Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data Collection
2.3. Data Processing
2.3.1. Image Preprocessing
2.3.2. Seamless Image Mosaicking
2.4. Land-Use Land Cover Extraction and Classification
2.4.1. Oil Palm Plantations Mapping (Manual Extraction)
2.4.2. Land Cover Classification
2.5. Assessing Land Cover Change Driven by Oil Palm Plantation
2.6. Calculation of Annual Carbon Emission and Uptake
3. Results
3.1. Land Use Classification Accuracy
3.2. Forest and Peatland Changes
3.3. Oil Palm Plantation Changes
3.4. Peat Characteristics on Oil Palm Cultivation
3.5. Annual Oil Palm, Forest, and Peatlands CO2 Emissions and Uptake
4. Discussion
4.1. Forest Cover Loss and Oil Palm Development
4.2. CO2 Related from Forest Converted for Oil Palm Plantations and from Peatland
4.3. Peatland Depth Characteristics and Relationship with Palm Oil Production and CO2 Emission
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Shevade, V.S.; Loboda, T.V. Oil palm plantations in Peninsular Malaysia: Determinants and constraints on expansion. PLoS ONE 2019, 14, e0210628. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gunarso, P.; Hartoyo, M.E.; Agus, F.; Killeen, T.J. Oil Palm and Land Use Change in Indonesia, Malaysia and Papua New Guinea. Reports from the Technical Panels of the 2nd Greenhouse Gas Working Group of the Roundtable on Sustainable Palm Oil (RSPO). 2013, pp. 29–64. Available online: https://www.tropenbos.org/resources/publications/oil+palm+and+land+use+change+in+indonesia,+malaysia+and+papua+new+guinea (accessed on 1 March 2020).
- Austin, K.G.; Mosnier, A.; Pirker, J.; McCallum, I.; Fritz, S.; Kasibhatla, P.S. Shifting patterns of oil palm driven deforestation in Indonesia and implications for zero-deforestation commitments. Land Use Policy 2017, 69, 41–48. [Google Scholar] [CrossRef] [Green Version]
- Jaafar, W.S.W.M.; Maulud, K.N.A.; Kamarulzaman, A.M.M.; Raihan, A.; Md Sah, S.; Ahmad, A.; Saad, S.N.M.; Azmi, A.T.M.; Syukri, N.K.A.J.; Khan, W.R. The Influence of Deforestation on Land Surface Temperature—A Case Study of Perak and Kedah, Malaysia. Forests 2020, 11, 670. [Google Scholar] [CrossRef]
- Amarthalingam, S. Plantations main drivers of deforestation in Sabah, Sarawak. The Edge Financial Daily. 16 January 2017. Available online: https://www.theedgemarkets.com/article/plantations-main-drivers-deforestation-sabah-sarawak (accessed on 1 January 2020).
- Hansen, T.S. Spatio-temporal aspects of land use and land cover changes in the Niah catchment, Sarawak, Malaysia. Singap. J. Trop. Geogr. 2005, 26, 170–190. [Google Scholar] [CrossRef]
- Ramdani, F.; Hino, M. Land use changes and GHG emissions from tropical forest conversion by oil palm plantations in Riau Province, Indonesia. PLoS ONE 2013, 8, e70323. [Google Scholar] [CrossRef] [Green Version]
- Schrier-Uijl, A.P.; Silvius, M.; Parish, F.; Lim, K.H.; Rosediana, S.; Anshari, G. Environmental and social impacts of oil palm cultivation on tropical peat: A scientific review. In Proceedings of the Roundtable of Sustainable Palm Oil, Kuala Lumpur, Malaysia, 19 November 2013; pp. 131–168. [Google Scholar]
- Seegräf, M.; May, D.; Breuer, T.; Schukat, P. Palm oil—Sustainability is possible! In Promotion and Certification of Smallholders Helps Sustainable Palm Oil Production; Federal Ministry for the Environment, Nature Conservation and Nucleur Safety of the Federal Republic of Germany: Eschborn, Germany, 2010. [Google Scholar]
- WWF. Land Use and the Oil Palm Industry in Malaysia. 2000. Available online: http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Land+Use+and+the+Oil+Palm+Industry+in+Malaysia–3 (accessed on 10 December 2019).
