Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Sites
2.2. Leaf Sample Collection
2.3. Processing of Leaf Samples and Analysis of Foliar N Content, C/N Ratio, and ẟ15N
2.4. Processing the Land-Use Map
2.5. Data Processing and Statistical Analysis
3. Results
3.1. Variation in Foliar N Content, C/N Ratio, and δ15N on Islands
3.2. Species Variation in Foliar δ15N in Watersheds
3.3. The Relationship among the Foliar N Content, C/N Ratio, ẟ15N and the Land-Use
4. Discussion
4.1. Variation in Foliar Traits of Mangroves and Non-Mangroves
4.2. Foliar ẟ15N of Mangroves and Non-Mangroves under Anthropogenic Impacts
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Tam, N.F.Y.; Wong, Y.S. Mangrove soils as sinks for wastewater-borne pollutants. Hydrobiologia 1995, 295, 231–241. [Google Scholar] [CrossRef]
- Tam, N.F.Y.; Wong, Y.S. Retention and distribution of heavy metals in mangrove soils receiving wastewater. Environ. Pollut. 1996, 94, 283–291. [Google Scholar] [CrossRef]
- Alongi, D.M.; Mckinnon, A.D. The cycling and fate of terrestrially-derived sediments and nutrients in the coastal zone of the great barrier reef shelf. Mar. Pollut. Bull. 2005, 51, 239–252. [Google Scholar] [CrossRef] [PubMed]
- Jordan, S.J.; Stoffer, J.; Nestlerode, J.A. Wetlands as sinks for reactive nitrogen at continental and global scales: A meta-analysis. Ecosystems 2011, 14, 144–155. [Google Scholar] [CrossRef]
- Thimdee, W.; Deein, G.; Thimdee, W.; Sangrungruang, C.; Matsunaga, K. High %N and δ15N values in mangrove leaves and sediments of a mangrove-fringed estuary, Thailand—Effects of shrimp pond effluents. Bull. Soc. Sea Water Sci. Jpn. 2002, 56, 166–173. [Google Scholar]
- Valiela, I.; Bartholomew, M.; Giblin, A.; Tucker, J.; Harris, C.; Martinetto, P.; Otter, M.; Camilli, L.; Stone, T. Watershed deforestation and down-estuary transformations alter sources, transport, and export of suspended particles in Panamanian mangrove estuaries. Ecosystems 2014, 17, 96–111. [Google Scholar] [CrossRef]
- Elser, J.J.; Bracken, M.E.S.; Cleland, E.E.; Gruner, D.S.; Harpole, W.S.; Hillebrand, H.; Ngai, J.T.; Seabloom, E.W.; Shurin, J.B.; Smith, J.E. Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol. Lett. 2007, 10, 1135–1142. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lebauer, D.S.; Treseder, K.K. Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 2008, 89, 371–379. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, F.S., III; Matson, P.A.; Vitousek, P.M. Principles of Terrestrial Ecosystem Ecology; Springer: New York, NY, USA, 2011. [Google Scholar]
- Erisman, J.W.; Sutton, M.A.; Galloway, J.; Klimont, Z.; Winiwarter, W. How a century of ammonium synthesis changed the world. Nat. Geosci. 2008, 1, 636–639. [Google Scholar] [CrossRef]
- Bleeker, A.; Hicks, W.K.; Dentener, F.; Galloway, J.; Erisman, J.W. N depposition as a threat to the world’s protected areas under the convention on biological diversity. Environ. Pollut. 2011, 159, 2280–2288. [Google Scholar] [CrossRef]
- Valiela, I.; Cole, M.L. Comparative evidence that salt marshes and mangroves may protect seagrass meadows from land-derived nitrogen loads. Ecosystems 2002, 5, 92–102. [Google Scholar] [CrossRef]
- Alongi, D.M. Present state and future of the world’s mangrove forests. Environ. Conserv. 2002, 29, 331–349. [Google Scholar] [CrossRef] [Green Version]
- Cloern, J.E. Our evolving conceptual model of the coastal eutrophication problem. Mar. Ecol. Prog. Ser. 2001, 210, 223–253. Available online: https://www.int-res.com/articles/meps/210/m210p223.pdf (accessed on 26 January 2001). [CrossRef]
- Wolters, J.W.; Gillis, L.G.; Bouma, T.J.; van Katwijk, M.M.; Ziegler, A.D. Land use effects on mangrove nutrient status in Phang Nga Bay, Thailand. L. Degrad. Dev. 2015, 27, 68–76. [Google Scholar] [CrossRef] [Green Version]
- Costanzo, S.D.; Donohue, M.J.O.Õ.; Dennison, W.C.; Loneragan, N.R.; Thomas, M. A new approach for detecting and mapping sewage impacts. Mar. Pollut. Bull. 2001, 42, 149–156. [Google Scholar] [CrossRef]
- Ansari, A.A.; Gill, S.S. Eutrophication, Causes, Consequences and Control; Springer Science and Business Media: Townsville, Australia, 2014; Available online: https://link.springer.com/book/10.1007/978-94-007-7814-6 (accessed on 17 October 2010).
