Modeling Tree Diameter Growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon
Abstract
:1. Introduction
2. Materials and Methods
2.1. Characterization of the Study Area
2.2. Database and Sampling
2.3. DBH Growth Rate Modeling
2.3.1. Growth Model
2.3.2. Diameter Growth over Time
2.3.3. Uncertainty Analysis
3. Results
3.1. Fitted Growth Rate Model of B. excelsa Trees in the Different Forest Environments
3.2. Growth Time in the Different Forest Environments
4. Discussion
4.1. Growth Rate of B. excelsa Trees in the Old Growth Terra Firme and Secondary Forests
4.2. Assessing the Uncertainty Effect on the Growth Equations
4.3. Management Perspectives and Future Research
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Scolforo, H.F.; Scolforo, J.R.S.; Thiersch, C.R.; Thiersch, M.F.; Mctague, J.P.; Burkhart, H.; Ferraz Filho, A.C.; Mello, J.M.; Roise, J. A new model of tropical tree diameter growth rate and its application to identify fast-growing native tree species. For. Ecol. Manag. 2017, 400, 578–586. [Google Scholar] [CrossRef]
- Girardin, M.P.; Bouriaud, O.; Hogg, E.H.; Kurz, W.; Zimmermann, N.E.; Metsaranta, J.M.; Jong, R.; Frank, D.C.; Esper, J.; Buntgen, U.; et al. No growth stimulation of Canada´s boreal forets under half-century of combined warming and CO2 fertilization. Proc. Natl. Acad. Sci. USA 2016, 113, E8406–E8414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rosa, S.A.; Barbosa, A.C.M.C.; Junk, W.J.; Nunes da Cunha, C.; Piedade, M.T.F.; Scabin, A.B.; Ceccantini, G.C.T.; Schongart, J. Growth models based on tree-ring data for the Neotropical tree species Calophyllum brasiliense across different Brazilian wetlands: Implications for conservation and management. Trees 2016, 31, 729–742. [Google Scholar] [CrossRef]
- Foster, D.R.; Orwlg, D.A.; McLachlan, J.S. Ecological and conservation insights from reconstructive studies of temperate old-growth forests. Trends Ecol. Evol. 1996, 11, 419–424. [Google Scholar] [CrossRef]
- Kohl, M.; Neupane, P.R.; Lotfiomran, N. The impact of tree age on biomass growth and carbon accumulation capacity: A retrospective analysis using tree ring data of three tropical tree species grown in natural forests of Suriname. PLoS ONE 2017, 12, e0181187. [Google Scholar] [CrossRef] [PubMed]
- IBGE. Diretoria de Pesquisas, Coordenação de Agropecuária, Produção da Extração Vegetal e da Silvicultura; Instituto Brasileiro de Geografia e Estatística: Rio de Janeiro, Brazil, 2014. [Google Scholar]
- Ribeiro, M.B.N.; Jerozolimski, A.; Robert, P.; Salles, N.V.; Kayapó, B.; Pimentel, T.P.; Magnusson, W.E. Anthropogenic landscape in Southeastern Amazonia: Contemporary impacts of low-intensity harvesting and dispersal of brazil nuts by the Kayapó indigenous people. PLoS ONE 2014, 9, e102187. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bayma, M.M.A.; Malavazi, F.W.; Sá, C.P.; Fonseca, F.L.; Andrade, E.P.; Wadt, L.H.O. Aspectos da cadeia produtiva da castanha-do-brasil no estado do Acre, Brasil. Embrapa Amapá-Artig. Periódico Indexado (ALICE) 2014, 9, 417–426. [Google Scholar]