- Yusuf, A. Malaysia to Cap 6.5 m ha of Oil Palm Plantations by 2023. New Straits Times. 4 March 2019. Available online: https://www.nst.com.my/business/2019/03/466143/malaysia-cap-65m-ha-oil-palm-plantations-2023 (accessed on 1 March 2020).
- Koh, L.P.; Miettinen, J.; Liew, S.C.; Ghazoul, J. Remotely sensed evidence of tropical peatland conversion to oil palm. Proc. Natl. Acad. Sci. USA 2011, 108, 5127–5132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Miettinen, J.; Shi, C.; Liew, S.C. Land cover distribution in the peatlands of Peninsular Malaysia, Sumatra and Borneo in 2015 with changes since 1990. Glob. Ecol. Conserv. 2016, 6, 67–78. [Google Scholar] [CrossRef] [Green Version]
- Gaveau, D.L.; Sheil, D.; Salim, M.A.; Arjasakusuma, S.; Ancrenaz, M.; Pacheco, P.; Meijaard, E. Rapid conversions and avoided deforestation: Examining four decades of industrial plantation expansion in Borneo. Sci. Rep. 2016, 6, 32017. [Google Scholar] [CrossRef] [PubMed]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Kommareddy, A. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chong, K.L.; Kanniah, K.D.; Pohl, C.; Tan, K.P. A review of remote sensing applications for oil palm studies. Geo-Spat. Inf. Sci. 2017, 20, 184–200. [Google Scholar] [CrossRef] [Green Version]
- Kamlun, K.U.; Goh, M.H.; Teo, S.; Tsuyuki, S.; Phua, M.H. Monitoring of deforestation and fragmentation in Sarawak, Malaysia between 1990 and 2009 using Landsat and SPOT images. J. For. Environ. Sci. 2012, 28, 152–157. [Google Scholar] [CrossRef] [Green Version]
- Hamzah, K.A.; Malik, R.A.; Joseph, K.T. Malaysia: Land- Use Change in the Oil Palm Sector. In Proceedings of the 9th Annual Roundtable Meeting on Sustainable Palm Oil, Sabah, Malaysia, 22 November 2013. [Google Scholar]
- MPOB. The Malaysian Palm Oil Facts. 2018. Available online: http://www.mpob.gov.my (accessed on 3 February 2020).
- Osman, R.; Phua, M.H.; Ling, Z.Y.; Kamlun, K.U. Monitoring of Deforestation Rate and Trend in Sabah between 1990 and 2008 Using Multitemporal Landsat Data. J. For. Environ. Sci. 2012, 28, 144–151. [Google Scholar] [CrossRef]
- Uning, R.; Latif, M.T.; Othman, M.; Juneng, L.; Hanif, N.M.; Nadzir, M.S.M.; Maulud, K.N.A.; Jaafar, W.S.W.M.; Said, N.F.S.; Ahamad, F.; et al. A Review of Southeast Asian Oil Palm and Its CO2 Fluxes. Sustainability 2020, 12, 5077. [Google Scholar] [CrossRef]
- Hergoualc’h, K.; Verchot, L.V. Stocks and fluxes of carbon associated with land use change in Southeast Asian tropical peatlands: A review. Glob. Biogeochem. Cycles 2011, 25. [Google Scholar] [CrossRef] [Green Version]
- Gibbs, H.K.; Ruesch, A.S.; Achard, F.; Clayton, M.K.; Holmgren, P.; Ramankutty, N.; Foley, J.A. Tropical forests were the primary sources of new agricultural land in the 1980s and 1990s. Proc. Natl. Acad. Sci. USA 2010, 107, 16732–16737. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cooper, H.V.; Evers, S.; Aplin, P.; Crout, N.; Dahalan, M.P.B.; Sjogersten, S. Greenhouse gas emissions resulting from conversion of peat swamp forest to oil palm plantation. Nat. Commun. 2020, 11, 1–8. [Google Scholar]
- Canadell, J.G.; Le Quéré, C.; Raupach, M.R.; Field, C.B.; Buitenhuis, E.T.; Ciais, P.; Marland, G. Contributions to accelerating atmospheric CO2 growth from economic activity, carbon intensity, and efficiency of natural sinks. Proc. Natl. Acad. Sci. USA 2007, 104, 18866–18870. [Google Scholar] [CrossRef] [Green Version]
- Town & Regional Planning Department of Sabah. Sabah Structure Plan 2033; Ministry of Local Government and Housing: Town and Regional Planning Department: Kota Kinabalu, Malaysia, 2016. Available online: http://www.townplanning.sabah.gov.my (accessed on 1 December 2019).