- Gritcan, I.; Duxbury, M.; Leuzinger, S.; Alfaro, A.C. Leaf sable isotope and nutrient status of temperate mangroves as ecological indicators to assess anthropogenic activity and recovery from eutrophication. Front. Plant Sci. 2016, 7, 1–11. [Google Scholar] [CrossRef] [Green Version]
- Handley, L.L.; Scrimgeour, C.M. Terrestrial plant ecology and 15N natural abundance: The present limits to interpretation for uncultivated systems with original data from a Scottish old field. Adv. Ecol. Res. 1997, 27, 133–212. [Google Scholar] [CrossRef]
- McClelland, J.W.; Valiela, I. Linking nitrogen in estuarine producers to land-derived sources. Limnol. Oceanogr. 1998, 43, 577–585. [Google Scholar] [CrossRef] [Green Version]
- Fry, B.; Gace, A.; McClelland, J.W. Chemical indicators of anthropogenic nitrogen loading in four Pacific estuaries. Pac. Sci. 2003, 57, 77–101. [Google Scholar] [CrossRef] [Green Version]
- Rogers, K. Stable carbon and nitrogen isotope signatures indicate recovery of marine biota from sewage pollution at Moa Point, New Zealand. Mar. Pollut. Bull. 2003, 46, 821–827. [Google Scholar] [CrossRef]
- Fry, B. Stable Isotope Ecology; Science and Business Media, Springer: New York, NY, USA, 2006. [Google Scholar]
- McClelland, J.W.; Valiela, I.; Michener, R.H. Nitrogen-stable isotope signatures in estuarine food webs: A record of increasing urbanization in coastal watersheds. Limnol. Oceanogr. 1997, 42, 930–937. [Google Scholar] [CrossRef]
- Fry, B.; Bern, A.L.; Ross, M.S.; Meeder, J.F. δ15N studies of nitrogen use by the red mangrove, Rhizophora mangle L. in south Florida. Estuar. Coast. Shelf Sci. 2000, 50, 291–296. [Google Scholar] [CrossRef]
- Cole, M.L.; Valiela, I.; Kroeger, K.D.; Tomasky, G.L.; Cebrian, J.; Wigand, C.; McKinney, R.A.; Grady, S.P.; Carvalho da Silva, M.H. Assessment of a ẟ15N isotopic method to indicate anthropogenic eutrophication in aquatic ecosystems. J. Environ. Qual. 2004, 33, 124–132. Available online: https://www.ncbi.nlm.nih.gov/pubmed/14964366 (accessed on 1 January 2004). [CrossRef] [PubMed]
- Teichberg, M.; Fox, S.E.; Olsen, Y.S.; Valiela, I.; Martinetto, P.; Iribarne, O.; Muto, E.Y.; Petti, M.A.V.; Corbisier, T.N.; Soto-Jimenez, M.; et al. Eutrophication and macroalgal blooms in temperate and tropical coastal waters: Nutrient enrichment experiments with Ulva spp. Glob. Change Biol. 2010, 16, 2624–2637. [Google Scholar] [CrossRef] [Green Version]
- Hall, S.J.; Hale, R.L.; Baker, M.A.; Bowling, D.R.; Ehleringer, J.R.; Peters, D.P.C. Riparian plant isotopes reflect anthropogenic nitrogen perturbations: Robust patterns across land-use gradients. Ecosphere 2015, 6, 200. [Google Scholar] [CrossRef]
- Mazumder, D.; Saintilan, N.; Alderson, B.; Hollins, S. Inputs of anthropogenic nitrogen influence isotopic composition and trophic structure in SE Australian estuaries. Mar. Pollut. Bull. 2015, 100, 217–223. [Google Scholar] [CrossRef]
- Garten, C.T., Jr. Variation in foliar 15N abundance and the availability of soil nitrogen on Walker Branch watershed. Ecology 1993, 74, 2098–2113. [Google Scholar] [CrossRef]
