Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ecosystem Type Data
2.2. Greenhouse Gas Value Model
2.3. Localized Parameters of the Greenhouse Gas Value Model in China
3. Results
3.1. Spatial and Temporal Changes of Three Natural Ecosystems in China
3.2. Potential Sequestration of Natural Ecosystems in China
3.3. Comparison of Results between Localized Parameters and Model Default Parameters
4. Discussions
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Schulze, E.D.; Luyssaert, S.; Ciais, P.; Freibauer, A.; Janssens, I.A.; Soussana, J.F.; Smith, P.; Grace, J.; Levin, I.; Thiruchittampalam, B.; et al. Importance of methane and nitrous oxide for Europe‘s terrestrial greenhouse-gas balance. Nat. Geosci. 2009, 4, 1685–1690. [Google Scholar] [CrossRef]
- Dijkstra, F.A.; Prior, S.A.; Runion, G.B.; Torbert, H.A.; Tian, H.; Lu, C.; Venterea, R.T. Effects of elevated carbon dioxide and increased temperature on methane and nitrous oxide fluxes: Evidence from field experiments. Front. Ecol. Environ. 2012, 10, 520–527. [Google Scholar] [CrossRef]
- Fang, J.; Zhu, J.; Yue, C.; Wang, S.; Zheng, T. Carbon Emissions from China and the World—Some Views on Relationships between Carbon Emissions and Socio-Economic Development; Science Press: Beijing, China, 2018. [Google Scholar]
- Qin, D. Facts, impact, adaptation and mitigation strategy of climate change. Bull. Natl. Nat. Sci. Found. China 2003, 17, 1–3. [Google Scholar]
- Cui, Y.; Meadows, M.E.; Li, N.; Fu, Y.; Zhao, G.; Dong, J. Land cover change intensifies actual and potential radiative forcing through CO2 in South and Southeast Asia from 1992 to 2015. Int. J. Environ. Res. Public Health 2019, 16, 2460. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Feldman, D.R.; Collins, W.D.; Gero, P.J.; Torn, M.S.; Mlawer, E.J.; Shippert, T.R. Observational determination of surface radiative forcing by CO2 from 2000 to 2010. Nature 2015, 519, 339. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Devaraju, N.; Bala, G.; Nemani, R. Modelling the influence of land-use changes on biophysical and biochemical interactions at regional and global scales. Plant Cell Environ. 2015, 38, 1931–1946. [Google Scholar] [CrossRef] [PubMed]
- Xia, H.; Qin, Y.; Feng, G.; Meng, Q.; Cui, Y.; Song, H.; Ouyang, Y.; Liu, G. Forest phenology dynamics to climate change and topography in a geographic and climate transition zone: The Qinling Mountains in central China. Forests 2019, 10, 1007. [Google Scholar] [CrossRef] [Green Version]
- Elrod, M.J. Greenhouse warming potentials from the infrared spectroscopy of atmospheric gases. J. Chem. Educ. 1999, 76, 1702–1705. [Google Scholar] [CrossRef]
- Shine, K.P.; Fuglestvedt, J.S.; Hailemariam, K.; Stuber, N. Alternatives to the global warming potential for comparing climate impacts of emissions of greenhouse gases. Clim. Chang. 2005, 68, 281–302. [Google Scholar] [CrossRef] [Green Version]
- Bai, Y.; Deng, X.; Jiang, S.; Zhao, Z.; Miao, Y. Relationship between climate change and low-carbon agricultural production: A case study in Hebei Province, China. Ecol. Indic. 2019, 105, 438–447. [Google Scholar] [CrossRef]