- Zuidema, P.A. Ecology and Management of the Brazil Nut Tree (Bertholletia Excelsa); Promab: Richmond, CA, USA, 2003; Volume 6, p. 111. [Google Scholar]
- Guedes, M.C.; Neves, E.S.; Gomes, E.; Paiva, P.M.; Costa, J.B.; Freitas, M.F.; Lemos, L.M. Castanha na roça: Expansão da produção e renovação dos castanhais em áreas de agricultura itinerante no Amapá, Brasil. Embrapa Amapá-Artig. Periódico Indexado (ALICE) 2014, 9, 381–398. [Google Scholar]
- Batista, A.P.B. Modelagem do Crescimento e Produção de Frutos da Castanheira da Amazônia. Ph.D. Dissertation, Federal University of Lavras, Lavras, Brazil, 2018. [Google Scholar]
- Peres, C.A.; Baider, C.; Zuidema, P.A.; Wadt, L.H.O.; Kainer, K.A.; Gomes-Silva, D.A.P.; Salomão, R.P.; Simões, L.L.; Francisiosi, E.R.N.; Valverde, F.C.; et al. Demographic threats to the sustainability of Brazil nut exploitation. Science 2003, 302, 2112–2114. [Google Scholar] [CrossRef] [Green Version]
- Wadt, L.H.O.; Kainer, K.A.; Staudhammer, C.L.; Serrano, R.O.P. Sustainable forest use in Brazilian extractive reserves: Natural regeneration of Brazil nut in exploited populations. Biol. Conserv. 2008, 141, 332–346. [Google Scholar] [CrossRef] [Green Version]
- Scoles, R.; Gribel, R. The regeneration of Brazil nut trees in relation to nut harvest intensity in the Trombetas River valley of Northern Amazonia, Brazil. For. Ecol. Manag. 2012, 265, 71–81. [Google Scholar] [CrossRef]
- Cotta, J.N.; Kainer, K.A.; Wadt, L.H.O.; Staudhamme, C.L.R. Shifting cultivation effects on Brazil nut (Bertholletia excelsa) regeneration. For. Ecol. Manag. 2008, 256, 28–35. [Google Scholar] [CrossRef]
- Paiva, P.M.; Guedes, M.C.; Funi, C. Brazil nut conservation through shifting cultivation. For. Ecol. Manag. 2011, 261, 508–514. [Google Scholar] [CrossRef] [Green Version]
- Scoles, R.; Gribel, R. Population structure of Brazil nut (Bertholletia excelsa, Lecythidaceae) stands in two areas with different occupation histories in the Brazilian Amazon. Hum. Ecol. 2011, 39, 455–464. [Google Scholar] [CrossRef]
- Porcher, V.; Thomas, E.; Gomringer, R.C.; Lozano, R.B. Fire- and distance-dependent recruitment of the Brazil nut in the Peruvian Amazon. For. Ecol. Manag. 2018, 427, 52–59. [Google Scholar] [CrossRef]
- Kainer, K.A.; Wadt, L.H.O.; Staudhammer, C.L. Explaining variation in Brazil nut fruit production. For. Ecol. Manag. 2007, 250, 244–255. [Google Scholar] [CrossRef]
- Cunha, T.A.; Finger, C.A.G.; Schneider, P.R. Linear mixed model to describe the basal area increment for individual cedro (Cedrela odorata L.) trees in occidental Amazon, Brazil. Ciência Florest. 2013, 23, 461–470. [Google Scholar] [CrossRef] [Green Version]
