A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Collection of Data on Distribution Points of S. noctilio in China and Other Countries
2.2. Investigation on Main Autecology and Biology of S. noctilio in China
2.3. Climate Data
2.4. Setting Parameters in Maxent
2.5. Classification of Suitable Areas for S. noctilio
3. Results
3.1. Main Autecology and Biology of S. noctilio in China
3.2. Model Evaluation
3.3. Relationships between S. noctilio Distribution and Bioclimatic Variables
3.4. Currently Suitable Habitat Areas for S. noctilio Based on Historical Climatic Conditions
3.5. Potential Distribution of S. noctilio under Future Climate Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Spradbery, J.P.; Kirk, A.A. Aspects of the ecology of siricid woodwasps (Hymenoptera: Siricidae) in Europe, North Africa and Turkey with special reference to the biological control of Sirex noctilio F. in Australia. Bull. Èntomol. Res. 1978, 68, 341–359. [Google Scholar] [CrossRef] [Green Version]
- Haugen, D.A. Sirex woodwasp: Biology, ecology and management. In Proceedings of the 17th US Department of Agriculture Interagency Research Forum on Gypsy Moth and Other Invasive Species 2006; Gen. Tech. Rep. NRS-P-10; US Department of Agriculture, Forest Service, Northern Research Station: Newtown Square, PA, USA, 2006; pp. 48–49. [Google Scholar]
- Rawlings, G. Recent observations on the Sirex noctilio population in Pinus radiata forest in New Zealand. N. Z. J. For. Sci. 1948, 5, 411–421. [Google Scholar]
- Iede, E.T.; Penteado, S.; Bisol, J. Primeiro registro de ataque de Sirex noctilio em Pinus taeda no Brasil; Embrapa/Centro Nacional de Pesquisas Florestais: Curitiba, Brazil, 1988.
- Madden, J.L. Sirex in Australasia. In Dynamics of Forest Insect Populations; Plenum Publisher: New York, NY, USA, 1988; pp. 407–429. [Google Scholar]
- Tribe, G. The woodwasp Sirex noctilio Fabricius (Hymenoptera: Siricidae), a pest of Pinus species, now established in South Africa. Afr. Entomol. 1995, 3, 215–217. [Google Scholar]
- Hoebeke, E.R.; Haugen, D.A.; Haack, R.A. Sirex noctilio: Discovery of a Discovery of a Palearctic Siricid Woodwasp in New York. Newsl. Mich. Entomo. Soc. 2005, 50, 24–25. [Google Scholar]
- Slippers, B.; Hurley, B.P.; Wingfield, M.J. SirexWoodwasp: A Model for Evolving Management Paradigms of Invasive Forest Pests. Annu. Rev. Èntomol. 2015, 60, 601–619. [Google Scholar] [CrossRef] [Green Version]
- Li, D.; Shi, J.; Lu, M.; Ren, L.; Zhen, C.; Luo, Y. Detection and Identification of the Invasive Sirex noctilio (Hymenoptera: Siricidae) Fungal Symbiont, Amylostereum areolatum (Russulales: Amylostereacea), in China and the Stimulating Effect of Insect Venom on Laccase Production by A. areolatum YQL03. J. Econ. Èntomol. 2015, 108, 1136–1147. [Google Scholar] [CrossRef]
- Sun, X.; Tao, J.; Ren, L.; Shi, J.; Luo, Y. Identification of Sirex noctilio (Hymenoptera: Siricidae) Using a Species-Specific Cytochrome C Oxidase Subunit I PCR Assay. J. Econ. Èntomol. 2016, 109, 1424–1430. [Google Scholar] [CrossRef] [Green Version]
- Wang, L.; Liu, X.; Ren, L.; Shi, J.; Luo, Y. Variety of endophytic fungi associated with conifers in mixed conifer forests invaded by Sirex noctilio. Sci. Silvae Sin. 2017, 53, 81–89. [Google Scholar] [CrossRef]
- Chengcheng, L.; Lixiang, W.; Lili, R.; Huadong, L.; Youqing, L. Effects of Temperature Adaptation of Symbiotic Wood-decay Fungus Amylostereum areolatum on Potential Distribution Area of Sirex noctilio. J. Northeast For. Univ. 2019, 47, 112–117. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Maywald, G.F.; Yonow, T.; Zurcher, E.J.; Herrmann, N.I.; Sutherst, R. Exploring the effects of climate on plants, animals and diseases. CLIMEX Version 2015, 4, 184. [Google Scholar]