- Forest Department of Sarawak. Forest Research & Development. Available online: https://forestry.sarawak.gov.my/ (accessed on 1 December 2019).
- Federal Department of Town and Country Planning Peninsular Malaysia. National Physical Plan-3; Ministry of Urban Wellbeing, Housing and Local Government: Kuala Lumpur, Malaysia, 2016. Available online: https://www.melaka.gov.my/ms/koleksi-media/penerbitan/lain-lain/lampiran-ll/rancangan-fizikal-negara-ke-3-rfn3 (accessed on 1 December 2019).
- USGS Global Visualization Viewer (GloVis). Available online: http://glovis.usgs.gov (accessed on 10 November 2019).
- Food and Agriculture Organization–FAO. FAO/IIASA/ISRIC/ISSCAS/JRC, Harmonized World Soil Database (Version 1.1); FAO: Rome, Italy; IIASA: Laxenburg, Austria, 2009. [Google Scholar]
- Geosystems. Haze Reduction, Atmospheric and Topographic Correction. In User Manual ATCOR2 and ATCOR3; Geosystems GmbH: Geneva, Switzerland, 2013. [Google Scholar]
- ERDAS Imagine 2018; Hexagon Geospatial: Norcross, GA, USA; Peachtree Corners Circle Norcross: Norcross, GA, USA, 2018.
- ESRI. ArcGIS Desktop: Release 10; Environmental Systems Research Institute: Redlands, CA, USA, 2016. [Google Scholar]
- Zhu, Z.; Woodcock, C.E. Object-based cloud and cloud shadow detection in Landsat imagery. Remote Sens. Environ. 2012, 118, 83–94. [Google Scholar] [CrossRef]
- ENVI 5.3. Exelis Visual Information Solutions; Harris Geospatial Corporation: Boulder, CO, USA, 2010. [Google Scholar]
- Carlson, K.M.; Curran, L.M.; Asner, G.P.; Pittman, A.M.; Trigg, S.N.; Adeney, J.M. Carbon emissions from forest conversion by Kalimantan oil palm plantations. Nat. Clim. Chang. 2013, 3, 283–287. [Google Scholar] [CrossRef]
- Miettinen, J.; Hooijer, A.; Tollenaar, D.; Page, S.; Malins, C.; Vernimmen, R.; Liew, S.C. Historical Analysis and Projection of Oil Palm Plantation Expansion on Peatland in Southeast Asia. ICCT White Paper. 17 February 2012, pp. 1–51. Available online: https://theicct.org/sites/default/files/publications/ICCT_palm-expansion_Feb2012.pdf (accessed on 14 March 2020).
- GeoRSPO. Roundtable on Sustainable Palm Oil. Available online: https://rspo.org/members/georspo (accessed on 10 November 2019).
- See, L.; Bayas, J.C.L.; Schepaschenko, D.; Perger, C.; Dresel, C.; Maus, V.; Salk, C.; Weichselbaum, J.; Lesiv, M.; McCallum, I.; et al. LACO-Wiki: A New Online Land Cover Validation Tool Demonstrated Using GlobeLand30 for Kenya. Remote Sens. 2017, 9, 754. [Google Scholar] [CrossRef] [Green Version]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V.; Arunarwati, B.; Stolle, F.; Pittman, K. Quantifying changes in the rates of forest clearing in Indonesia from 1990 to 2005 using remotely sensed data sets. Environ. Res. Lett. 2009, 4, 034001. [Google Scholar] [CrossRef]
- Talukdar, S.; Singha, P.; Mahato, S.; Pal, S.S.; Liou, Y.A.; Rahman, A. Land-use land-cover classification by machine learning classifiers for satellite observations-A review. Remote Sens. 2020, 12, 1135. [Google Scholar] [CrossRef] [Green Version]
- Food and Agriculture Organization GeoNetwork. Available online: http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ (accessed on 11 November 2019).