- Schongart, J.; Gribel, R.; Fonseca-Junior, S.F.; Haugaasen, T. Age and Growth Patterns of Brazil Nut Trees (Bertholletia excelsa Bonpl.) in Amazonia, Brazil. Biotropica 2015, 47, 550–558. [Google Scholar] [CrossRef]
- Orellana, E.; Figueiredo Filho, A.; Péllico Neto, S.; Vanclay, J.K. Predicting the dynamics of a native Araucaria forest using a distanceindependent individual tree-growth model. For. Ecosyst. 2016, 3, 12. [Google Scholar] [CrossRef] [Green Version]
- Sato, H. Simulation of the vegetation structure and function in a Malaysian tropical rain forest using the individual based dynamic vegetation model SEIB-DGVM. For. Ecol. Manag. 2009, 257, 2277–2286. [Google Scholar] [CrossRef]
- Subedi, N.; Sharma, M. Individual tree diameter growth models for black spruce and jack pine plantation in northern Ontario. For. Ecol. Manag. 2011, 261, 2140–2148. [Google Scholar] [CrossRef]
- Suberdi, N.; Sharma, M. Climate-diameter growth relationships of black spruce and jack pine trees in boreal Ontario, Canada. Glob. Chang. Biol. 2012, 19, 505–516. [Google Scholar] [CrossRef] [PubMed]
- Girona, M.M.; Morin, H.; Lussier, J.M.; Walsh, D. Radial Growth Response of Black Spruce Stands Ten Years after Experimental Shelterwoods and Seed-Tree Cuttings in Boreal Forest. Forests 2016, 7, 240. [Google Scholar] [CrossRef] [Green Version]
- Orellana, E.; Figueiredo Filho, A.; Péllico Netto, S.; Vanclay, J.K. A distance-independent individual-tree growth model to simulate management regimes in native Araucaria forests. J. For. Res. 2016, 22, 30–35. [Google Scholar] [CrossRef]
- Condit, R.; Hubbel, S.P.; Foster, R.B. Identifying fast-growing native trees from the tropics using data from a large, permanent census plot. For. Ecol. Manag. 1993, 62, 123–143. [Google Scholar] [CrossRef]
- Scolforo, H.F.; Montes, C.R.; Cook, R.L.; Allen, H.L.; Albaugh, T.J.; Rubilar, R.; Campoe, O. A New Approach for Modeling Volume Response from Mid-Rotation Fertilization of Pinus taeda L. Plantations. Forests 2020, 11, 646. [Google Scholar] [CrossRef]
- IEF. Plano Anual de Outorga Florestal do Estado do Amapá—PAOF 2016; Instituto Estadual de Florestas do Amapá—IEF/AP: Macapá, Brazil, 2015; 98p. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; Gonçalves, J.L.M.; Sparovek, G. Köppen climate classification map for Brazil. Meteorol. Z. 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Souza, E.B.; Cunha, A.C. Climatologia de precipitação no Amapá e mecanismos climáticos de grande escala. In Tempo, Clima e Recursos Hídricos: Resultados do Projeto REMETAP no Estado do Amapá; Cunha, A.C., Souza, E.B., Cunha, H.F.A., Eds.; IEPA: Macapá, Brazil, 2010; pp. 177–195. [Google Scholar]
- Santos, R.D.; Curi, N.; Shimizu, S.H. Guia Prático para Classificação de Solos Brasileiros, 1st ed.; Minas Gerais: Lavras, Brazil, 2015. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2017; Available online: http://www.R-project.org (accessed on 20 November 2017).
