Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Design
2.3. Soil Infestation Test
2.4. Infestation with Gypsy Moth Larvae
2.5. Statistical Analysis
3. Results
3.1. Lymantria dispar Larvae Performance at Elevated CO2 Concentration Is Impaired Mostly When Trees Are Infected by Phytophthora plurivora
3.2. Quercus robur Growth Is More Influenced by CO2 Concentration and Tree Provenance Than by Phytophthora plurivora Infection
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Messier, C.; Puettmann, K.J.; Coates, K.D. (Eds.) Managing Forests as Complex Adaptive Systems; Routledge: London, UK, 2013; ISBN 9780203122808. [Google Scholar]
- Traw, M.B.; Lindroth, R.L.; Bazzaz, F.A. Decline in gypsy moth (Lymantria dispar) performance in an elevated CO2 atmosphere depends upon host plant species. Oecologia 1996, 108, 113–120. [Google Scholar] [CrossRef] [PubMed]
- Eamus, D.; Jarvis, P.G. The direct effects of increase in the global atmospheric CO2 concentration on natural and commercial temperate trees and forests. Adv. Ecol. Res. 1989, 19, 1–55. [Google Scholar] [CrossRef]
- Running, S.W.; Nemani, R.R. Regional hydrologic and carbon balance responses of forests resulting from potential climate change. Clim. Chang. 1991, 19, 349–368. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2001: The scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2001. [Google Scholar]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Aldea, M.; Hamilton, J.G.; Resti, J.P.; Zangerl, A.R.; Berenbaum, M.R.; Frank, T.D.; DeLucia, E.H. Comparison of photosynthetic damage from arthropod herbivory and pathogen infection in understory hardwood saplings. Oecologia 2006, 149, 221–232. [Google Scholar] [CrossRef]
- Parmesan, C. Climate and species’ range. Nature 1996, 382, 765–766. [Google Scholar] [CrossRef]
- Klimetzek, D.; Yue, C. Climate and forest insect outbreaks. Biologia 1997, 52, 153–157. [Google Scholar]
- Mikkola, K. Population trends of Finnish Lepidoptera during 1961–1996. Entomol. Fenn. 1997, 8, 121–143. [Google Scholar] [CrossRef]
- Parmesan, C.; Ryrholm, N.; Stefanescus, C.; Hill, J.K.; Thomas, C.D.; Descimon, H.; Huntley, B.; Kaila, L.; Kullberg, J.; Tammaru, T.; et al. Poleward shifts in geographical ranges of butterfly species. Nature 1999, 399, 579–583. [Google Scholar] [CrossRef]
- Fleming, R.A.; Tatchel, G.M. Shifts in the Flight Periods of Britsih Aphids: A Response to Climate Warming? In Proceedings of the Insects in a Changing Environment; Harrington, R., Stork, N.E., Eds.; Academic Press: San Diego, CA, USA, 1995; pp. 505–508. [Google Scholar]
- Ellis, W.N. Recent shifts in phenology of Microlepidoptera, related to climatic change. Entomol. Ber. 1997, 57, 66–72. [Google Scholar]
- Thomson, A.J.; Shrimpton, D.M. Weather associated with the start of mountain pine beetle outbreaks. Can. J. 1984, 14, 255–258. [Google Scholar] [CrossRef]
- Mattson, J.; Haack, R.A. The role of drought in outbreaks of plant-eating insects: Drought’s physiological effects on plants can predict its influence on insect populations. Bioscience 1987, 37, 110–118. [Google Scholar] [CrossRef]
- McElrone, A.J.; Reid, C.D.; Hoye, K.A.; Hart, E.; Jackson, R.B. Elevated CO2 reduces disease incidence and severity of a red maple fungal pathogen via changes in host physiology and leaf chemistry. Glob. Chang. Biol. 2005, 11, 1828–1836. [Google Scholar] [CrossRef]
- Fleischmann, F.; Raidl, S.; Oßwald, W.F. Changes in susceptibility of beech (Fagus sylvatica) seedlings towards Phytophthora citricola under the influence of elevated atmospheric CO2 and nitrogen fertilization. Environ. Pollut. 2010, 158, 1051–1060. [Google Scholar] [CrossRef] [PubMed]