- Maxwell, A.E.; Warner, T.A.; Fang, F. Implementation of machine-learning classification in remote sensing: An applied review. Int. J. Remote Sens. 2018, 39, 2784–2817. [Google Scholar] [CrossRef] [Green Version]
- Srivastava, P.K.; Han, D.; Rico-Ramirez, M.A.; Bray, M.; Islam, T. Selection of classification techniques for land use/land cover change investigation. Adv. Space Res. 2012, 50, 1250–1265. [Google Scholar] [CrossRef]
- Bouaziz, M.; Eisold, S.; Guermazi, E. Semiautomatic approach for land cover classification: A remote sensing study for arid climate in southeastern Tunisia. Euro-Mediterr. J. Environ. Integr. 2017, 2, 24. [Google Scholar] [CrossRef] [Green Version]
- Manning, F.C.; Kho, L.K.; Hill, T.C.; Cornulier, T.; Teh, Y.A. Carbon Emissions from Oil Palm Plantations on Peat Soil. Front. For. Glob. Chang. 2019, 2, 37. [Google Scholar] [CrossRef] [Green Version]
- Fowler, D.; Nemitz, E.; Misztal, P.; Di Marco, C.; Skiba, U.; Ryder, J.; Helfter, C.; Cape, J.N.; Owen, S.; Dorsey, J.; et al. Effects of land use on surface-atmosphere exchanges of trace gases and energy in Borneo: Comparing fluxes over oil palm plantations and a rainforest. Philos. Trans. R. Soc. B Biol. Sci. 2011, 366, 3196–3209. [Google Scholar] [CrossRef]
- Meléndez, M.R.; Ponce, W.P. Pollination in the oil palms Elaeis guineensis, E. oleifera and their hybrids (OxG), in tropical America. Pesqui. Agropecuária Trop. 2016, 46, 102–110. [Google Scholar] [CrossRef] [Green Version]
- Federal Department of Town and Country Planning Peninsular Malaysia. Third National Agricultural Policy (1998–2010) Executive Summary; Ministry of Agriculture: Kuala Lumpur, Malaysia, 1999; pp. 1–16. [Google Scholar]
- The Star. Cap on Oil Palm Estates Proposed. Available online: https://www.thestar.com.my/business/business-news/2019/03/06/cap-on-oil-palm-estates-proposed/ (accessed on 6 December 2019).
- MPOB. Oil Palm Planted Area. 2018. Available online: http://bepi.mpob.gov.my/images/area/2018/Area_summary.pdf (accessed on 6 December 2019).
- Meijaard, E.; Garcia-Ulloa, J.; Sheil, D.; Wich, S.A.; Carlson, K.M.; Juffe-Bignoli, D.; Brooks, T.M. Oil palm and biodiversity. In A Situation Analysis by the IUCN Oil Palm Task Force; IUCN Publication: Gland, Switzerland, 2018. [Google Scholar] [CrossRef]
- Ili, A. Only 7.9% of Private Oil Palm Plantations in Perak Are Registered with MSPO, Says Kok; The Star. Available online: https://www.thestar.com.my/news/nation/2019/12/14/only-79-of-private-oil-palm-plantations-in-perak-are-registered-with-mspo-says-kok (accessed on 14 December 2019).
- Phillips, V.D. Peatswamp ecology and sustainable development in Borneo. Biodivers. Conserv. 1998, 7, 651–671. [Google Scholar] [CrossRef]
- Global Oils and Fats Business Online. Managing Forests the Malaysian Way. Available online: http://gofbonline.com/managing-forests/ (accessed on 3 March 2020).
- Kaur, D. Palm Oil Is Not Cause of Deforestation, Says PM; The Malaysian Reserve. Available online: https://themalaysianreserve.com/2019/11/20/palm-oil-is-not-cause-of-deforestation-says-pm/ (accessed on 3 March 2020).
