The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3)
2.2. Data Preparation
2.2.1. Preparation of Inventory Data
2.2.2. Development of Growth Curves and Determination of Age
2.3. Harvesting Scenarios
2.4. Distribution of Felling by Forest Types and Age Classes
2.5. Evaluation of the Model Simulations
3. Results
4. Discussion
4.1. The Impact of Harvesting on Carbon Stock Dynamics in Slovenian Forests
4.2. Sources of Uncertainty
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Pugh, T.A.; Lindeskog, M.; Smith, B.; Poulter, B.; Arneth, A.; Haverd, V.; Calle, L. Role of forest regrowth in global carbon sink dynamics. Proc. Natl. Acad. Sci. USA 2019, 116, 4382–4387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellison, D.; Morris, C.E.; Locatelli, B.; Sheil, D.; Cohen, J.; Murdiyarso, D.; Gutierrez, V.; Noordwijk, M.V.; Creed, I.F.; Pokorny, J.; et al. Trees, forests and water: Cool insights for a hot world. Glob. Environ. Chang. 2017, 43, 51–61. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.A.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A Large and Persistent Carbon Sink in the World’s Forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Obergassel, W.; Arens, C.; Hermwille, L.; Kreibich, N.; Mersmann, F.; Ott, H.E.; Wang-Helmreich, H. Phoenix from the Ashes: An Analysis of the Paris Agreement to the United Nations Framework Convention on Climate Change-Part 1; Wuppertal Institute for Climate, Environment and Energy: Wupertal, Germany, 2015; Volume 27, pp. 243–262. [Google Scholar]
- Rogelj, J.; Den Elzen, M.; Höhne, N.; Fransen, T.; Fekete, H.; Winkler, H.; Schaeffer, R.; Sha, F.; Riahi, K.; Meinshausen, M. Paris Agreement climate proposals need a boost to keep warming well below 2 C. Nature 2016, 534, 631–639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Impact Assessment. Commission Staff Working Document: Proposal for a Regulation of the European Parliament and of the Council on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry into the 2030 Climate and Energy Framework and Amending Regulation No 525/2013 of the European Parliament and the Council on a Mechanism for Monitoring and Reporting Greenhouse Gas Emissions and other Information Relevant to Climate Change. 2016. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/PDF/?uri=CELEX:52016SC0249&from=EN (accessed on 6 October 2016).
- EU. Regulation (EU) 2018/841 of the European Parliament and of the Council of 30 May 2018 on the Inclusion of Greenhouse Gas Emissions and Removals from Land Use, Land Use Change and Forestry in the 2030 Climate and Energy Framework, and Amending Regulation (EU) No 525/2013 and Decision No 529/2013/EU. 2018. Available online: http://data.europa.eu/eli/reg/2018/841/oj (accessed on 21 June 2018).
- Alvarez, S.; Ortiz, C.; Díaz-Pinés, E.; Rubio, A. Influence of tree species composition, thinning intensity and climate change on carbon sequestration in Mediterranean mountain forests: A case study using the CO2Fix model. Mitig. Adapt. Strateg. Glob. Chang. 2016, 21, 1045–1058. [Google Scholar] [CrossRef]
- SFS. Annual Forest Report; Slovenian Forest Service: Ljubljana, Slovenia, 2018; p. 135. (In Slovene) [Google Scholar]
- Poje, A.; Malovrh, Š.P.; Krč, J. Factors affecting harvesting intensity in small-scale private forests in Slovenia. Small-Scale For. 2016, 15, 73–91. [Google Scholar] [CrossRef]