- Hogberg, P. 15N natural abundance in soil-plant systems; Tansley review No 95. New Phytol. 1997, 137, 179–203. [Google Scholar] [CrossRef]
- Elmore, A.J.; Craine, J.M. Spectroscopic analysis of canopy nitrogen and nitrogen isotopes in managed pastures and hay land. IEEE T. Geosci. Remote 2011, 49, 2491–2498. [Google Scholar] [CrossRef]
- Letolle, R. Nitrogen-15 in the natural environment. In Handbook of Environmental Isotope Geochemistry; Fritz, P., Fontes, J.C., Eds.; Elsevier: Amsterdam, The Netherlands, 1980; Volume 1.4, pp. 407–433. ISBN 978-3-642-10637-8. [Google Scholar]
- Hoffman, J.C.; Kelly, J.R.; Peterson, G.S.; Cotter, A.M.; Starry, M.A.; Sierszen, M.E. Using δ15N in fish larvae as an indicator of watershed sources of anthropogenic nitrogen: Response at multiple spatial scales. Estuar. Coasts 2012, 35, 1453–1467. [Google Scholar] [CrossRef]
- Rowell, P.; James, W.; Smith, W.L.; Handley, L.L.; Scrimgeour, C.M. 15N discrimination in molybdenum- and vanadium-growth N2-fixing Anabaena variabilis and Azotobacter vinelandii. Soil Biol. Biochem. 1998, 30, 2177–2180. [Google Scholar] [CrossRef]
- Cifuentes, L.; Coffin, R.; Solorzano, L.; Cardenas, W.; Espinoza, J.; Twilley, R. Isotopic and elemental variations of carbon and nitrogen in a mangrove estuary. Estuar. Coast. Shelf Sci. 1996, 43, 781–800. [Google Scholar] [CrossRef] [Green Version]
- White, D.L.; Porter, D.E.; Lewitus, A.J. Spatial and temporal analyses of water quality and phytoplankton biomass in an urbanized versus a relatively pristine salt marsh estuary. J. Exp. Mar. Biol. Ecol. 2004, 298, 255–273. [Google Scholar] [CrossRef]
- Boëchat, I.G.; Paiva, A.B.M.; Hille, S.; Gücker, B. Land-use effects on river habitat quality and sediment granulometry along a 4th order tropical river. Rev. Ambient. Água 2013, 8, 54–64. [Google Scholar] [CrossRef] [Green Version]
- Dvorak, M.; Mora, G.; Graniero, L.; Surge, D. Carbon and nitrogen tracers of land use effects on net ecosystem metabolism in mangrove estuaries, southwest Florida. Estuar. Coast. Shelf Sci. 2016, 181, 14–26. [Google Scholar] [CrossRef]
- FAO (Food and Agriculture Organization of the United Nations). The World’s Mangroves 1980–2005; FAO Forestry Paper 153; FAO: Rome, Italy, 2007. [Google Scholar]
- Miyawaki, A. Phytosociological studies of mangroves in Japan and Thailand, with special reference to human impact. In Proceedings of the MAB/COMAR Regional Seminar, Tokyo, Japan, 13–16 November 1984; pp. 107–110. [Google Scholar]
- Onaga, K.; Komesu, R.; Arakaki, A. The outline of red soil loss and erosion control measure in Okinawa. Sci. Bull. College Agri. Univ. Ryukyus 1999, 46, 71–82. [Google Scholar]
- Ishiga, H.; Diallo, I.M.B. Geochemical evaluation of present mangrove soil in Okinawa Island, Japan. Earth Sci. (Chikyu Kagaku) 2016, 70, 119–128. Available online: https://www.jstage.jst.go.jp/article/agcjchikyukagaku/70/4/70_119/_pdf (accessed on 1 December 2019).