- Tian, H.; Lu, C.; Chen, G.; Tao, B.; Pan, S.; Del Grosso, S.J.; Xu, X.; Bruhwiler, L.; Wofsy, S.C.; Kort, E.A.; et al. Contemporary and projected biogenic fluxes of methane and nitrous oxide in North American terrestrial ecosystems. Front. Ecol. Environ. 2012, 10, 528–536. [Google Scholar] [CrossRef]
- Solomon, S. IPCC (2007): Climate change the physical science basis. In Proceedings of the AGU Fall Meeting Abstracts, San Francisco, CA, USA, 10–14 December 2007; Volume 9, p. 1. [Google Scholar]
- Bradshaw, C.J.; Warkentin, I.G. Global estimates of boreal forest carbon stocks and flux. Glob. Planet. Chang. 2015, 128, 24–30. [Google Scholar] [CrossRef]
- Yu, G.; Li, X.; Wang, Q.; Li, S. Carbon storage and its spatial pattern of terrestrial ecosystem in China. J. Resour. Ecol. 2010, 1, 97–109. [Google Scholar]
- Tang, X.; Zhao, X.; Bai, Y.; Tang, Z.; Wang, W.; Zhao, Y.; Wan, H.; Xie, Z.; Shi, X.; Wu, B. Carbon pools in China‘s terrestrial ecosystems: New estimates based on an intensive field survey. Proc. Natl. Acad. Sci. 2018, 115, 4021–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ni, J. Carbon storage in Chinese terrestrial ecosystems: Approaching a more accurate estimate. Clim. Chang. 2013, 119, 905–917. [Google Scholar] [CrossRef]
- Christiansen, J.R.; Gundersen, P. Stand age and tree species affect N2O and CH4 exchange from afforested soils. Biogeosciences 2011, 8, 2535–2546. [Google Scholar] [CrossRef] [Green Version]
- Kirschbaum, M.U.; Saggar, S.; Tate, K.R.; Thakur, K.P.; Giltrap, D.L. Quantifying the climate-change consequences of shifting land use between forest and agriculture. Sci. Total Environ. 2013, 465, 314. [Google Scholar] [CrossRef] [PubMed]
- Miles, L.; Kapos, V. Reducing greenhouse gas emissions from deforestation and forest degradation: Global land-use implications. Science 2008, 320, 1454–1455. [Google Scholar] [CrossRef] [Green Version]
- Lal, R. Soil carbon sequestration to mitigate climate change. Geoderma 2014, 123, 1–22. [Google Scholar] [CrossRef]
- Eggleston, S.; Buendia, L.; Miwa, K. IPCC Guidelines for National Greenhouse Gas Inventories; Institute for Global Environmental Strategies: Kanagawa, Japan, 2006. [Google Scholar]
- Bayer, A.D.; Pugh, T.A.; Krause, A.; Arneth, A. Historical and future quantification of terrestrial carbon sequestration from a Greenhouse-Gas-Value perspective. Glob. Environ. Chang. 2015, 32, 153–164. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; DeLucia, E. The greenhouse gas value of ecosystems. Glob. Chang. Biol. 2011, 17, 425–438. [Google Scholar] [CrossRef]
- Anderson-Teixeira, K.J.; Snyder, P.K.; Twine, T.E.; Cuadra, S.V.; Costa, M.H.; DeLucia, E.H. Climate-regulation services of natural and agricultural ecoregions of the Americas. Nat. Clim. Chang. 2012, 2, 177. [Google Scholar] [CrossRef]
- Liu, J.; Kuang, W.; Zhang, Z.; Xu, X.; Qin, Y.; Ning, J.; Zhou, W.; Zhang, S.; Li, R.; Yan, C.; et al. Spatiotemporal characteristics, patterns, and causes of land-use changes in China since the late 1980s. J. Geogr. Sci. 2014, 24, 195–210. [Google Scholar] [CrossRef]
- Zheng, D.; Li, B. Chinese Eco-Geographic Map; Beijing Commercial Press: Beijing, China, 2005. [Google Scholar]