- Marinšek, A.; Celarc, B.; Grah, A.; Kokalj, Ž.; Nagel, T.A.; Ogris, N.; Oštir, K.; Planinšek, Š.; Roženbergar, D.; Veljanovski, T.; et al. Impacts of ice storms on forest development—A review. Gozdarski Vestnik 2015, 73, 392–405, (In Slovene with English Summary). [Google Scholar]
- de Groot, M.; Ogris, N. Short-term forecasting of bark beetle outbreaks on two economically important conifer tree species. For. Ecol. Manag. 2019, 450, 117495. [Google Scholar] [CrossRef]
- MAFF. Operational Program for the Implementation of the National Forest Programme 2017–2021; Ministry of Agriculture, Forestry and Food: Ljubljana, Slovenia, 2017. (In Slovene)
- Klopčič, M.; Jerina, K.; Boncina, A. Long-term changes of structure and tree species composition in Dinaric uneven-aged forests: Are red deer an important factor? Eur. J. For. Res. 2010, 129, 277–288. [Google Scholar] [CrossRef]
- Klopcic, M.; Poljanec, A.; Gartner, A.; Boncina, A. Factors related to natural disturbances in mountain Norway spruce (Picea abies) forests in the Julian Alps. Ecoscience 2009, 16, 48–57. [Google Scholar] [CrossRef]
- Poljanec, A.; Kadunc, A. Quality and timber value of European beech (Fagus sylvatica L.) trees in the Karavanke region. Croat. J. For. Eng. J. Theory Appl. For. Eng. 2013, 34, 151–165. [Google Scholar]
- Jeffries, J.M.; Marquis, R.J.; Forkner, R.E. Forest age influences oak insect herbivore community structure, richness, and density. Ecol. Appl. 2006, 16, 901–912. [Google Scholar] [CrossRef] [Green Version]
- Luyssaert, S.; Schulze, E.-D.; Börner, A.; Knohl, A.; Hessenmöller, D.; Law, B.E.; Ciais, P.; Grace, J. Old-growth forests as global carbon sinks. Nature 2008, 455, 213–215. [Google Scholar] [CrossRef]
- Ferranti, F. Energy Wood: A Challenge for European Forests. Potentials, Environmental Implications, Policy Integration Andrelated Conflicts; EFI Technical Report 95; European Forest Institute: Joensuu, Finland, 2014; Available online: https://efi.int/sites/default/files/files/publication-bank/2018/tr_95.pdf (accessed on 25 March 2020).
- Lauri, P.; Kallio, A.M.I.; Schneider, U.A. Price of CO2 emissions and use of wood in Europe. For. Policy Econ. 2012, 15, 123–131. [Google Scholar] [CrossRef]
- Mäkelä, A.; Landsberg, J.; Ek, A.R.; Burk, T.E.; Ter-Mikaelian, M.; Ågren, G.I.; Oliver, C.D.; Puttonen, P. Process-based models for forest ecosystem management: Current state of the art and challenges for practical implementation. Tree Physiol. 2000, 20, 289–298. [Google Scholar] [CrossRef]
- Sands, P.J.; Battaglia, M.; Mummery, D. Application of process-based models to forest management: Experience with PROMOD, a simple plantation productivity model. Tree Physiol. 2000, 20, 383–392. [Google Scholar] [CrossRef] [Green Version]
- Kurz, W.A.; Dymond, C.C.; White, T.M.; Stinson, G.; Shaw, C.H.; Rampley, G.J.; Smyth, C.; Simpson, B.N.; Neilson, E.T.; Trofymow, J.A.; et al. CBM-CFS3: A model of carbon-dynamics in forestry and land-use change implementing IPCC standards. Ecol. Model. 2009, 220, 480–504. [Google Scholar] [CrossRef]
- Kull, S.J.; Rampley, G.J.; Morken, S.; Metsaranta, J.; Neilson, E.T.; Kurz, W. Operational-Scale Carbon Budget Model of the Canadian Forest Sector (CBM-CFS3) Version 1.2: User’s Guide; Natural Resources Canada, Canadian Forest Service, Northern Forestry Centre: Edmonton, AB, Canada, 2016; p. 346.