- Higashi, T.; Katayama, T.C.; Shinagawa, A. Land development works and soil erosion in Okinawa Prefecture. Mem. Kagoshima Univ. Res. Center S. Pac. 1985, 6, 26–36. [Google Scholar]
- Banzai, K.; Nakamura, K. Red Soil Runoff From The Miyara River, And An Environmental Problem on Ishigaki Island; Japan International Research Center for Agricultural Sciences: Tsukuba, Japan, 2005; pp. 97–102. Available online: https://www.jircas.go.jp/en/publication/intlsymp/13/97 (accessed on 11 March 2005).
- Ishiga, H.; Diallo, I.M. Geochemical evaluation of present mangrove soil in Okinawa Island, Japan. Earth Sci. (Chikyu Kagaku) 2016, 70, 119–128. [Google Scholar]
- Miyawaki, A.; Suzuki, K.; Suzuki, S.; Nakamura, Y.; Murakami, Y.; Tsukagoshi, Y.; Nakata, E. Phytosociological survey of the mangrove vegetation in Japan:1. Mangrove forests of Iriomote Island. Bull. Institute Environ. Sci. Tech. Yokohama Natl Univ. 1982, 9, 77–89, (In Japanese with English abstract). [Google Scholar]
- Fujimura, N.; Fukamachi, K.; Shibata, S. The history of land use in Iriomote Island from the 1960s and its sociocultural background. J. Jpn. Ins. Landsc. Arch. 2017, 80, 713–718. (In Japanese) [Google Scholar] [CrossRef]
- Hasegawa, H. The decline of coral reef conditions caused by the extensive land modification: A case study of the Shiraho Area on Ishigaki Island, Okinawa Prefecture, Japan. J. Remote Sens. Soc. Jpn. 2011, 31, 73–86, (In Japanese with English abstract). [Google Scholar]
- Cheeseman, J. Depressions of photosynthesis in mangrove canopies. In Photoinhibition of Photosynthesis: From Molecular Mechanisms to the Field; Baker, N.R., Bowyer, J.R., Eds.; Bios: Oxford, UK, 1994; pp. 377–389. [Google Scholar]
- García-Sanz, T.; Ruiz, J.M.; Pérez, M.; Ruiz, M. Assessment of dissolved nutrients dispersal derived from offshore fish-farm using nitrogen stable isotope ratios (δ15N) in macroalgal bioassays. Estuar. Coast. Shelf Sci. 2011, 91, 361–370. [Google Scholar] [CrossRef]
- Clough, B.F.; Boto, K.G.; Attiwill, P.M. Mangroves and sewage: A re-evaluation. In Biology and Ecology of Mangroves, Tasks for Vegetation Science Series; Teas, H.J., Ed.; Dr. W. Junk Publishers: Lancaster, UK, 1983; Volume 8, pp. 151–162. [Google Scholar]
- Bloom, A.J.; Sukrapanna, S.S.; Warner, R.L. Root respiration associated with ammonium and nitrate absorption and assimilation by barley. Plant Physiol. 1992, 99, 1294–1301. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chapin, F.S. The mineral nutrition of wild plants. Annu. Rev. Ecol. Syst. 1980, 11, 233–260. Available online: https://www.jstor.org/stable/2096908 (accessed on 28 November 2003). [CrossRef]
- Alongi, D.M.; Clough, B.F.; Robertson, A.I. Nutrient-use efficiency in arid-zone forests of the mangroves Rhizophora stylosa and Avicennia marina. Aquat. Bot. 2005, 82, 121–131. [Google Scholar] [CrossRef]