- Ying, T.X.; Dr M: Ban on Palm Oil Will Not Solve Deforestation. The Edge Markets. Available online: https://www.theedgemarkets.com/article/dr-m-ban-palm-oil-will-not-solve-deforestation (accessed on 3 March 2020).
- Sabah Forestry Department. Forest Policy. 2018. Available online: http://www.forest.sabah.gov.my/ (accessed on 1 December 2019).
- Veloo, R.; Van Ranst, E.; Selliah, P. Peat Characteristics and its Impact on Oil Palm Yield. NJAS Wagening J. Life Sci. 2015, 72, 33–40. [Google Scholar] [CrossRef]
- Kannan, P. Penyediaan Kawasan Bagi Tanaman Sawit; Risalah Sawit; MPOB: Kuala Lumpur, Malaysia, 2012; pp. 3–6. [Google Scholar]
- Malaysian Oil Palm Council (MPOC). Available online: http://mpoc.org.my/malaysian-peat-soils-are-different-from-temperate-peat-soils-and-have-lower-co2-emissions-2/ (accessed on 15 February 2020).
- Malaysia Palm Oil Board (MPOB). Tanah Gambut dan Tanaman Kelapa Sawit. Submitted work.
- Melling, L.; Goh, K.J.; Chaddy, A.; Hatano, R. Soil CO2 Fluxes from Different Ages of Oil Palm in Tropical Peatland of Sarawak, Malaysia. Trop. Peatl. Ecosyst. 2015, 982, 24–35. [Google Scholar]
- Parish, F.; Lim, S.S.; Perumal, B.; Giesen, W. RSPO Manual on Best Management Practices (BMPs): For Management and Rehabilitation of Natural Vegetation Associated with Oil Palm Cultivation on Peat; RSPO: Kuala Lumpur, Malaysia, 2012. [Google Scholar]
No | Source Data | Data Description | Data Characteristics | |
---|---|---|---|---|
1 | Landsat—5 1990 | Thematic Mapper ™ 30-m resolution | B1 (0.45–0.52) | B2 (0.52–0.60) |
B3 (0.63–0.69) | B4 (0.76–0.90) | |||
B5 (1.55–1.75) | B6 (10.40–12.50) | |||
B7 (2.09–2.35) | (Thermal) | |||
http://glovis.usgs.gov/ | ||||
2 | Landsat—8 2018 | Operational Land Images (OLI) and Thermal Infrared Sensor (TIRS) 30-m resolution | B1 (0.44–0.45) | B2 (0.45–0.51) |
B3 (0.53–0.59) | B4 (0.64–0.67) | |||
B5 (0.85–0.88) | B6 (1.57–1.65) | |||
B7 (2.11–2.29) | B8 (0.50–0.68) | |||
B9 (1.36–1.38) | B10 (10.60–11.19) | |||
B11 (11.50–12.51) (Thermal) | (Thermal) | |||
http://glovis.usgs.gov/ | ||||
3 | Department of Agriculture Sabah and Sarawak | Soil map (hardcopy) year 1990 for Sabah and Sarawak. | Department of Agriculture, Sabah Department of Agriculture, Sarawak | |
4 | The Food and Agriculture Organization (FAO)/United Nations Educational, Scientific, and Cultural Organization (UNESCO) | Extract peatland polygon layer based on Harmonized World Soil Map for Malaysia | http://www.fao.org/soils-portal/soil-survey/soil-maps-and-databases/faounesco-soil-map-of-the-world/en/ | |
5 | Malaysia Palm Oil Board (MPOB) | Oil Palm Plantation area statistical data in 2018 | http://bepi.mpob.gov.my/index.php/en/ | |
6 | Forest Department Sarawak and Sabah Forestry Department | Forest area statistical data in 1990 and 2018 | https://forestry.sarawak.gov.my/page-0-461-1170-tid.html Sabah Forestry Department Annual Report | |
7 | Roundtable on Sustainable Palm Oil (RSPO) | Oil palm concession | https://rspo.org/members/georspo | |
