area IML (about 10 ha); and
- Amiata forest, Advanced Mechanization Level, Area AML (about 10 ha).
- Cimini forest, Area C1 (about 10 ha)—unharvested and not impacted for more than 16 years, near the TML area;
- Amiata forest, Area C2 (about 10 ha)—unharvested and not impacted for more than 16 years, near the IML and AML areas.
2.3. Analytical Methods
2.4. Statistics
3. Results and Discussion
3.1. Proportion of the Impacted Surface
3.2. Soil Physical and Chemical Characteristics
3.3. Soil Biodiversity Analysis
3.4. NMDS Scaling
3.5. Study Limitations
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Marcolin, E.; Manetti, M.C.; Pelleri, F.; Conedera, M.; Pezzatti, G.B.; Lingua, E.; Pividori, M. Seed regeneration of sweet chestnut (Castanea sativa Miller) under different coppicing approaches. For. Ecol. Manag. 2020, 472, 118273. [Google Scholar] [CrossRef]
- Conedera, M.; Krebs, P.; Tinner, W.; Pradella, M.; Torriani, D. The cultivation of Castanea sativa (Mill.) in Europe, from its origin to its diffusion on a continental scale. Veg. Hist. Archaeobotany 2004, 13, 161–179. [Google Scholar] [CrossRef] [Green Version]
- IFNC. Inventario Nazionale delle Foreste e dei Serbatoi Forestali di Carbonio (Anno Di Riferimento 2005); National Inventory of Forests and Forest Carbon stock (reference year 2005); Ministero delle Politiche Agricole, Alimentari e Forestali: Rome, Italy, 2007; p. 653. (In Italian) [Google Scholar]
- Unrau, A.; Becker, G.; Spinelli, R.; Lazdina, D.; Magagnotti, N.; Nicolescu, V.N.; Buckley, P.; Bartlett, D.; Kofman, P.D. (Eds.) Coppice Forests in Europe; Albert Ludwig University of Freiburg: Freiburg i. Br., Germany, 2018; p. 392. [Google Scholar]
- Espelta, J.M.; Riba, M.; Retana, J. Patterns of seedling recruitment in West-Mediterranean Quercus ilex forests influenced by canopy development. J. Veg. Sci. 1995, 6, 465–472. [Google Scholar] [CrossRef]
- Franklin, J.F.; Forman, R.T.T. Creating landscape patterns by forest cutting: Ecological consequences and principles. Landsc. Ecol. 1987, 1, 5–18. [Google Scholar] [CrossRef]
- Szabò, P. Driving forces of stability and change in woodland structure: A case-study from the Czech lowlands. Forest Ecol. Manag. 2010, 259, 650–656. [Google Scholar] [CrossRef]
- Marchi, E.; Picchio, R.; Mederski, P.S.; Vusić, D.; Perugini, M.; Venanzi, R. Impact of silvicultural treatment and forest operation on soil and regeneration in Mediterranean Turkey oak (Quercus cerris L.) coppice with standards. Ecol. Eng. 2016, 95, 475–484. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Grigolato, S.; Latterini, F. Soil and forest regeneration after different extraction methods in coppice forests. For. Ecol. Manag. 2019, 454, 117666. [Google Scholar] [CrossRef]
- Bernetti, G. Selvicoltura Speciale; UTET: Torino, Italy, 1995. [Google Scholar]
- Fonti, P.; Macchioni, N.; Thibaut, B. Ring shake in chestnut (Castanea sativa Mill.): State of art. Ann. For. Sci. 2002, 59, 129–140. [Google Scholar] [CrossRef]
- Mutabaruka, C.; Woodgate, G.R.; Bukley, G.P. External and Internal Growth Parameters as Potential Indicators of Shake in Sweet Chestnut (Castanea sativa Mill.). Forestry 2005, 78, 175–186. [Google Scholar] [CrossRef] [Green Version]