- Kurz, W.A.; Dymond, C.C.; Stinson, G.; Rampley, G.J.; Neilson, E.T.; Carroll, A.L.; Ebata, T.; Safranyik, L. Mountain pine beetle and forest carbon feedback to climate change. Nature 2008, 452, 987–990. [Google Scholar] [CrossRef]
- Stinson, G.; Kurz, W.A.; Smyth, C.E.; Neilson, E.T.; Dymond, C.C.; Metsaranta, J.M.; Boisvenue, C.; Rampley, G.J.; Li, Q.; White, T.M.; et al. An inventory-based analysis of Canada’s managed forest carbon dynamics, 1990 to 2008. Glob. Chang. Biol. 2011, 17, 2227–2244. [Google Scholar] [CrossRef] [Green Version]
- Kim, M.; Lee, W.; Kurz, W.; Kwak, D.; Morken, S.; Smyth, C.; Ryu, D. Estimating carbon dynamics in forest carbon pools under IPCC standards in South Korea using CBM-CFS3. iForest 2017, 10, 83–92. [Google Scholar] [CrossRef] [Green Version]
- Zamolodchikov, D.G.; Grabovsky, V.I.; Korovin, G.N.; Kurz, W.A. Assessment and projection of carbon budget in forests of Vologda Region using the Canadian model CBM-CFS. Lesovedenie 2008, 6, 3–14, (In Russian with English Summary). [Google Scholar]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Smyth, C.E.; Blujdea, V. Application of the CBM-CFS3 model to estimate Italy’s forest carbon budget, 1995–2020. Ecol. Model. 2013, 266, 144–171. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Fiorese, G.; Cescatti, A. The European forest sector: Past and future carbon budget and fluxes under different management scenarios. Biogeosciences 2017, 14, 2387–2405. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Kurz, W.A.; Apps, M.J.; Beukema, S.J. Belowground biomass dynamics in the Carbon Budget Model of the Canadian Forest Sector: Recent improvements and implications for the estimation of NPP and NEP. Can. J. For. Res. 2003, 33, 126–136. [Google Scholar] [CrossRef]
- Bončina, A. Comparison of structure and biodiversity in the Rajhenav virgin forest remnant and managed forest in the Dinaric region of Slovenia. Glob. Ecol. Biogeogr. 2000, 9, 201–211. [Google Scholar] [CrossRef]
- Kovač, M.; Hočevar, M. Short Description of Forest Inventories and Control Sampling Method Around the World and in Slovenia. In Control Sampling Method in Slovenia—History, Characteristic and Use; Studia forestalia Slovenica, Slovenian Forestry Institute: Ljubljana, Slovenia, 2010; Volume 136, pp. 7–10. [Google Scholar]
- Kutnar, L.; Veselič, Ž.; Dakskobler, I.; Robič, D. Typology of Slovenian forest sites according to ecological and vegetation conditions for the purposes of forest management. Gozdarski Vestnik 2012, 70, 195–214, (In Slovene with English Summary). [Google Scholar]
- SFS. Annual Forest Report; Slovenian Forest Service: Ljubljana, Slovenia, 2005; p. 114. (In Slovene) [Google Scholar]
- Ministry of the Environment and Spatial Planning, Slovenian Environment Agency. Slovenia’s National Inventory Report 2020. In GHG Emissions Inventories 1986–2018: Submitted under the United nations Framework Convention on Climate Change; Ministry of the Environment and Spatial Planning, Slovenian Environment Agency: Ljubljana, Slovenia, 2020. Available online: https://unfccc.int/documents/194894 (accessed on 20 August 2020).
- De Myttenaere, A.; Golden, B.; Le Grand, B.; Rossi, F. Mean absolute percentage error for regression models. Neurocomputing 2016, 192, 38–48. [Google Scholar] [CrossRef] [Green Version]
- European Commission. Forest Reference Levels Proposed by EU Member States; Commission Expert Group on Land Use Land Use Change and Forestry: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/clima/sites/clima/files/forests/lulucf/docs/frl_proposed_by_ms_en.pdf (accessed on 20 March 2020).
