Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Remote Sensing Data
2.2.1. Aerial Images
2.2.2. Digital Surface Models
2.2.3. Sentinel-2 Data
2.3. NFI Data
- NFI plots at non-wood areas (n = 425);
- NFI plots where the forest cover map could not be calculated due to clouds or artefacts (n = 153);
- NFI plots which were not accessible (n = 78) and therefore no forest inventory was conducted;
- NFI plots with maximum tree heights of < 5 m (n = 381);
- NFI plots with stock per hectare = 0 (only calculated for trees with a diameter at breast height (dbh) of > 7 cm; n = 278).
2.4. Workflow
2.5. Comparison of Forest Cover Map and NFI Data
- Median nDSM heights within NFI plots: identification of forest plots < 5 m;
- Forest cover (%) of each plot: identification of plots at forest borders;
- Land use from the administrative layer: information about land use for each plot;
- Orthoimages: by visual interpretation, reasons for differences between the two datasets were identified and categorized.
3. Results
3.1. Forest Cover Map
3.2. Comparison of NFI Plot Data and Forest Cover Map
3.3. Analysis of the Differences between NFI Plot Data and Forest Cover Map
- Edge effects: Incongruences occurring at forest borders. Plots at forest borders were determined to have a forest cover of 1–99%.
- Forest definition: The NFI forest definition does not include a minimum tree height. For this reason, during the NFI, all stocked areas were classified as forest, regardless of tree height. In contrast, the forest cover layer defines areas with a height of < 5 m as non-stocked.
- Land use: Actual land cover does not correspond to land use. There can be non-stocked forest areas (e.g., storm damages) or stocked non-forest areas (e.g., orchards).
- Layer errors: differences due to errors in the remote sensing-based forest cover layer (e.g., errors in image matching lead to wrong nDSM heights).
4. Discussion
4.1. Forest Cover Map
4.2. Comparison NFI Plot Data and Forest Cover Map
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Mission | Date of Acquisition | Overlap [%] | Camera | SURE Version | GSD [m] |
---|---|---|---|---|---|---|
2013 | 1 | 12 July 2013 | 60/33 | UltraCam Eagle | 1.3.1.132 | 0.4 |
2 | 13 July 2013 14 July 2013 | 62/37 | UltraCam Eagle | 1.3.1.336 | 0.5 | |
3 | 17 June 2013 | 64/38 | UltraCam Xp | 1.3.1.336 | 0.5 | |
4 | 19 June 2013 | 59/28 | UltraCam Xp | 2.2.1.1189 | 0.5 | |
5 | 17 June 2013 | 63/46 | UltraCam Eagle | 1.2.1.209 | 0.4 | |
6 | 18 June 2013 14 July 2013 | 62/40 | UltraCam Xp | 1.2.1.209 | 0.4 | |
7 | 13 July 2013 16 July 2013 | 64/38 | UltraCam Xp | 2.2.1.1189 | 0.5 | |
8 | 6 June 2013 7 June 2013 8 June 2013 | 63/34 | UltraCam Eagle | 2.2.1.1189 | 0.5 | |
9 | 19 June 2013 12 July 2013 | 59/31 | UltraCam Xp | 2.2.1.1189 | 0.5 | |
2012 | 1 | 24 June 2012 30 June 2012 | 59/29 | UltraCam Xp | 3.0.0.0 | 0.5 |
2 | 25 May 2012 23 July 2012 | 59/32 | UltraCam Eagle | 2.3.1.66 | 0.5 | |
3 | 23 July 2012 | 60/30 | UltraCam Eagle | 3.0.0.0 | 0.5 | |
4 | 15 April 2012 | 59/33 | UltraCam Xp | 2.3.1.66 | 0.5 | |
5 | 1 August 2012 | 61/40 | DMC II | 2.2.1.1212 | 0.5 | |