- Vannini, A.; Natili, G.; Anselmi, N.; Montaghi, A.; Vettraino, A.M. Distribution and gradient analysis of Ink disease in chestnut forests. For. Pathol. 2010, 40, 73–86. [Google Scholar] [CrossRef]
- Ferracini, C.; Gonella, E.; Ferrari, E.; Saladini, M.A.; Picciau, L.; Tota, F.; Pontini, M.; Alma, A. Novel insight in the life cycle of Torymus sinensis, biocontrol agent of the chestnut gall wasp. BioControl 2015, 60, 169–177. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Piovesan, G. Silvicultural and logging impact on soil characteristics in Chestnut (Castanea sativa Mill.) Mediterranean coppice. Ecol. Eng. 2016, 96, 82–89. [Google Scholar] [CrossRef]
- Olajuyigbe, S.; Tobin, B.; Saunders, M.; Nieuwenhuis, M. Forest thinning and soil respiration in a Sitka spruce forest in Ireland. Agr. For. Meteorol. 2012, 157, 86–95. [Google Scholar] [CrossRef]
- Picchio, R.; Mercurio, R.; Venanzi, R.; Gratani, L.; Giallonardo, T.; Lo Monaco, A.; Frattaroli, A.R. Strip clear-cutting application and logging typologies for renaturalization of pine afforestation-A case study. Forests 2018, 9, 366. [Google Scholar] [CrossRef] [Green Version]
- Klvac, R.; Vrána, P.; Jirousek, R. Possibilities of using the portable falling weight deflectometer to measure the bearing capacity and compaction of forest soils. J. For. Sci. 2010, 56, 130–136. [Google Scholar] [CrossRef] [Green Version]
- Korb, J.E.; Fulé, P.Z.; Gideon, B. Different restoration thinning treatments affect level of soil disturbance in ponderosa pine forests of Northern Arizona, USA. Ecol. Restor. 2007, 25, 43–49. [Google Scholar] [CrossRef]
- Williamson, J.R.; Neilsen, W.A. The influence of soil and forest site on rate and extent of soil compaction and profile disturbance of skid-trails during ground based harvesting. Can. J. For. Res. 2000, 30, 1196–1205. [Google Scholar] [CrossRef]
- Grigal, D.F. Effects of extensive forest management on soil productivity. For. Ecol. Manag. 2000, 138, 167–185. [Google Scholar] [CrossRef]
- Venanzi, R.; Picchio, R.; Spinelli, R.; Grigolato, S. Soil Disturbance and Recovery after Coppicing a Mediterranean Oak Stand: The Effects of Silviculture and Technology. Sustainability 2020, 12, 4074. [Google Scholar] [CrossRef]
- Vusić, D.; Šušnjar, M.; Marchi, E.; Spina, R.; Zečić, T.; Picchio, R. Skidding operations in thinning and shelterwood cut of mixed stands—Work productivity, energy inputs and emissions. Ecol. Eng. 2013, 61, 216–223. [Google Scholar] [CrossRef]
- Bertolotto, P.; Calienno, L.; Conforti, M.; D’Andrea, E.; Lo Monaco, A.; Magnani, E.; Marinšek, A.; Venanzi, R. Assessing indicators of forest ecosystem health. Ann. Silvi. Res. 2016, 40, 64–69. [Google Scholar]
- Picchio, R.; Spina, R.; Calienno, L.; Venanzi, R.; Lo Monaco, A. Forest operations for implementing silvicultural treatments for multiple purposes. Ital. J. Agron. 2016, 11, 156–161. [Google Scholar]
- Sohrabi, H.; Jourgholami, M.; Tavankar, F.; Venanzi, R.; Picchio, R. Post-harvest evaluation of soil physical properties and natural regeneration growth in steep-slope terrains. Forests 2019, 10, 1034. [Google Scholar] [CrossRef] [Green Version]