- Ghini, R.; MacLeod, R.E.O.; Santos, M.S.; Silva, C.E.O. Elevated atmospheric carbon dioxide concentration increases eucalyptus plantlets growth and reduces diseases severity. Procedia Environ. Sci. 2015, 29, 206–207. [Google Scholar] [CrossRef] [Green Version]
- Oszako, T.; Sikora, K.; Borys, M.; Kubiak, K.A.; Tkaczyk, M. Phytophthora quercina infections in elevated CO2 concentrations. Folia For. Pol. Ser. A 2016, 58, 131–141. [Google Scholar] [CrossRef] [Green Version]
- Lindroth, R.L. CO2-Mediated Changes in Tree Chemistry and Tree-Lepidoptera Interactions. In Physiological Ecology; Koch, G.W., Mooney, H.A., Eds.; Academic Press: San Diego, CA, USA, 1996; pp. 105–120. ISBN 978-0-12-505295-5. [Google Scholar]
- Hunter, M.D. Effects of elevated atmospheric carbon dioxide on insect-plant interactions. Agric. For. Entomol. 2001, 3, 153–159. [Google Scholar] [CrossRef]
- Stiling, P.; Cornelissen, T. How does elevated carbon dioxide (CO2) affect plant–herbivore interactions? A field experiment and meta-analysis of CO2-mediated changes on plant chemistry and herbivore performance. Glob. Chang. Biol. 2007, 13, 1823–1842. [Google Scholar] [CrossRef]
- Henn, M.W.; Schopf, R. Response of beech (Fagus sylvatica) to elevated CO2 and N: Influence on larval performance of the gypsy moth Lymantria dispar (Lep., Lymantriidae). J. Appl. Entomol. 2001, 125, 501–505. [Google Scholar] [CrossRef]
- Hättenschwiler, S.; Schafellner, C. Gypsy moth feeding in the canopy of a CO2-enriched mature forest. Glob. Chang. Biol. 2004, 10, 1899–1908. [Google Scholar] [CrossRef]
- Wang, X.W.; Ji, L.Z.; Zhang, Q.H.; Liu, Y.; Wang, G.Q. Effects of elevated CO2 on feeding preference and performance of the gypsy moth (Lymantria dispar) larvae. J. Appl. Entomol. 2009, 133, 47–57. [Google Scholar] [CrossRef]
- Phillips, D.H.; Burdekin, D.A. Diseases of Oak (Quercus spp.). In Diseases of Forest and Ornamental Trees; Palgrave Macmillan UK: London, UK, 1982; pp. 207–220. [Google Scholar]
- Ennos, R.A. Resilience of forests to pathogens: An evolutionary ecology perspective. Forestry 2015, 88, 41–52. [Google Scholar] [CrossRef] [Green Version]
- Hansen, E.M. Phytophthora Species Emerging as Pathogens of Forest Trees. Curr. For. Rep. 2015, 1, 16–24. [Google Scholar] [CrossRef] [Green Version]
- Cooke, B.J.; Nealis, V.G.; Régnière, J. Insect Defoliators as Periodic Disturbances in Northern Forest Ecosystems. In Plant Disturbance Ecology; Academic Press: Burlington, ON, Canada, 2007; pp. 487–525. ISBN 9780120887781. [Google Scholar]
- Rabiey, M.; Hailey, L.E.; Roy, S.R.; Grenz, K.; Al-Zadjali, M.A.S.; Barrett, G.A.; Jackson, R.W. Endophytes vs tree pathogens and pests: Can they be used as biological control agents to improve tree health? Eur. J. Plant Pathol. 2019, 155, 711–729. [Google Scholar] [CrossRef] [Green Version]
- Wingfield, M.J.; Slippers, B.; Wingfield, B.D. Novel associations between pathogens, insects and tree species threaten world forests. N. Z. J. For. Sci. 2010, 40, S95–S103. [Google Scholar]
- Marçais, B.; Caël, O.; Delatour, C. Interaction between root rot basidiomycetes and Phytophthora species on pedunculate oak. Plant Pathol. 2011, 60, 296–303. [Google Scholar] [CrossRef]
- Eberl, F.; Uhe, C.; Unsicker, S.B. Friend or foe? The role of leaf-inhabiting fungal pathogens and endophytes in tree-insect interactions. Fungal Ecol. 2019, 38, 104–112. [Google Scholar] [CrossRef]