6 | 26 May 2012 25 July 2012 27 July 2012 1 August 2012 19 October 2012 | 61/39 | DMC II | 2.3.1.66 | 0.5 | |
7 | 23 July 2012 | 59/34 | DMC 01 | 2.3.0.38 | 0.5 | |
8 | 25 July 2012 | 61/43 | UltraCam Xp | 1.3.1.336 | 0.4 | |
2011 | 1 | 5 May 2011 6 May 2011 | 66/34 | DMC 01 | 3.0.0.0 | 0.5 |
2 | 6 May 2011 | 62/32 | UltraCam Xp | 3.0.0.0 | 0.5 | |
3 | 6 September 2011 10 September 2011 16 September 2011 | 61/32 | UltraCam Xp | 3.0.0.0 | 0.5 | |
4 | 3 September 2011 | 62/31 | UltraCam Xp | 3.0.0.0 | 0.5 | |
5 | 5 May 2011 | 64/31 | UltraCam Xp | 2.3.0.38 | 0.5 | |
2014 | 5 | 26 September 2014 | 61/34 | UltraCam Xp | 1.3.1.284 | 0.4 |
6 | 22 June 2014 26 June 2014 | 70/45 | UltraCam Eagle | 1.3.1.284 | 0.5 | |
7 | 6 June 2014 | 60/31 | UltraCam Xp | 1.3.1.392 | 0.5 |
References
- Wulder, M.A.; Hermosilla, T.; Stinson, G.; Gougeon, F.A.; White, J.C.; Hill, D.A.; Smiley, B.P. Satellite-based time series land cover and change information to map forest area consistent with national and international reporting requirements. For. Int. J. For. Res. 2020, 93, 331–343. [Google Scholar] [CrossRef] [Green Version]
- Sexton, J.O.; Noojipady, P.; Song, X.-P.; Feng, M.; Song, D.-X.; Kim, D.-H.; Anand, A.; Huang, C.; Channan, S.; Pimm, S.L.; et al. Conservation policy and the measurement of forests. Nat. Clim. Chang. 2016, 6, 192–196. [Google Scholar] [CrossRef]
- Sharma, R.C.; Hara, K.; Tateishi, R. Developing forest cover composites through a combination of Landsat-8 optical and Sentinel-1 SAR data for the visualization and extraction of forested areas. J. Imaging 2018, 4, 105. [Google Scholar] [CrossRef] [Green Version]
- Stibig, H.-J.; Malingreau, J.-P. Forest cover of insular Southeast Asia mapped from recent satellite images of coarse spatial resolution. Ambio 2003, 32, 469–475. [Google Scholar] [CrossRef]
- Hansen, M.C.; Stehman, S.V.; Potapov, P.V. Quantification of global gross forest cover loss. Proc. Natl. Acad. Sci. USA 2010, 107, 8650–8655. [Google Scholar] [CrossRef] [Green Version]
- Ren, Y.; Wei, X.; Wang, D.; Luo, Y.; Song, X.; Wang, Y.; Yang, Y.; Hua, L. Linking landscape patterns with ecological functions: A case study examining the interaction between landscape heterogeneity and carbon stock of urban forests in Xiamen, China. For. Ecol. Manag. 2013, 293, 122–131. [Google Scholar] [CrossRef]
- Waser, L.T.; Fischer, C.; Wang, Z.; Ginzler, C. Wall-to-wall forest mapping based on digital surface models from image-based point clouds and a NFI forest definition. Forests 2015, 6, 4510–4528. [Google Scholar] [CrossRef] [Green Version]
- Yin, H.; Khamzina, A.; Pflugmacher, D.; Martius, C. Forest cover mapping in post-Soviet Central Asia using multi-resolution remote sensing imagery. Sci. Rep. 2017, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- White, J.C.; Coops, N.C.; Wulder, M.A.; Vastaranta, M.; Hilker, T.; Tompalski, P. Remote sensing technologies for enhancing forest inventories: A review. Can. J. Remote Sens. 2016, 42, 619–641. [Google Scholar] [CrossRef] [Green Version]
- Tomppo, E.; Gschwanter, T.; Lawrence, M.; McRoberts, R.E. National Forest Inventories. Pathways for Common Reporting; Springer: Dordrecht, The Netherlands, 2010. [Google Scholar]