- Marchi, E.; Chung, W.; Visser, R.; Abbas, D.; Nordfjell, T.; Mederski, P.S.; McEwan, A.; Brink, M.; Laschi, A. Sustainable Forest Operations (SFO): A new paradigm in a changing world and climate. Sci. Total Environ. 2018, 634, 1385–1397. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Moreno, S.; Minoshima, H.; Ferris, H.; Jackson, L.E. Linking soil properties and nematode community composition: Effects of soil management on soil food webs. Nematology 2006, 8, 703–715. [Google Scholar] [CrossRef]
- Picchio, R.; Mederski, P.S.; Tavankar, F. How and How Much, Do Harvesting Activities Affect Forest Soil, Regeneration and Stands? Curr. For. Rep. 2020, 6, 115–128. [Google Scholar]
- Parisi, V.; Menta, C.; Gardi, C.; Jacomini, C.; Mozzanica, E. Microarthropod communities as a tool to assess soil quality and biodiversity: A new approach in Italy. Agric. Ecosyst. Environ. 2005, 105, 323–333. [Google Scholar] [CrossRef]
- Lorenzoni, P.; Mirabella, A.; Bidini, D.; Lulli, L. Soil genesis on trachytic and leucititic lavas of Cimini volcanic complex (Latium, Italy). Geoderma 1995, 68, 79–99. [Google Scholar] [CrossRef]
- AA.VV. Boschi e Macchie di Toscana: Vol. 2 I Tipi Forestali; Edizioni Regione Toscana: Firenze, Italy, 1998. [Google Scholar]
- Spinelli, R.; Magagnotti, N.; Nati, C. Benchmarking the impact of traditional small-scale logging systems used in Mediterranean forestry. For. Ecol. Manag. 2010, 260, 1997–2001. [Google Scholar] [CrossRef]
- Jodłowski, K.; Kalinowski, M. Current possibilities of mechanized logging in mountain areas. For. Res. Pap. 2018, 79, 365–375. [Google Scholar] [CrossRef] [Green Version]
- Szewczyk, G.; Spinelli, R.; Magagnotti, N.; Tylek, P.; Sowa, J.M.; Rudy, P.; Gaj-Gielarowiec, D. The mental workload of harvester operators working in steep terrain conditions. Silva Fenn. 2020, 54, 10355. [Google Scholar] [CrossRef]
- Picchio, R.; Magagnotti, N.; Sirna, A.; Spinelli, R. Improved winching technique to reduce logging damage. Ecol. Eng. 2012, 47, 83–86. [Google Scholar] [CrossRef]
- Spinelli, R.; Cacot, E.; Mihelic, M.; Nestorovski, L.; Mederski, P.; Tolosana, E. Techniques and productivity of coppice harvesting operations in Europe: A meta-analysis of available data. Ann. For. Sci. 2016, 73, 1125–1139. [Google Scholar] [CrossRef] [Green Version]
- Gee, G.W.; Bauder, J.W. Particle-size analysis. In Methods of Soil Analysis, 2nd ed.; Part, I. Agron. Monogr. 9; Klute, A., Ed.; ASA and SSSA: Madison, WI, USA, 1986; pp. 383–411. [Google Scholar]
- Picchio, R.; Neri, F.; Petrini, E.; Verani, S.; Marchi, E.; Certini, G. Machinery-induced soil compaction in thinning of conifer stands. For. Ecol. Manag. 2012, 285, 38–43. [Google Scholar] [CrossRef]
- Picchio, R.; Tavankar, F.; Bonyad, A.; Mederski, P.S.; Venanzi, R.; Nikooy, M. Detailed analysis of residual stand damage due to winching on steep terrains. Small-Scale For. 2019, 18, 255–277. [Google Scholar] [CrossRef] [Green Version]
- Jourgholami, M.; Majnounian, B.; Abari, M.E. Effects of tree-length timber skidding on soil compaction in the skid trail in Hyrcanian forests. For. Syst. 2014, 23, 288–293. [Google Scholar] [CrossRef] [Green Version]