- Mölder, A.; Sennhenn-Reulen, H.; Fischer, C.; Rumpf, H.; Schönfelder, E.; Stockmann, J.; Nagel, R.-V. Success factors for high-quality oak forest (Quercus robur, Q. petraea) regeneration. For. Ecosyst. 2019, 6, 49. [Google Scholar] [CrossRef] [Green Version]
- Mölder, A.; Meyer, P.; Nagel, R.-V. Integrative management to sustain biodiversity and ecological continuity in Central European temperate oak (Quercus robur, Q. petraea) forests: An overview. For. Ecol. Manage. 2019, 437, 324–339. [Google Scholar] [CrossRef]
- Kamler, J.; Dobrovolný, L.; Drimaj, J.; Kadavý, J.; Kneifl, M.; Adamec, Z.; Knott, R.; Martiník, A.; Plhal, R.; Zeman, J.; et al. The impact of seed predation and browsing on natural sessile oak regeneration under different light conditions in an over-aged coppice stand. IForest 2016, 9, 569–576. [Google Scholar] [CrossRef] [Green Version]
- Stojanović, M.; Szatniewska, J.; Kyselová, I.; Pokorný, R.; Čater, M. Transpiration and water potential of young Quercus petraea (M.) Liebl. coppice sprouts and seedlings during favourable and drought conditions. J. For. Sci. 2017, 63, 313–323. [Google Scholar] [CrossRef] [Green Version]
- Krstić, M.R.; Kanjevac, B.R.; Babić, V.P. Effects of extremely high temperatures on some growth parameters of sessile oak (Quercus petraea/Matt./Liebl.) seedlings in northeastern Serbia. Arch. Biol. Sci. 2018, 70, 521–529. [Google Scholar] [CrossRef]
- Price, P.W. The plant vigor hypothesis and herbivore attack. Oikos 1991, 62, 244–251. [Google Scholar] [CrossRef] [Green Version]
- Chaar, H.; Colin, F.; Leborgne, G. Artificial defoliation, decapitation of the terminal bud, and removal of the apical tip of the shoot in sessile oak seedlings and consequences on subsequent growth. Can. J. For. Res. 1997, 27, 1614–1621. [Google Scholar] [CrossRef]
- Corcobado, T.; Miranda-Torres, J.J.; Martín-García, J.; Jung, T.; Solla, A. Early survival of Quercus ilex subspecies from different populations after infections and co-infections by multiple Phytophthora species. Plant Pathol. 2017, 66, 792–804. [Google Scholar] [CrossRef]
- Jung, T.; Blaschke, H.; Neumann, P. Isolation, identification and pathogenicity of Phytophthora species from declining oak stands. Eur. J. For. Pathol. 1996, 26, 253–272. [Google Scholar] [CrossRef]
- Jung, T.; Burgess, T.I. Re-evaluation of Phytophthora citricola isolates from multiple woody hosts in Europe and North America reveals a new species, Phytophthora plurivora sp. nov. Persoonia 2009, 22, 95–110. [Google Scholar] [CrossRef] [Green Version]
- Jung, T.; Pérez-Sierra, A.; Durán, A.; Jung, M.H.; Balci, Y.; Scanu, B. Canker and decline diseases caused by soil- and airborne Phytophthora species in forests and woodlands. Persoonia 2018, 40, 182–220. [Google Scholar] [CrossRef] [Green Version]
- Balci, Y.; Balci, S.; Eggers, J.; MacDonald, W.L.; Juzwik, J.; Long, R.P.; Gottschalk, K.W. Phytophthora spp. associated with forest soils in eastern and north-central U.S. oak ecosystems. Plant Dis. 2007, 91, 705–710. [Google Scholar] [CrossRef] [Green Version]
- Martín-García, J.; Solla, A.; Corcobado, T.; Siasou, E.; Woodward, S. Influence of temperature on germination of Quercus ilex in Phytophthora cinnamomi, P. gonapodyides, P. quercina and P. psychrophila infested soils. For. Pathol. 2015, 45, 215–223. [Google Scholar] [CrossRef]
- Corcobado, T.; Vivas, M.; Moreno, G.; Solla, A. Ectomycorrhizal symbiosis in declining and non-declining Quercus ilex trees infected with or free of Phytophthora cinnamomi. For. Ecol. Manag. 2014, 324, 72–80. [Google Scholar] [CrossRef]