- Alam, M.B.; Shahi, C.; Pulkki, R. Economic impact of enhanced forest inventory information and merchandizing yards in the forest product industry supply chain. Socio-Econ. Plan. Sci. 2014, 48, 189–197. [Google Scholar] [CrossRef]
- Adjognon, G.S.; Rivera-Ballesteros, A.; van Soest, D. Satellite-based tree cover mapping for forest conservation in the drylands of Sub Saharan Africa (SSA): Application to Burkina Faso gazetted forests. Dev. Eng. 2019, 4, 100039. [Google Scholar] [CrossRef]
- Barakat, A.; Khellouk, R.; El Jazouli, A.; Touhami, F.; Nadem, S. Monitoring of forest cover dynamics in eastern area of Béni-Mellal Province using ASTER and Sentinel-2A multispectral data. Geol. Ecol. Landsc. 2018, 2, 203–215. [Google Scholar] [CrossRef] [Green Version]
- Dostálová, A.; Hollaus, M.; Milenković, M.; Wagner, W. Forest area derivation from Sentinel-1 data. ISPRS Ann. Photogram. Remote Sens. Spat. Inf. Sci. 2016, III-7, 227–233. [Google Scholar]
- Hojas-Gascon, L.; Belward, A.; Eva, H.; Ceccherini, G.; Hagolle, O.; Garcia, J.; Cerutti, P. Potential improvement for forest cover and forest degradation mapping with the forthcoming Sentinel-2 program. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2015, XL-7/W3, 417–423. [Google Scholar] [CrossRef] [Green Version]
- Ningthoujam, R.K.; Tansey, K.; Balzter, H.; Morrison, K.; Johnson, S.; Gerard, F.; George, C.; Burbidge, G.; Doody, S.; Veck, N. Mapping forest cover and forest cover change with airborne S-band radar. Remote Sens. 2016, 8, 577. [Google Scholar] [CrossRef] [Green Version]
- Norovsuren, B.; Renchin, T.; Tseveen, B.; Yangiv, A.; Altanchimeg, T. Estimation of forest coverage in northern region of Mongolia using Sentinel and Landsat data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2019, XLII-5/W3, 71–76. [Google Scholar] [CrossRef] [Green Version]
- Ottosen, T.-B.; Petch, G.; Hanson, M.; Skjøth, C.A. Tree cover mapping based on Sentinel-2 images demonstrate high thematic accuracy in Europe. Int. J. Appl. Earth Obs. Geoinf. 2020, 84, 101947. [Google Scholar] [CrossRef]
- Straub, C.; Weinacker, H.; Koch, B. A fully automated procedure for delineation and classification of forest and non-forest vegetation based on full waveform laser scanner data. ISPRS Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 2008, XXXVII, 1013–1019. [Google Scholar]
- Szostak, M.; Hawryło, P.; Piela, D. Using of Sentinel-2 images for automation of the forest succession detection. Eur. J. Remote Sens. 2017, 51, 142–149. [Google Scholar] [CrossRef]
- Tian, J.; Schneider, T.; Straub, C.; Kugler, F.; Reinartz, P. Exploring digital surface models from nine different sensors for forest monitoring and change detection. Remote Sens. 2017, 9, 287. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.; Ginzler, C.; Waser, L.T. A novel method to assess short-term forest cover changes based on digital surface models from image-based point clouds. For. Int. J. For. Res. 2015, 88, 429–440. [Google Scholar] [CrossRef] [Green Version]