- Alongi, D.M. The Energetics of Mangrove Forests; Springer: Dordrechr, The Netherlands, 2009; pp. 1–216. [Google Scholar]
- Reis, C.R.G.; Nardoto, G.B.; Rochelle, A.L.C.; Vieira, S.A.; Oliveira, R.S. Nitrogen dynamics in subtropical fringe and basin mangrove forests inferred from stable isotopes. Oecologia 2017, 183, 841–848. [Google Scholar] [CrossRef]
- Feller, I.C.; Lovelock, C.E.; Piou, C. Growth and nutrient conservation in Rhizophora mangle in response to fertilization along latitudinal and tidal gradients. Smithson. Contrib. Mar. Sci. 2009, 38, 345–358. [Google Scholar]
- Peterson, B.J.; Fry, B. Stable Isotopes in Ecosystem Studies. Ann. Rev. Ecol. Sys. 1987, 18, 293–320. Available online: http://www.jstor.org/stable/2097134 (accessed on 1 December 2019). [CrossRef]
- Nadelhoffer, K.; Shaver, G.; Fry, B.; Giblin, A.; Johnson, L.; McKane, R. 15N natural abundances and N use by tundra plants. Oecologia 1996, 107, 386–394. [Google Scholar] [CrossRef]
- Mariotti, A.; Germon, J.C.; Leclerc, A.; Catroux, G.; Letoile, R. Experimental determination of kinetic isotope fractionation of nitrogen isotopes during denitrification. In Stable Isotopes; Schmidt, H.L., Forstel, H., Keinoingen, H., Eds.; Elsevier: Amsterdam, The Netherlands, 1982; pp. 459–464. [Google Scholar]
- Evans, R.D.; Bloom, A.J.; Sukrapanna, S.S.; Ehleringer, J.R. Nitrogen isotope composition of tomato (Lycopersicon esculentum Mill. cv. T-5) grown under ammonium or nitrate nutrition. Plant Cell Environ. 1996, 19, 1317–1323. [Google Scholar] [CrossRef]
- Yoneyama, T.; Omata, T.; Nakata, S.; Yazaki, J. Fractionation of nitrogen isotopes during the uptake and assimilation of ammonia by plants. Plant Cell Physiol. 1991, 32, 1211–1217. [Google Scholar] [CrossRef]
- Nadelhoffer, K.J.; Fry, B. Nitrogen isotope studies in forest ecosystems. In Stable Isotopes in Ecology and Environmental Science; Lajtha, K., Mitchener, R.H., Eds.; Blackwell Scientific Publications: Oxford, UK, 1994; pp. 22–44. [Google Scholar]
- Gartner, A.; Lavery, P.; Smit, A. Use of δ15N signatures of different functional forms of macroalgae and filter-feeders to reveal temporal and spatial patterns in sewage dispersal. Mar. Ecol. Prog. Ser. 2002, 235, 63–73. [Google Scholar] [CrossRef]
- Deutsch, B.; Voss, M. Anthropogenic nitrogen input traced by means of ẟ15N values in macroalgae: Results from in-situ incubation experiments. Sci. Total Env. 2006, 366, 799–808. [Google Scholar] [CrossRef] [PubMed]
- Kendall, C.; Elliott, E.M.; Wankel, S.D. Tracing anthropogenic inputs of nitrogen to ecosystems. In Stable Isotopes in Ecology And Environmental Science; Michener, R., Lajtha, K., Eds.; Blackwell publishing: Hoboken, NJ, USA, 2007; pp. 375–449. [Google Scholar]