- Tavankar, F.; Majnounian, B.; Bonyad, A.E. Felling and skidding damage to residual trees following selection cutting in Caspian forests of Iran. J. For. Sci. 2013, 59, 196–203. [Google Scholar] [CrossRef] [Green Version]
- Spinelli, R.; Lombardini, C.; Magagnotti, N. Salvaging windthrown trees with animal and machine systems in protected areas. Ecol. Eng. 2013, 53, 61–67. [Google Scholar] [CrossRef]
- Magagnotti, N.; Picchi, G.; Spinelli, R. A versatile machine system for salvaging small-scale forest windthrow. Biosyst. Eng. 2013, 115, 381–388. [Google Scholar] [CrossRef]
- Marchi, E.; Picchio, R.; Spinelli, R.; Verani, S.; Venanzi, R.; Certini, G. Environmental impact assessment of different logging methods in pine forests thinning. Ecol. Eng. 2014, 70, 429–436. [Google Scholar] [CrossRef]
- Kleibl, M.; Klvač, R.; Lombardini, C.; Porhaly, J.; Spinelli, R. Soil compaction and recovery after mechanized final felling of Italian coastal pine plantations. Croat. J. For. Eng. 2014, 35, 63–71. [Google Scholar]
- Magagnotti, N.; Spinelli, R.; Güldner, O.; Erler, J. Site impact after motor-manual and mechanised thinning in Mediterranean pine plantations. Biosyst. Eng. 2012, 113, 140–147. [Google Scholar] [CrossRef]
- Ampoorter, E.; Goris, R.; Cornelis, W.; Verheyen, K. Impact of mechanized logging on compaction status of sandy forest soils. For. Ecol. Manag. 2007, 241, 162–174. [Google Scholar] [CrossRef]
- Heilman, P. Root penetration of Douglas-fir seedlings into compacted soil. For. Sci. 1981, 27, 660–666. [Google Scholar]
- Astolfi, S.; Zuchi, F.; De Cesare, L.; Badalucco, S.; Grego, S. Cadmium-induced changes in soil biochemical characteristics of oat (Avena sativa L.) rhizosphere during early growth stages. Soil Res. 2011, 49, 642–651. [Google Scholar] [CrossRef]
- Rüdisser, J.; Tasser, E.; Peham, T.; Meyer, E.; Tappeiner, U. The dark side of biodiversity: Spatial application of the biological soil quality indicator (BSQ). Ecol. Ind. 2015, 53, 240–246. [Google Scholar] [CrossRef]
- Ozoemena, A.; Uzoejinwaa, B.; Ezeamaa, A.; Onwualub, A.; Ugwua, S.; Ohagwua, C. Overview of soil-machine interaction studies in soil bins. Soil Till. Res. 2018, 175, 13–27. [Google Scholar]
Area | Age [year] | DBH * [cm] | Height * [m] | Density * [trees/ha] | Basal Area [m2/ha] | Above-Ground Biomass Stock [m3/ha] | Above-Ground Biomass Harvested [m3/ha] | |||
---|---|---|---|---|---|---|---|---|---|---|
Shoots | Standards | Shoots | Standards | Shoots | Standards | |||||
TML | 16 | 35 | 16.0 ± 3.1 | 26.3 ± 2.5 | 12.4 ± 1.0 | 15.6 ± 1.2 | 1250 ± 57 | 26.7 | 187.3 | 172.5 |
IML | 16 | 55 | 11.9 ± 1.8 | 31.1 ± 4.2 | 15.1 ± 1.2 | 16.8 ± 1.5 | 1920 ± 81 | 22.1 | 165.2 | 150.2 |
AML | 16 | 54 | 12.2 ± 2.1 | 29.8 ± 3.8 | 14.9 ± 2.0 | 17.9 ± 1.0 | 1850 ± 29 | 22.7 | 157.1 | 142.1 |
C1 | 16 | 39 | 15.9 ± 7.2 | 26.5 ± 6.2 | 12.5 ± 1.7 | 15.9 ± 1.7 | 1242 ± 30 | 26.1 | 182.1 | - |
C2 | 16 | 56 | 12.5 ± 4.1 | 31.1 ± 1.2 | 16.8 ± 1.1 | 18.8 ± 2.1 | 1595 ± 81 | 20.5 | 181.7 | - |
Area | p-Value | Disturbed Soil | Undisturbed Soil |
---|---|---|---|
TML | <0.05 | 26.9 ± 2.6% a | 73.1% |
IML | 29.6 ± 6.6% a,b | 70.4% | |
AML | 34.6 ± 3.3% b,c | 65.4% |