- Kim, H.; Kim, Y.-H.; Kim, R.; Park, H. Reviews of forest carbon dynamics models that use empirical yield curves: CBM-CFS3, CO2FIX, CASMOFOR, EFISCEN. For. Sci. Technol. 2015, 11, 212–222. [Google Scholar] [CrossRef]
- Pilli, R.; Grassi, G.; Kurz, W.A.; Viñas, R.A.; Guerrero, N.H. Modelling forest carbon stock changes as affected by harvest and natural disturbances. I. Comparison with countries’ estimates for forest management. Carbon Balance Manag. 2016, 11, 5. [Google Scholar] [CrossRef] [Green Version]
- Bernier, P.; Guindon, L.; Kurz, W.; Stinson, G. Reconstructing and modelling 71 years of forest growth in a Canadian boreal landscape: A test of the CBM-CFS3 carbon accounting model. Can. J. For. Res. 2010, 40, 109–118. [Google Scholar] [CrossRef]
- Tomppo, E.; Gschwantner, T.; Lawrence, M.; McRoberts, R.E.; Gabler, K.; Schadauer, K.; Vidal, C.; Lanz, A.; Ståhl, G.; Cienciala, E. National forest inventories. In Pathways for Common Reporting; Springer: Dordrecht, The Netherlands, 2010; pp. 541–553. [Google Scholar] [CrossRef]
- Jevšenak, J.; Skudnik, M. A random forest model for basal area increment predictions from national forest inventory data. For. Ecol. Manag. 2020, 479, 118601. [Google Scholar] [CrossRef]
- Kovač, M.; Bauer, A.; Ståhl, G. Merging national forest and national forest health inventories to obtain an integrated forest resource inventory–experiences from Bavaria, Slovenia and Sweden. PLoS ONE 2014, 9, e100157. [Google Scholar] [CrossRef]
- Taylor, A.R.; Wang, J.R.; Kurz, W.A. Effects of harvesting intensity on carbon stocks in eastern Canadian red spruce (Picea rubens) forests: An exploratory analysis using the CBM-CFS3 simulation model. For. Ecol. Manag. 2008, 255, 3632–3641. [Google Scholar] [CrossRef]
- Kallio, A.M.I.; Solberg, B.; Käär, L.; Päivinen, R. Economic impacts of setting reference levels for the forest carbon sinks in the EU on the European forest sector. For. Policy Econ. 2018, 92, 193–201. [Google Scholar] [CrossRef]
- Kirby, K.R.; Potvin, C. Variation in carbon storage among tree species: Implications for the management of a small-scale carbon sink project. For. Ecol. Manag. 2007, 246, 208–221. [Google Scholar] [CrossRef]
- Schulze, E.D.; Sierra, C.A.; Egenolf, V.; Woerdehoff, R.; Irslinger, R.; Baldamus, C.; Stupak, I.; Spellmann, H. The climate change mitigation effect of bioenergy from sustainably managed forests in Central Europe. GCB Bioenergy 2020, 12, 186–197. [Google Scholar] [CrossRef]
- Bösch, M.; Elsasser, P.; Rock, J.; Weimar, H.; Dieter, M. Extent and costs of forest-based climate change mitigation in Germany: Accounting for substitution. Carbon Manag. 2019, 10, 127–134. [Google Scholar] [CrossRef]
- Klos, R.J.; Wang, G.G.; Dang, Q.-L.; East, E.W. Taper Equations for Five Major Commercial Tree Species in Manitoba, Canada. West. J. Appl. For. 2007, 22, 163–170. [Google Scholar] [CrossRef]
- Knauf, M.; Joosten, R.; Frühwald, A. Assessing fossil fuel substitution through wood use based on long-term simulations. Carbon Manag. 2016, 7, 67–77. [Google Scholar] [CrossRef]
- Schweinle, J.; Köthke, M.; Englert, H.; Dieter, M. Simulation of forest-based carbon balances for Germany: A contribution to the ‘carbon debt’ debate. WIREs Energy Environ. 2018, 7, e260. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
Short | Forest Type | Climate Unit | Total Share | BRD | CON | MIX |
---|---|---|---|---|---|---|
FT1 | Forests of Salix spp. with Populus spp., forests of Alnus glutinosa and of A. incana | Slovenia CLU35 | 0.02 | 0.04 | 0.01 | 0.95 |
FT2 | Forests of Carpinus betulus and of Quercus petraea on carbonate and mixed bedrock | Slovenia CLU45 | 0.07 | <0.01 | <0.01 | 0.99 |