- Savage, C.; Elmgren, R. Macroalgal (Fucus vesiculosus) δ15N values trace decrease in sewage influence. Ecol. Appl. 2004, 14, 517–526. [Google Scholar] [CrossRef]
- Fair, J.M.; Heikoop, J.M. Stable isotope dynamics of nitrogen sewage effluent uptake in a semi-arid wetland. Environ. Poll. 2006, 140, 500–505. [Google Scholar] [CrossRef]
- Holguin, G.; Vazquez, P.; Bashan, Y. The role of sediment microorganisms in the productivity, conservation, and rehabilitation of mangrove ecosystems: An overview. Biol. Fertil. Soils. 2001, 33, 265–278. [Google Scholar] [CrossRef]
- Handley, L.L.; Austin, A.T.; Robinson, D.; Scrimgeour, C.M.; Raven, J.A.; Heaton, T.H.E.; Schmidt, S.; Stewart, G.R. The 15N natural abundance (δ15N) of ecosystem samples reflects measures of water availability. Aust. J. Plant Phys. 1999, 26, 185–199. [Google Scholar] [CrossRef]
- Craine, J.M.; Brookshire, E.N.J.; Cramer, M.D.; Hasselquist, N.J.; Koba, K.; Marin-Spiotta, E.; Wang, L. Ecological interpretations of nitrogen isotope ratios of terrestrial plants and soils. Plant Soil 2015, 396, 1–26. [Google Scholar] [CrossRef] [Green Version]
- Martin, C.E.; von Willert, D.J. Leaf epidermal hydathodes and the ecophysiological consequences of foliar water uptake in species of Crassula from the Namib Desert in southern Africa. Plant Biol. 2000, 2, 229–242. [Google Scholar] [CrossRef]
- Burgess, S.S.O.; Dawson, T.E. The contribution of fog to the water relations of Sequoia sempervirens (D. Don): Foliar uptake and prevention of dehydration. Plant Cell Env. 2004, 27, 1023–1034. [Google Scholar] [CrossRef]
- Eller, A.D.; Sparks, J.P. Predicting leaf-level fluxes of O3 and NO2: The relative roles of diffusion and biochemical processes. Plant Cell Environ. 2006, 29, 1742–1750. [Google Scholar] [CrossRef] [PubMed]
- Ganguly, D.; Dey, M.; Sen, S.; Jana, T.K. Biosphere–atmosphere exchange of NOx in the tropical mangrove forest. J. Geophys. Res. 2009, 114, G04014. [Google Scholar] [CrossRef]
- Fogel, M.L.; Wooller, M.J.; Cheeseman, J.; Smallwood, B.J.; Roberts, Q.; Romero, I.; Meyers, J.M. Unusually negative nitrogen isotopic compositions (δ15N) of mangroves and lichens in an oligotrophic, microbially-influenced ecosystem. Biogeosci. Discuss. 2008, 5, 937–969. [Google Scholar] [CrossRef]
- Lambs, L.; Mangion, P.; Mougin, E.; Fromard, F. Water cycle and salinity dynamics in the mangrove forests of Europa and Juan de Nova Islands, southwest Indian Ocean. Rapid Comm. Mass Spec. 2016, 30, 311–320. Available online: https://www.ncbi.nlm.nih.gov/pubmed/27071220 (accessed on 30 January 2016). [CrossRef]
- Lovelock, C.E.; Reef, R.; Ball, M.C. Isotopic signatures of stem water reveal differences in water sources accessed by mangrove tree species. Hydrobiologia 2017, 803, 133–145. [Google Scholar] [CrossRef]