- Milanović, S.; Lazarević, J.; Popović, Z.; Miletić, Z.; Kostić, M.; Radulović, Z.; Karadžić, D.; Vuleta, A. Preference and performance of the larvae of Lymantria dispar (Lepidoptera: Lymantriidae) on three species of european oaks. Eur. J. Entomol. 2014, 111, 371–378. [Google Scholar] [CrossRef] [Green Version]
- Milanović, S.; Mihajlović, L.; Karadžić, D.; Jankovsky, L.; Aleksić, P.; Janković-Tomanić, M.; Lazarević, J. Effects of pedunculate oak tree vitality on gypsy moth preference and performance. Arch. Biol. Sci. 2014, 66, 1659–1672. [Google Scholar] [CrossRef]
- Lentini, A.; Mannu, R.; Cocco, A.; Ruiu, P.A.; Cerboneschi, A.; Luciano, P. Long-term monitoring and microbiological control programs against lepidopteran defoliators in Sardinian cork oak forests (Italy). Ann. Silvicultural. Res. 2020, 45, 21–30. [Google Scholar] [CrossRef]
- Mannu, R.; Cocco, A.; Luciano, P.; Lentini, A. Influence of Bacillus thuringiensis application timing on population dynamics of gypsy moth in Mediterranean cork oak forests. Pest Manag. Sci. 2020, 76, 1103–1111. [Google Scholar] [CrossRef]
- Gregory, P.J.; Johnson, S.N.; Newton, A.C.; Ingram, J.S.I. Integrating pests and pathogens into the climate change/food security debate. J. Exp. Bot. 2009, 60, 2827–2838. [Google Scholar] [CrossRef]
- Elvira-Recuenco, M.; Cacciola, S.; Sanz-Ros, A.V.; Garbelotto, M.; Aguayo, J.; Solla, A.; Mullett, M.; Drenkhan, T.; Oskay, F.; Kaya, A.G.A.; et al. Potential interactions between invasive Fusarium circinatum and other pine pathogens in Europe. Forests 2020, 11, 7. [Google Scholar] [CrossRef] [Green Version]
- Kazan, K. Plant-biotic interactions under elevated CO2: A molecular perspective. Environ. Exp. Bot. 2018, 153, 249–261. [Google Scholar] [CrossRef]
- Juroszek, P.; Racca, P.; Link, S.; Farhumand, J.; Kleinhenz, B. Overview on the review articles published during the past 30 years relating to the potential climate change effects on plant pathogens and crop disease risks. Plant Pathol. 2020, 69, 179–193. [Google Scholar] [CrossRef]
- Odell, T.; Butt, C.A.; Bridgeforth, A.W. Lymantria dispar. In Handbook of Insect Rearing, vol. 2; Singh, P., Moore, R., Eds.; Elsevier: New York, NY, USA, 1985; pp. 355–367. ISBN 0-444-42467-9. [Google Scholar]
- Waldbauer, G.P. The consumption and utilization of food by insects. Adv. Insect Phys. 1968, 5, 229–288. [Google Scholar] [CrossRef]
- Dury, S.J.; Good, J.E.G.; Perrins, C.M.; Buse, A.; Kaye, T. The effects of increasing CO2 and temperature on oak leaf palatability and the implications for herbivorous insects. Glob. Chang. Biol. 1998, 4, 55–61. [Google Scholar] [CrossRef]
- Roth, S.; Lindroth, R.L.; Volin, J.C.; Kruger, E.L. Enriched atmospheric CO2 and defoliation: Effects on tree chemistry and insect performance. Glob. Chang. Biol. 1998, 4, 419–430. [Google Scholar] [CrossRef]
- Watt, A.D.; Lindsay, E.; Leith, I.D.; Fraser, S.M.; Docherty, M.; Hurst, D.K.; Hartley, S.E.; Kerslake, J. The Effects of Climate Change on the Winter Moth, Operophtera brumata, and its Status as a Pest of Broadleaved Trees, Sitka Spruce and Heather. In Proceedings of the Aspects of Applied Biology; Churchill College: Cambridge, UK, 1996; Volume 45, pp. 307–316. [Google Scholar]
- Buse, A.; Good, J.E.G.; Dury, S.; Perrins, C.M. Effects of elevated temperature and carbon dioxide on the nutritional quality of leaves of oak (Quercus robur L.) as food for the Winter Moth (Operophtera brumata L.). Funct. Ecol. 1998, 12, 742–749. [Google Scholar] [CrossRef]