- Waser, L.; Baltsavias, E.; Ecker, K.; Eisenbeiss, H.; Ginzler, C.; Küchler, M.; Thee, P.; Zhang, L. High-resolution digital surface models (DSMs) for modelling fractional shrub/tree cover in a mire environment. Int. J. Remote Sens. 2008, 29, 1261–1276. [Google Scholar] [CrossRef]
- Jia, T.; Li, Y.; Shi, W.; Zhu, L. Deriving a forest cover map in Kyrgyzstan using a hybrid fusion strategy. Remote Sens. 2019, 11, 2325. [Google Scholar] [CrossRef] [Green Version]
- Breidenbach, J.; Waser, L.T.; Debella-Gilo, M.; Schumacher, J.; Rahlf, J.; Hauglin, M.; Puliti, S.; Astrup, R. National mapping and estimation of forest area by dominant tree species using Sentinel-2 data. arXiv 2020, arXiv:2004.07503. [Google Scholar] [CrossRef]
- Matasci, G.; Hermosilla, T.; Wulder, M.A.; White, J.C.; Coops, N.C.; Hobart, G.W.; Zald, H.S. Large-area mapping of Canadian boreal forest cover, height, biomass and other structural attributes using Landsat composites and lidar plots. Remote Sens. Environ. 2018, 209, 90–106. [Google Scholar] [CrossRef]
- Myroniuk, V.; Kutia, M.; Sarkissian, A.J.; Bilous, A.; Liu, S. Regional-scale forest mapping over fragmented landscapes using global forest products and Landsat time series classification. Remote Sens. 2020, 12, 187. [Google Scholar] [CrossRef] [Green Version]
- Kempeneers, P.; Sedano, F.; Seebach, L.; Strobl, P.; San-Miguel-Ayanz, J. Data fusion of different spatial resolution remote sensing images applied to forest-type mapping. IEEE Trans. Geosci. Remote Sens. 2011, 49, 4977–4986. [Google Scholar] [CrossRef]
- Langanke, T.; Büttner, G.; Dufourmont, H.; Iasillo, D.; Probeck, M.; Rosengren, M.; Sousa, A.; Strobl, P.; Weichselbaum, J. GIO Land (GMES/Copernicus Initial Operations Land) High Resolution Layers (HRLs)–Summary of Product Specifications; European Environment Agency: Copenhagen, Denmark, 2016. [Google Scholar]
- Pekkarinen, A.; Reithmaier, L.; Strobl, P. Pan-European forest/non-forest mapping with Landsat ETM+ and CORINE Land Cover 2000 data. ISPRS J. Photogramm. Remote Sens. 2009, 64, 171–183. [Google Scholar] [CrossRef]
- Hansen, M.C.; Potapov, P.V.; Moore, R.; Hancher, M.; Turubanova, S.A.; Tyukavina, A.; Thau, D.; Stehman, S.; Goetz, S.J.; Loveland, T.R.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013, 342, 850–853. [Google Scholar] [CrossRef] [Green Version]
- Lwin, K.K.; Ota, T.; Shimizu, K.; Mizoue, N. Assessing the importance of tree cover threshold for forest cover mapping derived from global forest cover in Myanmar. Forests 2019, 10, 1062. [Google Scholar] [CrossRef] [Green Version]
- Martone, M.; Rizzoli, P.; Wecklich, C.; González, C.; Bueso-Bello, J.-L.; Valdo, P.; Schulze, D.; Zink, M.; Krieger, G.; Moreira, A. The global forest/non-forest map from TanDEM-X interferometric SAR data. Remote Sens. Environ. 2018, 205, 352–373. [Google Scholar] [CrossRef]
- Shimada, M.; Itoh, T.; Motooka, T.; Watanabe, M.; Shiraishi, T.; Thapa, R.; Lucas, R. New global forest/non-forest maps from ALOS PALSAR data (2007–2010). Remote Sens. Environ. 2014, 155, 13–31. [Google Scholar] [CrossRef]
- Tang, H.; Armston, J.; Hancock, S.; Marselis, S.; Goetz, S.; Dubayah, R. Characterizing global forest canopy cover distribution using spaceborne lidar. Remote Sens. Environ. 2019, 231, 111262. [Google Scholar] [CrossRef]