- Miller, T.W.; Omori, K.; Hamaoka, H.; Shibata, J.Y.; Hidejiro, O. Tracing anthropogenic inputs to production in the Seto Inland Sea, Japan - A stable isotope approach. Mar. Pollut. Bull. 2010, 60, 1803–1809. [Google Scholar] [CrossRef]
- Lin, D.T.; Fong, P. Macroalgal bioindicators (growth, tissue N, δ15N) detect nutrient enrichment from shrimp farm effluent entering Opunohu Bay, Moorea, French Polynesia. Mar. Pollut. Bull. 2008, 56, 245–249. [Google Scholar] [CrossRef]
- Fong, P.; Fong, J.J.; Fong, C.R. Growth, nutrient storage, and release of dissolved organic nitrogen by Enteromorpha intestinalis in response to pulses of nitrogen and phosphorus. Aquat. Bot. 2004, 78, 83–95. [Google Scholar] [CrossRef]
- Lin, Y.; Liu, X.; Zhang, H.; Fan, H.; Lin, G. Nutrient conservation strategies of a mangrove species Rhizophora stylosa under nutrient limitation. Plant Soil 2010, 326, 469–479. [Google Scholar] [CrossRef] [Green Version]
- Saenger, P. Mangrove Ecology, Silviculture and Conservation; Kluwer: Dordrecht, The Netherlands, 2002. [Google Scholar]
Island | Watershed | Number of Sampling Points | Vegetation Type | Coordinates |
---|---|---|---|---|
Iriomote | Urauchi | 5 | Non-mangrove | N 24°22′45.02” E 123°46′58.04″ |
Mangrove | N 24°23′00.04” E 123°46′40.04″ | |||
Mangrove | N 24°23′55.04” E 123°46′54.05″ | |||
Mangrove | N 24°24′08.08” E 123°46′43.01″ | |||
Mangrove | N 24°24′15.59′′ E 123°46′38.57″ | |||
Kura | 1 | Mangrove + Non-mangrove | N 24°24′06.55′′ E 123°50′40.71″ | |
Shiira | 1 | Mangrove + Non-mangrove | N 24°19′26.29′′ E 123°54′37.88″ | |
Maera | 1 | Mangrove | N 24°18′49.82′′ E 123°54′22.55″ | |
Mare | 2 | Non-mangrove | N 24°23′14.84′′ E 123°48′43.36″ | |
Non-mangrove | N 24°23′25.86′′ E 123°48′53.62″ | |||
Hinai | 3 | Non-mangrove | N 24°23′05.86′′ E 123°49′14.09″ | |
Mangrove | N 24°23′22.25′′ E 123°49′07.24″ | |||
Mangrove | N 24°23′24.36′′ E 123°48′59.57″ | |||
Nakama | 1 | Mangrove | N 24°16′31.60′′ E 123°52′48.40″ | |
Ishigaki | Nagura | 4 | Mangrove | N 24°24′00.03” E 124°08′36.92″ |
Mangrove | N 24°24′04.05” E 124° 08′43.03″ | |||
Mangrove | N 24°24′06.24′′ E 124°09′01.54″ | |||
Non-mangrove | N 24°24′12.01” E 124°09′12.01″ | |||
Fukido | 1 | Mangrove + Non-mangrove | N 24°29′08.03” E 124°13′51.03″ | |
Miyara | Mangrove | N 24°21′30.53′′ E 124°12′40.94″ | ||
Mangrove | N 24°21′32.89′′ E 124°12′38.30″ | |||
Hirakubo | 2 | Mangrove + Non-mangrove | N 24°35′33.69” E 124°18′42.37″ | |
Mangrove + Non-mangrove | N 24°35′33.50” E 124°18′40.70″ | |||
Todoroki | 1 | Mangrove + Non-mangrove | N 24°22′38.00” E 124°14′35.06″ | |
Okinawa | Manko | 3 | Mangrove + Non-mangrove | N 26°11′43.06” E 127°41′20.05″ |