- Zhou, Y.; Yu, Z.; Zhao, S. Carbon storage and budget of major Chinese forest types. Acta Phytoecol. Sin. 2000, 24, 518–522. [Google Scholar]
- Huang, M.; Ji, J.; Cao, M.; Li, K. Modeling study of vegetation shoot and root biomass in China. Acta Ecol. Sin. 2006, 26, 4156–4163. [Google Scholar]
- Li, K.; Wang, S.; Cao, M. Carbon storage of Chinese vegetation and soil. Sci. Sin. (Terrae) 2003, 33, 72–80. [Google Scholar]
- Wang, S.; Zhou, C. Estimating soil carbon reservior of terrestrial ecosystem in China. Geogr. Res. 1999, 18, 349–356. [Google Scholar]
- Fang, J.; Guo, Z.; Piao, S.; Chen, A. Estimation of carbon sinks of terrestrial vegetation in China from 1981 to 2000. Sci. Sin. (Terrae) 2007, 37, 804–812. [Google Scholar]
- Zhong, H.; Fan, J.; Yu, G.; Han, B.; Hu, Z.; Yue, Y.; Liang, B. Progress of carbon cycle research in grassland ecosystem. Acta Agrestia Sin. 2005, 13, 67–73. [Google Scholar]
- Fan, J.; Zhong, H.; Liang, B.; Shi, P.; Yu, G. Carbon stock in grassland ecosystem and its affecting factors. Chin. J. Grassl. 2003, 25, 52–59. [Google Scholar]
- Fang, J.; Liu, G.; Xu, S. China‘s terrestrial ecosystem carbon pool. In Research on Hot Issues in Modern Ecology; Science and technology of China Press: Beijing, China, 1996; pp. 251–276. [Google Scholar]
- Zhao, C.; Liu, G.; Yang, K.; Nie, H.; Peng, M.; Li, K.; Liu, F.; Li, Y. Estimation of soil carbon storage and its change since 1986 in Zhalong wetland and its surrounding areas, Heilongjiang Province. Earth Sci. Front. 2011, 18, 27–33. [Google Scholar]
- Zheng, Y.; Niu, Z.; Gong, P.; Dai, Y.; Shangguan, W. Preliminary estimation of the organic carbon pool in China‘s wetlands. Chin. Sci. Bull. 2013, 58, 662–670. [Google Scholar] [CrossRef] [Green Version]
- Van Der Laan-Luijkx, I.T.; Van Der Velde, I.R.; Van Der Veen, E.; Tsuruta, A.; Stanislawska, K.; Babenhauserheide, A.; Zhang, H.; Liu, Y.; He, W.; Chen, H.; et al. The carbontracker data assimilation shell(CTDAS) v1.0: Implementation and global carbon balance 2001–2015. Geosci. Model Dev. 2017, 10, 2785–2800. [Google Scholar] [CrossRef] [Green Version]
- Lai, L.; Huang, X.; Yang, H.; Chuai, X.; Zhang, M.; Zhong, T.; Chen, Z.; Chen, Y.; Wang, X.; Thompson, J.R. Carbon emissions from land-use change and management in China between 1990 and 2010. Sci. Adv. 2016, 2, e1601063. [Google Scholar] [CrossRef] [Green Version]
- Li, K.; Wang, S.; Cao, M. Vegetation and soil carbon storage in China. Sci. China Ser. D Earth Sci. 2004, 47, 49–57. [Google Scholar] [CrossRef]
- Wu, H.; Guo, Z.; Peng, C. Distribution and storage of soil organic carbon in China. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Lin, D.; Xia, J.; Wan, S. Climate warming and biomass accumulation of terrestrial plants: A meta-analysis. New Phytol. 2010, 188, 187–198. [Google Scholar] [CrossRef]
- Song, B.; Niu, S.; Wang, S. Precipitation regulates plant gas exchange and its long-term response to climate change in a temperate grassland. J. Plant Ecol. 2016, 9, 531–541. [Google Scholar] [CrossRef] [Green Version]
- Cui, Y.; Liu, J.; Xu, X.; Dong, J.; LI, N.; Fu, Y.; Lu, S.; Xia, H.; Si, B.; Xiao, X. Accelerating cities in an unsustainable landscape: Urban expansion and cropland occupation in China, 1990–2030. Sustainability 2019, 11, 2283. [Google Scholar] [CrossRef] [Green Version]