- Williams, R.S.; Lincoln, D.E.; Thomas, R.B. Effects of elevated CO2-grown loblolly pine needles on the growth, consumption, development, and pupal weight of red-headed pine sawfly larvae reared within open-topped chambers. Glob. Chang. Biol. 1997, 3, 501–511. [Google Scholar] [CrossRef]
- Docherty, M.; Wade, F.A.; Hurst, D.K.; Whittaker, J.B.; Lea, P.J. Responses of tree sap-feeding herbivores to elevated CO2. Glob. Chang. Biol. 1997, 3, 51–59. [Google Scholar] [CrossRef]
- Docherty, M.; Hurst, D.K.; Holopainen, J.K.; Whittaker, J.B.; Lea, P.J.; Watt, A.D. Carbon dioxide-induced changes in beech foliage cause female beech weevil larvae to feed in a compensatory manner. Glob. Chang. Biol. 1996, 2, 335–341. [Google Scholar] [CrossRef]
- Awmack, C.S.; Woodcock, C.M.; Harrington, R. Climate change may increase vulnerability of aphids to natural enemies. Ecol. Entomol. 1997, 22, 366–368. [Google Scholar] [CrossRef]
- Lindroth, R.L.; Kinney, K.K. Consequences of enriched atmospheric CO2 and defoliation for foliar chemistry and gypsy moth performance. J. Chem. Ecol. 1998, 24, 1677–1695. [Google Scholar] [CrossRef]
- Williams, R.S.; Norby, R.J.; Lincoln, D.E. Effects of elevated CO2 and temperature-grown red and sugar maple on gypsy moth performance. Glob. Chang. Biol. 2000, 6, 685–695. [Google Scholar] [CrossRef]
- Williams, R.S.; Lincoln, D.E.; Norby, R.J. Development of gypsy moth larvae feeding on red maple saplings at elevated CO2 and temperature. Oecologia 2003, 137, 114–122. [Google Scholar] [CrossRef]
- Hlásny, T.; Holuša, J.; Štěpánek, P.; Turčáni, M.; Polčák, N. Expected impacts of climate change on forests Czech Republic as a case study. J. For. Sci. 2011, 57, 422–431. [Google Scholar] [CrossRef] [Green Version]
- Thurm, E.A.; Hernandez, L.; Baltensweiler, A.; Ayan, S.; Rasztovits, E.; Bielak, K.; Zlatanov, T.M.; Hladnik, D.; Balic, B.; Freudenschuss, A.; et al. Alternative tree species under climate warming in managed European forests. For. Ecol. Manage. 2018, 430, 485–497. [Google Scholar] [CrossRef]
- Bebber, D.P. Range-expanding pests and pathogens in a warming world. Annu. Rev. Phytopathol. 2015, 53, 335–356. [Google Scholar] [CrossRef] [PubMed]
- Fält-Nardmann, J.J.J.; Ruohomäki, K.; Tikkanen, O.P.; Neuvonen, S. Cold hardiness of Lymantria monacha and L. dispar (Lepidoptera: Erebidae) eggs to extreme winter temperatures: Implications for predicting climate change impacts. Ecol. Entomol. 2018, 43, 422–430. [Google Scholar] [CrossRef]
- DeLucia, E.H.; Nabity, P.D.; Zavala, J.A.; Berenbaum, M.R. Climate change: Resetting plant-insect interactions. Plant Physiol. 2012, 160, 1677–1685. [Google Scholar] [CrossRef] [Green Version]
- Jamieson, M.A.; Trowbridge, A.M.; Raffa, K.F.; Lindroth, R.L. Consequences of climate warming and altered precipitation patterns for plant-insect and multitrophic interactions. Plant Physiol. 2012, 160, 1719–1727. [Google Scholar] [CrossRef] [Green Version]
- Trębicki, P.; Dáder, B.; Vassiliadis, S.; Fereres, A. Insect–plant–pathogen interactions as shaped by future climate: Effects on biology, distribution, and implications for agriculture. Insect Sci. 2017, 24, 975–989. [Google Scholar] [CrossRef] [Green Version]
- Milanović, S.; Lazarević, J.; Karadžić, D.; Milenković, I.; Jankovský, L.; Vuleta, A.; Solla, A. Belowground infections of the invasive Phytophthora plurivora pathogen enhance the suitability of red oak leaves to the generalist herbivore Lymantria dispar. Ecol. Entomol. 2015, 40, 479–482. [Google Scholar] [CrossRef]