- Zhang, X.; Long, T.; He, G.; Guo, Y.; Yin, R.; Zhang, Z.; Xiao, H.; Li, M.; Cheng, B. Rapid generation of global forest cover map using Landsat based on the forest ecological zones. J. Appl. Remote Sens. 2020, 14, 022211. [Google Scholar] [CrossRef]
- Myroniuk, V.V. Forest cover mapping using Landsat-based seasonal composited mosaics. Sci. Bull. UNFU 2018, 28, 28–33. [Google Scholar] [CrossRef] [Green Version]
- Immitzer, M.; Koukal, T.; Kanold, A.; Seitz, R.; Mansberger, R.; Atzberger, C. Abgrenzung der Natura 2000-Waldflächen. Klassifikation von Wald, Offenland und Latschenfeldern im bayerischen Hochgebirge unter Verwendung digitaler Luftbild- und Laserscannerdaten. LWF Aktuell 2012, 88, 49–51. [Google Scholar]
- Ackermann, J.; Adler, P.; Aufreiter, C.; Bauerhansl, C.; Bucher, T.; Franz, S.; Engels, F.; Ginzler, C.; Hoffmann, K.; Jütte, K.; et al. Oberflächenmodelle aus Luftbildern für forstliche Anwendungen. Leitfaden AFL 2020. WSL-Berichte 2020, 87, 60. [Google Scholar]
- Drusch, M.; Del Bello, U.; Carlier, S.; Colin, O.; Fernandez, V.; Gascon, F.; Hoersch, B.; Isola, C.; Laberinti, P.; Martimort, P. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 2012, 120, 25–36. [Google Scholar] [CrossRef]
- Kändler, G.; Cullmann, D. Der Wald in Baden-Württemberg: Ausgewählte Ergebnisse der Dritten Bundeswaldinventur; Forstliche Versuchs-und Forschungsanstalt Baden-Württemberg: Freiburg im Breisgau, Germany, 2014. [Google Scholar]
- Landesamt für Geoinformation und Landentwicklung Baden-Württemberg (LGL). Geobasisdaten. 19 January 2018. Available online: www.lgl-bw.deaz.:2851.9 (accessed on 15 August 2019).
- nFRAMES GmbH Stuttgart nFRAMES. Available online: https://www.nframes.com (accessed on 9 November 2020).
- Rapidlasso GmbH Fast tools to Catch Reality. Available online: https://rapidlasso.com (accessed on 9 November 2020).
- Landesamt für Geoinformation und Landentwicklung Baden-Württemberg (LGL). Digitale Geländemodelle (dgm). Available online: https://www.lgl-bw.de/unsere-themen/Produkte/Geodaten/Digitale-Gelaendemodelle (accessed on 9 October 2020).
- Schumacher, J.; Rattay, M.; Kirchhöfer, M.; Adler, P.; Kändler, G. Combination of multi-temporal sentinel 2 images and aerial image based canopy height models for timber volume modelling. Forests 2019, 10, 746. [Google Scholar] [CrossRef] [Green Version]
- Gascon, F. The Sentinel-2 Mission Products. In Proceedings of the First Sentinel-2 Preparatory Symposium, Frascati, Italy, 23–27 April 2012; ESA SP. Volume 707. [Google Scholar]
- Main-Knorn, M.; Pflug, B.; Louis, J.; Debaecker, V.; Müller-Wilm, U.; Gascon, F. Sen2Cor for sentinel-2. In Proceedings of the Image and Signal Processing for Remote Sensing XXIII, Warsaw, Poland, 4 October 2017; SPIE, The International Society for Optics and Photonics: Bellingham, WA, USA, 2017; Volume 10427. [Google Scholar]
- Deutsches Zentrum für Luft- und Raumfahrt e.V. Die Sentinel-Satellitenfamilie. Available online: https://www.d-copernicus.de/daten/satelliten/daten-sentinels (accessed on 22 October 2020).