- Lu, J.; Feng, Z.; Zhu, Y. Estimation of forest biomass and carbon storage in China based on forest resources inventory data. Forests 2019, 10, 650. [Google Scholar] [CrossRef] [Green Version]
- Fang, J.; Chen, A.; Peng, C.; Zhao, S.; Ci, L. Changes in forest biomass carbon storage in China between 1949 and 1998. Science 2001, 292, 2320–2322. [Google Scholar] [CrossRef] [PubMed]
- Piao, S.; Fang, J.; Ciais, P.; Peylin, P.; Huang, Y.; Sitch, S.; Wang, T. The carbon balance of terrestrial ecosystems in China. Nature 2009, 458, 1009. [Google Scholar] [CrossRef] [PubMed]
- Ouyang, Z.; Zheng, H.; Xiao, Y.; Polasky, S.; Liu, J.; Xu, W.; Wang, Q.; Zhang, L.; Xiao, Y.; Rao, E.; et al. Improvements in ecosystem services from investments in natural capital. Science (New York, N.Y.) 2016, 352, 1455–1459. [Google Scholar] [CrossRef] [PubMed]
- CAIT Climate Data Explorer. Country Greenhouse Gas Emissions; World Resources Institute: Washington, DC, USA, 2017. [Google Scholar]
Ecosystem Type | Vegetation Biomass Density (Mg ha−1) | Surface Biomass Density (Mg ha−1) | Underground Root Biomass Density (Mg ha−1) | Litter/Leaf Organic Matter Density (Mg ha−1) | Soil Organic Matter Density (Mg ha−1) | CO2 Flux (kmol ha−1 year−1) | Reference |
---|---|---|---|---|---|---|---|
Shrubbery | 15.85 | 8.30 | 7.56 | 9.07 | 74.20 | 55.68 | [28,29,30,31] |
Mixed forest | 120.21 | 95.02 | 25.19 | 19.00 | 235.46 | 59.36 | |
Deciduous broad-leaved forest | 128.65 | 101.70 | 26.96 | 12.72 | 194.65 | 92.29 | |
Evergreen broad-leaved forest | 222.59 | 175.96 | 46.63 | 10.63 | 187.09 | 37.00 | |
Evergreen coniferous forest | 126.37 | 99.90 | 26.48 | 13.65 | 150.07 | 70.26 | |
grassland | 7.38 | 1.60 | 5.77 | 7.50 | 118.95 | 34.48 | [8,25,30,32,33,34,35] |
Desert grassland | 3.40 | 0.39 | 3.01 | 3.75 | 107.90 | 5.58 | |
Wetland | 36.41 | 2.18 | 34.23 | 8.28 | 199.00 | 66.46 | [28,31,36,37] |
Ecosystem Type | This Study | Yu et al. (2010) | Tang et al. (2018) | |
---|---|---|---|---|
Results by Localization Parameters | Results by Default Parameters | |||
Forest | 42.6 (226) | 75.4 (226) | 39.7 (321) | 37.1 (263) |
Grassland | 29.3 (365) | 22.0 (365) | 45.5 (331) | 25.4 (281) |
Wetland | 0.9 (14) | 1.0 (14) | 4.8 (11) | 6.5 (35.6) |
Total | 72.8 (605) | 98.4 (605) | 90.0 (662) | 68.9 (579) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, M.; Cui, Y.; Fu, Y.; Li, N.; Tang, X.; Liu, X.; Run, Y. Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems. Forests 2020, 11, 128. https://doi.org/10.3390/f11020128
Li M, Cui Y, Fu Y, Li N, Tang X, Liu X, Run Y. Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems. Forests. 2020; 11(2):128. https://doi.org/10.3390/f11020128
Chicago/Turabian StyleLi, Mengdi, Yaoping Cui, Yiming Fu, Nan Li, Xiying Tang, Xiaoyan Liu, and Yadi Run. 2020. "Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems" Forests 11, no. 2: 128. https://doi.org/10.3390/f11020128
APA StyleLi, M., Cui, Y., Fu, Y., Li, N., Tang, X., Liu, X., & Run, Y. (2020). Simulating the Potential Sequestration of Three Major Greenhouse Gases in China’s Natural Ecosystems. Forests, 11(2), 128. https://doi.org/10.3390/f11020128