8 | Global Land Analysis & Discovery (GLAD) | Tree cover change data | https://data.globalforestwatch.org/datasets/tree-cover-loss-hansen-umd-google-usgs-nasa |
LULC Class | LULC Description |
---|---|
Oil Palm | This class includes all small- and large-scale oil palm plantations |
Forest | This class includes natural forest cover, permanent forest estate, national/state land forest, totally protected forest, wildlife sanctuaries, secondary forests, sparsely vegetated forests, i.e., shrubs and grass. |
Peatland | This class corresponds to peat swamp forest and wetland. |
Water | This class corresponds to a water body including rivers, lakes, and ponds. |
Built-up areas | This class includes settlement, bare land, industrial zones, and commercial development. |
Agriculture | This class covers all types of commercial crops and commodities besides oil palm such as rubber, cocoa, and paddy. |
Support Vector Machine Classification Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Class | 1990 | 2018 | ||||||
UA | PA | OE | CE | UA | PA | OE | CE | |
Oil Palm | 85.40 | 88.73 | 11.27 | 14.60 | 99.42 | 99.13 | 0.87 | 0.58 |
Forest | 97.40 | 96.50 | 3.50 | 2.60 | 92.63 | 92.86 | 7.14 | 7.37 |
Peatland | 69.35 | 63.27 | 36.75 | 30.65 | 93.82 | 94.19 | 5.81 | 6.18 |
Water | 100.00 | 100.00 | 0.00 | 0.00 | 100.00 | 100.00 | 0.00 | 0.00 |
Built-up Areas | 95.09 | 96.23 | 3.77 | 4.91 | 99.96 | 100.00 | 0.00 | 0.04 |
Agriculture | 74.78 | 57.72 | 42.28 | 25.22 | 97.51 | 97.51 | 2.49 | 2.49 |
Overall Accuracy | 90.13 | 97.75 | ||||||
Kappa Coefficients | 86.48 (0.86) | 97.07 (0.97) |
Support Vector Machine Classification Accuracy (%) | ||||||||
---|---|---|---|---|---|---|---|---|
Class | 1990 | 2018 | ||||||
UA | PA | OE | CE | UA | PA | OE | CE | |
Oil Palm | 87.19 | 95.52 | 4.48 | 12.81 | 97.96 | 97.04 | 2.96 | 2.04 |
Forest | 85.28 | 81.04 | 18.96 | 14.72 | 9793 | 98.49 | 1.51 | 2.07 |
Peatland | 83.14 | 51.78 | 48.22 | 16.86 | 96.58 | 96.01 | 3.99 | 3.42 |
Water | 100.00 | 88.54 | 11.46 | 0.00 | 100.00 | 98.44 | 1.56 | 0.00 |
Built-up Areas | 88.18 | 80.47 | 19.53 | 11.82 | 100.00 | 100.00 | 0.00 | 0.00 |
Agriculture | 83.87 | 54.17 | 45.83 | 16.13 | 80.93 | 86.07 | 13.93 | 19.07 |
Overall Accuracy | 86.57 | 97.40 | ||||||
Kappa Coefficients | 76.75 (0.77) | 95.81 (0.96) |
Type of Forest | Area (ha) | Forest Cover Change (1990–2018) (ha) | Forest Change (1990–2018) (%) | |
---|---|---|---|---|
Year 1990 | Year 2018 | |||
Forest | 9,459,020.72 | 8,270,100.69 | 1,188,920.03 | −12.57 |
Peatland | 1,657,120.21 | 1,317,969.07 | 339,151.14 | −20.47 |
Type of Forest | Area (ha) | Forest Cover Change (1990–2018) (ha) | Forest Change (1990–2018) (%) | |
---|---|---|---|---|
Year 1990 | Year 2018 | |||
Forest | 5,605,943.36 | 4,689,768.39 | 916,174.97 | −16.34 |
Peatland | 162,573.80 | 131,594.81 | 30,978.99 | −19.06 |
Year | Oil Palm | Oil Palm on Forest | Oil Palm on Peatland | Oil Palm on Other Land Use Agriculture Land | |||