- Mcroberts, R.E.; Westfall, J.A. Effects of uncertainty in model predictions of individual tree volume on large area volume estimates. For. Sci. 2014, 60, 34–42. [Google Scholar] [CrossRef]
- Neef, T.; Santos, J.R. A growth model for secondary forest in Central Amazonia. For. Ecol. Manag. 2005, 216, 270–282. [Google Scholar] [CrossRef]
- Andrade, V.H.F.; Machado, S.A.; Figueiredo Filho, A.; Botosso, P.C.; Miranda, B.P.; Schongart, J. Growth models for two commercial tree species in upland forests of Southern Brazilian Amazon. For. Ecol. Manag. 2019, 438, 215–223. [Google Scholar] [CrossRef]
- Luo, Y.; McIntire, J.B.; Boisvenue, C.; Nikiema, P.P.; Chen, H.Y.H. Climatic change only stimulated growth for tree under weak competition in central boreal forests. J. Ecol. 2019, 108, 36–46. [Google Scholar] [CrossRef]
- Hall, K.B.; Stape, J.L.; Bullock, B.P.; Frederick, D.; Wright, J.; Scolforo, H.F.; Cook, R. A Growth and Yield Model for Eucalyptus benthamii in the Southeastern United States. For. Sci. 2019, 66, 25–37. [Google Scholar] [CrossRef]
- Shepard, G.H., Jr.; Ramirez, H. “Made in Brazil”: Human dispersal of the Brazil nut (Bertholletia excelsa, Lecythidaceae) in ancient Amazonia. Econ. Bot. 2011, 65, 44–65. [Google Scholar] [CrossRef]
- Thomas, E.; Caicedo, C.A.; Mcmichael, C.H.; Corvera, R.; Loo, J. Uncovering spatial patters in the natural and human history of Brazil nut (Bertholletia excelsa) across the Amazon Basin. J. Biogeogr. 2015, 42, 1367–1382. [Google Scholar] [CrossRef]
- Lamprecht, H. Silviculture in the Tropics: Tropical Forest Ecosystems and Their Tree Species—Possibilities and Methods for Their Long-Term Utilization; Deutsche Gesellschaft für Technische Zusammenarbeit: Bonn, Germany, 1989; 296p. [Google Scholar]
- Montoro Girona, M.; Rossi, S.; Lussier, J.-M.; Walsh, D.; Morin, H. Understanding tree growth responses after partial cuttings: A new approach. PLoS ONE 2017, 12, e0172653. [Google Scholar] [CrossRef]
- Tonini, H.; Oliveira Junior, M.M.C.; Schwengber, D. Crescimento de espécies nativas da Amazônia submetidas ao plantio no estado de Roraima. Ciência Florest 2008, 18, 151–158. [Google Scholar] [CrossRef] [Green Version]
Forest Environment | Mean DBH | CV (%) | TPH | DR |
---|---|---|---|---|
Old growth terra firme | 0.069 | 94.3 | 1300 | 25 |
Secondary forest | 0.107 | 76.3 | 1105 | 34 |
Species | a | b |
---|---|---|
Old growth terra firme forest | 0.1280 * | −0.0955 * |
Secondary forest | 0.1674 * | −0.1057 * |
Forest Environment | DBH of 25 cm | DBH of 38 cm | ||||
---|---|---|---|---|---|---|
2.50% | Mean Age | 97.50% | 2.50% | Mean Age | 97.50% | |
Old growth terra firme forest | 47 | 78 | 131 | 76 | 174 | 350 |
Secondary forest | 36 | 47 | 63 | 60 | 88 | 142 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Batista, A.; Vitor Scolforo, P.G.; Scolforo, H.F.; de Mello, J.M.; Guedes, M.; Soares Scolforo, J.R. Modeling Tree Diameter Growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon. Forests 2020, 11, 1309. https://doi.org/10.3390/f11121309
Batista A, Vitor Scolforo PG, Scolforo HF, de Mello JM, Guedes M, Soares Scolforo JR. Modeling Tree Diameter Growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon. Forests. 2020; 11(12):1309. https://doi.org/10.3390/f11121309
Chicago/Turabian StyleBatista, Anderson, Paula Gomides Vitor Scolforo, Henrique Ferraço Scolforo, José Marcio de Mello, Marcelino Guedes, and José Roberto Soares Scolforo. 2020. "Modeling Tree Diameter Growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon" Forests 11, no. 12: 1309. https://doi.org/10.3390/f11121309
APA StyleBatista, A., Vitor Scolforo, P. G., Scolforo, H. F., de Mello, J. M., Guedes, M., & Soares Scolforo, J. R. (2020). Modeling Tree Diameter Growth of Bertholletia excelsa Bonpl. in the Brazilian Amazon. Forests, 11(12), 1309. https://doi.org/10.3390/f11121309