FT3 | Forests of Carpinus betulus with Quercus petraea on silicate bedrock | Slovenia CLU45 | <0.01 | <0.01 | <0.01 | 0.99 |
FT4 | Submontane Fagus sylvatica forests on carbonate and mixed bedrock | Slovenia CLU55 | 0.16 | <0.01 | <0.01 | 0.99 |
FT5 | Submontane Fagus sylvatica forests on silicate bedrock | Slovenia CLU45 | 0.16 | <0.01 | <0.01 | 0.99 |
FT6 | Montane, altimontane and subalpine Fagus sylvatica forests on carbonate and mixed bedrock | Slovenia CLU55 | 0.13 | <0.01 | 0.01 | 0.99 |
FT7 | Montane and altimontane Fagus sylvatica forests on silicate bedrock | Slovenia CLU54 | 0.08 | 0.01 | 0.02 | 0.97 |
FT8 | Forests of Fagus sylvatica with Abies alba | Slovenia CLU55 | 0.14 | 0.01 | 0.01 | 0.98 |
FT9 | Forests of Acer spp., of Fraxinus excelsior and of Tilia spp. | Slovenia CLU55 | <0.01 | 0.01 | 0.01 | 0.98 |
FT10 | Thermophilous Fagus sylvatica forests | Slovenia CLU55 | 0.06 | 0.01 | 0.01 | 0.98 |
FT11 | Forests and woodlands of thermophilous broadleaves | Slovenia CLU56 | 0.08 | <0.01 | 0.02 | 0.98 |
FT12 | Forest of Pinus sylvestirs and of Pinus nigra | Slovenia CLU55 | 0.02 | <0.01 | 0.02 | 0.98 |
FT13 | Forests of Abies alba and of Picea abies on carbonate and mixed bedrock | Slovenia CLU54 | 0.01 | <0.01 | 0.10 | 0.90 |
FT14 | Forests of Abies alba and of Picea abies on silicate bedrock | Slovenia CLU54 | 0.04 | <0.01 | 0.06 | 0.94 |
FT15 | Forests of Larix decidua and Woodlands of Pinus mugo | Slovenia CLU54 | 0.01 | 0 | 0 | 1.00 |
Age Class | Age | Share |
---|---|---|
AGEID00 | 0–20 | 0.000 |
AGEID01 | 21–40 | 0.001 |
AGEID02 | 41–60 | 0.001 |
AGEID03 | 61–80 | 0.019 |
AGEID04 | 81–100 | 0.233 |
AGEID05 | 101–120 | 0.431 |
AGEID06 | 121–140 | 0.230 |
AGEID07 | 141–160 | 0.070 |
AGEID08 | 161–180 | 0.010 |
AGEID09 | 181+ | 0.006 |
Pool | Year | BAU | HAZ | HH | LH | PLAN | UNFCCC |
---|---|---|---|---|---|---|---|
Aboveground Biomass | 2014 | 92,449,926 | 91,937,056 | 91,620,158 | 92,609,249 | 91,904,714 | 95,569,258 |
2015 | 93,472,363 | 91,947,659 | 91,842,930 | 93,812,247 | 92,367,470 | 96,646,110 | |
2016 | 94,460,483 | 92,135,505 | 92,136,303 | 95,028,069 | 92,837,497 | 97,694,381 | |
2017 | 95,475,138 | 92,412,609 | 92,465,503 | 96,225,439 | 93,311,079 | 98,824,962 | |
2018 | 96,436,244 | 92,809,421 | 92,543,887 | 97,376,402 | 93,743,549 | 99,857,742 | |
Belowground Biomass | 2014 | 20,374,144 | 20,264,093 | 20,201,345 | 20,405,736 | 20,260,448 | 21,945,152 |
2015 | 20,484,398 | 20,198,478 | 20,188,414 | 20,555,456 | 20,261,042 | 22,203,899 | |
2016 | 20,591,113 | 20,189,400 | 20,197,102 | 20718664 | 20,293,635 | 22,456,301 | |
2017 | 20,722,173 | 20,179,104 | 20,187,943 | 20,874,974 | 20,337,153 | 22,727,850 | |
2018 | 20,826,925 | 20,201,283 | 20,154,696 | 21,013,010 | 20,345,674 | 22,977,130 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jevšenak, J.; Klopčič, M.; Mali, B. The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia. Forests 2020, 11, 1090. https://doi.org/10.3390/f11101090
Jevšenak J, Klopčič M, Mali B. The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia. Forests. 2020; 11(10):1090. https://doi.org/10.3390/f11101090
Chicago/Turabian StyleJevšenak, Jernej, Matija Klopčič, and Boštjan Mali. 2020. "The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia" Forests 11, no. 10: 1090. https://doi.org/10.3390/f11101090
APA StyleJevšenak, J., Klopčič, M., & Mali, B. (2020). The Effect of Harvesting on National Forest Carbon Sinks up to 2050 Simulated by the CBM-CFS3 Model: A Case Study from Slovenia. Forests, 11(10), 1090. https://doi.org/10.3390/f11101090