Area | Soil Type | Bulk Density [g/cm3] | Penetration Resistance [MPa] | Shear Resistance [t/m2] | |||
---|---|---|---|---|---|---|---|
1 Year | 6 Year | 1 Year | 6 Year | 1 Year | 6 Year | ||
TML | Und | 0.747 ± 0.150 a | 0.664 ± 0.079 a | 0.066 ± 0.011 a | 0.060 ± 0.012 a | 1.550 ± 0.272 a | 1.110 ± 0.109 a |
Dis | 0.820 ± 0.210 b | 0.787 ± 0.077 a | 0.276 ± 0.090 b | 0.170 ± 0.081 c | 4.113 ± 0.591 b | 4.715 ± 0.318 b | |
C1 | Contr | 0.537 ± 0.110 c | 0.552 ± 0.091 c | 0.069 ± 0.012 a | 0.058 ± 0.010 a | 1.569 ± 0.310 a | 1.687 ± 0.151 a |
IML | Und | 1.070 ± 0.098 d | 0.772 ± 0.114 a | 0.292 ± 0.074 b | 0.121 ± 0.062 d | 3.633 ± 0.204 b | 4.624 ± 0.114 b |
Dis | 1.182 ± 0.110 b | 1.001 ± 0.092 d | 0.531 ± 0.098 c | 0.362 ± 0.074 e | 8.077 ± 0.079 c | 9.873 ± 0.117 c | |
C2 | Contr | 0.971 ± 0.092 d | 0.921 ± 0.120 b | 0.263 ± 0.084 b | 0.123 ± 0.095 d | 4.762 ± 0.125 b | 5.022 ± 0.120 b |
AML | Und | 0.992 ± 0.109 d | 0.860 ± 0.099 b | 0.184 ± 0.092 d | 0.120 ± 0.110 d | 3.025 ± 0.119 b | 3.472 ± 0.119 b |
Dis | 1.041 ± 0.111 d | 0.891 ± 0.121 b | 0.382 ± 0.091 e | 0.292 ± 0.081 b | 6.284 ± 0.122 d | 6.848 ± 0.089 d | |
C2 | Contr | 0.971 ± 0.092 d | 0.921 ± 0.120 b | 0.263 ± 0.084 b | 0.123 ± 0.095 d | 4.762 ± 0.125 b | 5.022 ± 0.120 b |
Area | Soil Type | Organic Matter [%] | pH | ||
---|---|---|---|---|---|
1 Year | 6 Year | 1 Year | 6 Year | ||
TML | Und | 18.1 ± 1.3 a | 24.4 ± 1.1 d | 5.3 ± 1.0 | 5.2 ± 1.0 |
Dis | 13.1 ± 1.6 b | 22.3 ± 1.0 d | 5.2 ± 0.9 | 5.4 ± 0.9 | |
C1 | Contr | 19.2 ± 1.3 a | 26.7 ± 0.9 d | 5.2 ± 1.0 | 5.3 ± 1.1 |
IML | Und | 6.2 ± 1.0 c | 7.4 ± 1.1 c | 4.5 ± 1.1 | 4.5 ± 1.1 |
Dis | 5.5 ± 1.1 c | 5.1 ± 1.1 c | 5.0 ± 0.8 | 4.8 ± 1.0 | |
C2 | Contr | 6.2 ± 1.2 c | 9.8 ± 0.8 e | 4.8 ± 1.1 | 4.9 ± 1.0 |
AML | Und | 6.2 ± 1.0 c | 9.5 ± 1.2 e | 4.7 ± 1.0 | 4.7 ± 1.1 |
Dis | 6.3 ± 1.1 c | 7.9 ± 1.1 c,e | 5.0 ± 0.8 | 5.1 ± 0.8 | |
C2 | Contr | 6.2 ± 1.2 c | 9.8 ± 0.8 e | 4.8 ± 1.1 | 4.9 ± 1.0 |
Area | Soil Type | QBS-ar | p-Value | |
---|---|---|---|---|
1 Year | 6 Year | |||
TML | Und | 213 a | 271 e | <0.05 |
Dis | 102 b | 210 a | ||
C1 | Contr | 198 a | 263 e | |
IML | Und | 187 a | 146 f | <0.05 |
Dis | 102 b | 107 b | ||
C2 | Contr | 126 c | 181 a | |
AML | Und | 127 c | 140 f | <0.05 |
Dis | 83 d | 105 b | ||
C2 | Contr | 126 c | 181 a |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Venanzi, R.; Picchio, R.; Grigolato, S.; Spinelli, R. Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery. Forests 2020, 11, 1053. https://doi.org/10.3390/f11101053
Venanzi R, Picchio R, Grigolato S, Spinelli R. Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery. Forests. 2020; 11(10):1053. https://doi.org/10.3390/f11101053
Chicago/Turabian StyleVenanzi, Rachele, Rodolfo Picchio, Stefano Grigolato, and Raffaele Spinelli. 2020. "Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery" Forests 11, no. 10: 1053. https://doi.org/10.3390/f11101053
APA StyleVenanzi, R., Picchio, R., Grigolato, S., & Spinelli, R. (2020). Soil Disturbance Induced by Silvicultural Treatment in Chestnut (Castanea sativa Mill.) Coppice and Post-Disturbance Recovery. Forests, 11(10), 1053. https://doi.org/10.3390/f11101053