- Richter, R.; Louis, J.; Müller-Wilm, U. Sentinel-2 MSI—Level 2A Products Algorithm Theoretical Basis Document; S2PAD-ATBD-0001, Issue 2.0; Telespazio VEGA Deutschland GmbH: Darmstadt, Germany, 2012. [Google Scholar]
- Riedel, T.; Hennig, P.; Kroiher, F.; Polley, H.; Schmitz, F.; Schwitzgebel, F. Die Dritte Bundeswaldinventur (BWI 2012). Inventur-und Auswertemethoden; Bundesministerium für Ernährung und Landwirtschaft: Bonn, Germany, 2017. [Google Scholar]
- GEOSat MX Box. Available online: https://www.geosat.de/en/products/system-geometer-mx/geobox (accessed on 9 October 2020).
- Bitterlich, W. Die Winkelzählmessung. Allgemeine Forst- und Holzwirtschaftliche Zeitung 1947, 58, 94–96. [Google Scholar]
- Kirchhoefer, M.; Schumacher, J.; Adler, P.; Kändler, G. Considerations towards a novel approach for integrating angle-count sampling data in remote sensing based forest inventories. Forests 2017, 8, 239. [Google Scholar] [CrossRef] [Green Version]
- Gaussian Mixture Models. Available online: https://scikit-learn.org/stable/modules/mixture.html (accessed on 8 December 2020).
- Google Earth Engine. Available online: https://earthengine.google.com/ (accessed on 22 October 2020).
- Riitters, K.; Wickham, J.; O’Neill, R.; Jones, B.; Smith, E. Global-scale patterns of forest fragmentation. Conserv. Ecol. 2000, 4, 3. [Google Scholar] [CrossRef]
- Riitters, K.H.; Wickham, J.D. How far to the nearest road? Front. Ecol. Environ. 2003, 1, 125–129. [Google Scholar] [CrossRef]
- Comber, A.; Carver, S.; Fritz, S.; McMorran, R.; Washtell, J.; Fisher, P. Different methods, different wilds: Evaluating alternative mappings of wildness using fuzzy MCE and Dempster-Shafer MCE. Comput. Environ. Urban Syst. 2010, 34, 142–152. [Google Scholar] [CrossRef] [Green Version]
Sentinel-2 Granules | 2017 | 2018 | 2019 | ∑ |
---|---|---|---|---|
32UMU | 3 | 4 | 6 | 13 |
32UMV | 4 | 5 | 7 | 16 |
32UNA | 8 | 8 | 9 | 25 |
32UNV | 10 | 5 | 11 | 26 |
32UNU | 5 | 1 | 7 | 13 |
32TMT | 9 | 5 | 15 | 29 |
32TLT | 14 | 19 | 36 | 69 |
32TNT | 6 | 1 | 6 | 13 |
32ULU | 7 | 19 | 34 | 60 |
NFI Plot Data | ||||
---|---|---|---|---|
Non-Forest | Forest | UA (%) | ||
fcm | non-forest | 21073 | 783 | 96.41 |
forest | 865 | 11708 | 93.12 | |
PA [%] | 96.06 | 93.73 | ||
OA [%] | 95.21 | |||
κ | 0.90 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ganz, S.; Adler, P.; Kändler, G. Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests 2020, 11, 1322. https://doi.org/10.3390/f11121322
Ganz S, Adler P, Kändler G. Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests. 2020; 11(12):1322. https://doi.org/10.3390/f11121322
Chicago/Turabian StyleGanz, Selina, Petra Adler, and Gerald Kändler. 2020. "Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data" Forests 11, no. 12: 1322. https://doi.org/10.3390/f11121322
APA StyleGanz, S., Adler, P., & Kändler, G. (2020). Forest Cover Mapping Based on a Combination of Aerial Images and Sentinel-2 Satellite Data Compared to National Forest Inventory Data. Forests, 11(12), 1322. https://doi.org/10.3390/f11121322