Mangrove + Non-mangrove | N 26°11′49.09” E 127°41′10.03″ | |||
Mangrove + Non-mangrove | N 26°11′54.41” E 127°41′02.28″ | |||
Southern Manko | 4 | Mangrove + Non-mangrove | N 26°11′22.04” E 127°41′12.03″ | |
Mangrove | N 26°11′37.02” E 127°41′01.91″ | |||
Mangrove + Non-mangrove | N 26°11′45.07” E 127°40′53.01″ | |||
Mangrove + Non-mangrove | N 26°11′54.,05” E 127°40′48.04″ | |||
Kesaji | 3 | Mangrove + Non-mangrove | N 26°36′26.05” E 128°08′26.03″ | |
Mangrove + Non-mangrove | N 26°36′32.05” E 128°08′17.00″ | |||
Mangrove + Non-mangrove | N 26°37′17.01” E 128°08′40.02″ | |||
Okukubi | 3 | Mangrove + Non-mangrove | N 26°27′23.02” E 127°56′32.05″ | |
Mangrove + Non-mangrove | N 26°27′30.00” E 127°56′19.06″ | |||
Mangrove + Non-mangrove | N 26°27′34.05” E 127°56′09.05″ |
Island | Watershed | Total Area (km2) | Forest Area (%) | Mangrove Area (%) | Agriculture Area (%) | Residential Area (%) | Lake Area (%) | Population Density (Number of People km−2) |
---|---|---|---|---|---|---|---|---|
Iriomote | Maera | 7.68 | 92.0 | 2.50 | 5.00 | 0.00 | 0.80 | 7.14 |
Shiira | 8.47 | 99.2 | 0.60 | 0.25 | 0.00 | 0.00 | 0 | |
Kura | 1.64 | 95.5 | 0.60 | 4.00 | 0.00 | 0.00 | 0 | |
Hinai | 3.65 | 99.3 | 0.65 | 0.00 | 0.00 | 0.05 | 0 | |
Nakama | 34.4 | 88.0 | 4.00 | 6.00 | 0.20 | 2.00 | 9.92 | |
Urauchi | 68.2 | 95.0 | 1.95 | 2.75 | 0.00 | 0.70 | 80.9 | |
Mare | 3.70 | 99.4 | na | 0.61 | 0.00 | na | na | |
Ishigaki | Nagura | 23.8 | 70.0 | 1.50 | 27.0 | 0.15 | 1.85 | 22.5 |
Miyara | 36.3 | 49.4 | 0.15 | 46.0 | 0.54 | 4.00 | 23.6 | |
Hirakubo | 3.15 | 61.0 | 1.35 | 37.8 | 0.18 | 0.00 | 22.1 | |
Todoroki | 12.3 | 34.4 | 0.08 | 65.5 | 0.00 | 0.00 | 6.98 | |
Fukido | 3.18 | 79. 0 | 6.50 | 14.0 | 0.50 | 0.00 | 28.3 | |
Okinawa | Manko | 38.2 | 13.7 | 0.09 | 55.9 | 28.6 | 1.80 | 5460 |
Kesaji | 7.30 | 77.0 | 1.10 | 22.0 | 0.00 | 0.00 | 54.6 | |
Okukubi | 17.0 | 47.0 | 0.15 | 45.0 | 7.00 | 1.00 | 373 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanu, F.Z.; Asakura, Y.; Takahashi, S.; Hinokidani, K.; Nakanishi, Y. Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests 2020, 11, 133. https://doi.org/10.3390/f11020133
Tanu FZ, Asakura Y, Takahashi S, Hinokidani K, Nakanishi Y. Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests. 2020; 11(2):133. https://doi.org/10.3390/f11020133
Chicago/Turabian StyleTanu, Ferdouse Zaman, Yasuhiro Asakura, Satoshi Takahashi, Ko Hinokidani, and Yasuhiro Nakanishi. 2020. "Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests" Forests 11, no. 2: 133. https://doi.org/10.3390/f11020133
APA StyleTanu, F. Z., Asakura, Y., Takahashi, S., Hinokidani, K., & Nakanishi, Y. (2020). Variation in Foliar ẟ15N Reflects Anthropogenic Nitrogen Absorption Potential of Mangrove Forests. Forests, 11(2), 133. https://doi.org/10.3390/f11020133