---|---|---|---|---|---|---|---|
(ha) | % | (ha) | % | (ha) | % | ||
1990 | 366,799.43 | 635.60 | 0.2 | 197,323.47 | 54 | 168,840.36 | 46 |
2018 | 1,924,619.85 | 276,455.94 | 14 | 657,273.02 | 34 | 990,890.89 | 51 |
Oil Palm Cover Change (ha) | 1,557,820.42 | 275,820.34 | 18 | 459,949.55 | 30 | 822,050.53 | 53 |
Oil Palm Cover Change (%) | 81 | 99.8 | - | 70 | - | 83 | - |
Year | Oil Palm | Oil Palm on Forest | Oil Palm on Peatland | Oil Palm on Other Land Use Agriculture Land | |||
---|---|---|---|---|---|---|---|
(ha) | % | (ha) | % | (ha) | % | ||
1990 | 695,523.84 | 172,956.34 | 25 | 5321.01 | 1 | 517,246.49 | 74 |
2018 | 2,012,742.22 | 276,430.84 | 14 | 35,626.90 | 2 | 1,700,684.48 | 84 |
Oil Palm Cover Change (ha) | 1,317,218.38 | 103,474.5 | 8 | 30,305.89 | 2 | 1,183,437.99 | 90 |
Oil Palm Cover Change (%) | 65 | 37 | - | 85 | - | 70 | - |
States | Area (ha), Year 2018 | Flux, t CO2-C ha−1 yr−1 | Estimated Annual Carbon Emissions, Gt CO2-C yr−1 |
---|---|---|---|
Sarawak | 657,273.02 | 24 * | 0.01577 |
Sabah | 35,626.90 | 0.00086 | |
Total | 692,899.92 | 0.01663 |
States | Area (ha), Year 2018 | Flux, t CO2-C ha−1 yr−1 | Estimated Annual Carbon Uptake, Gt CO2-C yr−1 |
---|---|---|---|
Sarawak | 276,455.94 | 82 * | 0.02267 |
Sabah | 276,430.84 | 0.02267 | |
Total | 552,886.78 | 0.04533 |
States | Area (ha), Year 2018 | Flux, t CO2-C ha−1 yr−1 | Estimated Annual Carbon Uptake, Gt CO2-C yr−1 |
---|---|---|---|
Sarawak | 8,270,100.69 | 32 * | 0.26464 |
Sabah | 4,689,768.39 | 0.15007 | |
Total | 12,959,869.08 | 0.41471 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wan Mohd Jaafar, W.S.; Said, N.F.S.; Abdul Maulud, K.N.; Uning, R.; Latif, M.T.; Muhmad Kamarulzaman, A.M.; Mohan, M.; Pradhan, B.; Saad, S.N.M.; Broadbent, E.N.; et al. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests 2020, 11, 1285. https://doi.org/10.3390/f11121285
Wan Mohd Jaafar WS, Said NFS, Abdul Maulud KN, Uning R, Latif MT, Muhmad Kamarulzaman AM, Mohan M, Pradhan B, Saad SNM, Broadbent EN, et al. Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests. 2020; 11(12):1285. https://doi.org/10.3390/f11121285
Chicago/Turabian StyleWan Mohd Jaafar, Wan Shafrina, Nor Fitrah Syazwani Said, Khairul Nizam Abdul Maulud, Royston Uning, Mohd Talib Latif, Aisyah Marliza Muhmad Kamarulzaman, Midhun Mohan, Biswajeet Pradhan, Siti Nor Maizah Saad, Eben North Broadbent, and et al. 2020. "Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia" Forests 11, no. 12: 1285. https://doi.org/10.3390/f11121285
APA StyleWan Mohd Jaafar, W. S., Said, N. F. S., Abdul Maulud, K. N., Uning, R., Latif, M. T., Muhmad Kamarulzaman, A. M., Mohan, M., Pradhan, B., Saad, S. N. M., Broadbent, E. N., Cardil, A., Silva, C. A., & Takriff, M. S. (2020). Carbon Emissions from Oil Palm Induced Forest and Peatland Conversion in Sabah and Sarawak, Malaysia. Forests, 11(12), 1285. https://doi.org/10.3390/f11121285