- Solla, A.; Milanović, S.; Gallardo, A.; Bueno, A.; Corcobado, T.; Cáceres, Y.; Morcuende, D.; Quesada, A.; Moreno, G.; Pulido, F. Genetic determination of tannins and herbivore resistance in Quercus ilex. Tree Genet. Genomes 2016, 12, 117. [Google Scholar] [CrossRef]
- Rodríguez-Romero, M.; Gallardo, A.; Pulido, F. Geographical and within-population variation of constitutive chemical defences in a Mediterranean oak (Quercus ilex). For. Syst. 2020, 29. [Google Scholar] [CrossRef]
- Gallardo, A.; Morcuende, D.; Solla, A.; Moreno, G.; Pulido, F.; Quesada, A. Regulation by biotic stress of tannins biosynthesis in Quercus ilex: Crosstalk between defoliation and Phytophthora cinnamomi infection. Physiolgia Plantarum 2019, 165, 319–329. [Google Scholar] [CrossRef] [PubMed]
- Broadmeadow, M.S.J.; Jackson, S.B. Growth responses of Quercus petraea, Fraxinus excelsior and Pinus sylvestris to elevated carbon dioxide, ozone and water supply. New Phytol. 2000, 146, 437–451. [Google Scholar] [CrossRef]
- Norby, R.J.; O’Neill, E.G.; Luxmoore, R.J. Effects of atmospheric CO2 enrichment on the growth and mineral nutrition of Quercus alba seedlings in nutrient-poor soil. Plant Physiol. 1986, 82, 83–89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Johnson, S.N.; Riegler, M. Root damage by insects reverses the effects of elevated atmospheric CO2 on eucalypt seedlings. PLoS ONE 2013, 8, e79479. [Google Scholar] [CrossRef] [Green Version]
Source of Variation | Effect | Degrees of Freedom | Growth Rate | Relative Growth Rate | ||
---|---|---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | |||
CO2 concentration (C) | F | 1 | 169.7 | <0.001 | 125.0 | <0.001 |
Phytophthora plurivora infection (I) | F | 1 | 20.6 | 0.136 | 2.9 | 0.343 |
Provenance (P) | R | 1 | 0.2 | 0.745 | 0.4 | 0.667 |
C × I | F | 1 | 39.4 | <0.001 | 41.9 | <0.001 |
C × P | R | 1 | 18.9 | 0.006 | 7.6 | 0.040 |
I × P | R | 1 | 0.3 | 0.616 | 0.4 | 0.512 |
Initial weight of larvae (covariate) | F | 1 | 0.4 | 0.518 | 2.7 | 0.102 |
Source of Variation | Effect | Degrees of Freedom | Number of Leaves | Plant Growth Rate | ||
---|---|---|---|---|---|---|
F-Ratio | p-Value | F-Ratio | p-Value | |||
CO2 concentration (C) | F | 1 | 156.5 | <0.001 | 9.6 | 0.012 |
Biotic stressor (S) | F | 1 | 4.8 | 0.173 | 0.1 | 0.887 |
Provenance (P) | R | 1 | 1.6 | 0.724 | 1.4 | 0.376 |
C × S | F | 1 | 2.3 | 0.096 | 1.9 | 0.155 |
C × P | R | 1 | 0.0 | 0.861 | 12.8 | <0.001 |
S × P | R | 1 | 1.3 | 0.272 | 4.8 | 0.009 |
Initial plant height (covariate) | F | 1 | 0.8 | 0.368 | 29.4 | <0.001 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Milanović, S.; Milenković, I.; Dobrosavljević, J.; Popović, M.; Solla, A.; Tomšovský, M.; Jankovský, L. Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection. Forests 2020, 11, 1059. https://doi.org/10.3390/f11101059
Milanović S, Milenković I, Dobrosavljević J, Popović M, Solla A, Tomšovský M, Jankovský L. Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection. Forests. 2020; 11(10):1059. https://doi.org/10.3390/f11101059
Chicago/Turabian StyleMilanović, Slobodan, Ivan Milenković, Jovan Dobrosavljević, Marija Popović, Alejandro Solla, Michal Tomšovský, and Libor Jankovský. 2020. "Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection" Forests 11, no. 10: 1059. https://doi.org/10.3390/f11101059
APA StyleMilanović, S., Milenković, I., Dobrosavljević, J., Popović, M., Solla, A., Tomšovský, M., & Jankovský, L. (2020). Growth Rates of Lymantria dispar Larvae and Quercus robur Seedlings at Elevated CO2 Concentration and Phytophthora plurivora Infection. Forests, 11(10), 1059. https://doi.org/10.3390/f11101059