- Carnegie, A.J.; Matsuki, M.; Haugen, D.A.; Hurley, B.P.; Ahumada, R.; Klasmer, P.; Sun, J.; Iede, E.T. Predicting the potential distribution of Sirex noctilio (Hymenoptera: Siricidae), a significant exotic pest of Pinus plantations. Ann. For. Sci. 2006, 63, 119–128. [Google Scholar] [CrossRef] [Green Version]
- Ireland, K.B.; Bulman, L.; Hoskins, A.J.; Pinkard, E.A.; Mohammed, C.; Kriticos, D.J. Estimating the potential geographical range of Sirex noctilio: Comparison with an existing model and relationship with field severity. Boil. Invasions 2018, 20, 2599–2622. [Google Scholar] [CrossRef]
- Elith, J.; Graham, C.H.; Anderson, R.P.; Dudík, M.; Ferrier, S.; Guisan, A.; Hijmans, R.J.; Huettmann, F.; Leathwick, J.R.; Lehmann, A.; et al. Novel methods improve prediction of species’ distributions from occurrence data. Ecography 2006, 29, 129–151. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.J.; Anderson, R.P.; Schapire, R.E. Maximum entropy modeling of species geographic distributions. Ecol. Model. 2006, 190, 231–259. [Google Scholar] [CrossRef] [Green Version]
- Zhu, G.; Liu, Q.; Gao, Y. Improving ecological niche model transferability to predict the potential distribution of invasive exotic species. Biodivers. Sci. 2014, 22, 223–230. [Google Scholar] [CrossRef]
- Phillips, S.J.; Dudík, M.; Schapire, R.E. A maximum entropy approach to species distribution modeling. In Proceedings of the Twenty-First International Conference on Machine Learning—ICML’04, Banff, AB, Canada, 4–8 July 2004; p. 83. [Google Scholar]
- Phillips, S.J.; Dudík, M. Modeling of species distributions with Maxent: New extensions and a comprehensive evaluation. Ecography 2008, 31, 161–175. [Google Scholar] [CrossRef]
- Phillips, S.J.; Anderson, R.P.; Dudík, M.; Schapire, R.E.; Blair, M.E. Opening the black box: An open-source release of Maxent. Ecography 2017, 40, 887–893. [Google Scholar] [CrossRef]
- Venette, R.C. Climate Analyses to Assess Risks from Invasive Forest Insects: Simple Matching to Advanced Models. Curr. For. Rep. 2017, 3, 255–268. [Google Scholar] [CrossRef]
- Xu, Q.; Cao, L.; Ma, J.; Ren, L.; Sun, X.; Luo, Y.; Shi, J. Study on the morphology and damage characteristics of Sirex noctilio. J. Environ. Entomol. 2018, 40, 299–305. [Google Scholar] [CrossRef]
- Xu, Q.; Lv, H.; Wu, C.; Mao, Y.; Song, G.; Shi, J. Oviposition behavior of Sirex noctilio (Hymenoptera: Siricidae). Acta Entomol. Sin. 2019, 62, 468–474. [Google Scholar] [CrossRef]
- Escobar, L.E.; Lira-Noriega, A.; Medina-Vogel, G.; Peterson, A.T. Potential for spread of the white-nose fungus (Pseudogymnoascus destructans) in the Americas: Use of Maxent and NicheA to assure strict model transference. Geospat. Health 2014, 9, 221. [Google Scholar] [CrossRef]
- Zhu, G.-P.; Peterson, A.T. Do consensus models outperform individual models? Transferability evaluations of diverse modeling approaches for an invasive moth. Boil. Invasions 2017, 19, 2519–2532. [Google Scholar] [CrossRef]
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Rogelj, J.; Meinshausen, M.; Knutti, R. Global warming under old and new scenarios using IPCC climate sensitivity range estimates. Nat. Clim. Chang. 2012, 2, 248–253. [Google Scholar] [CrossRef]
- Morales, N.S.; Fernández, I.C.; Baca-González, V. MaxEnt’s parameter configuration and small samples: Are we paying attention to recommendations? A systematic review. PeerJ 2017, 5, e3093. [Google Scholar] [CrossRef]
- Renner, I.W.; Warton, D.I. Equivalence of MAXENT and Poisson Point Process Models for Species Distribution Modeling in Ecology. Biomtrics 2013, 69, 274–281. [Google Scholar] [CrossRef]
- Merow, C.; Smith, M.J.; Silander, J.A. A practical guide to MaxEnt for modeling species’ distributions: What it does, and why inputs and settings matter. Ecography 2013, 36, 1058–1069. [Google Scholar]
- Messenger, P.S. Bioclimatic Studies with Insects. Annu. Rev. Èntomol. 1959, 4, 183–206. [Google Scholar] [CrossRef]
- Andrewartha, H.G.; Birch, L.C. The Ecological Web: More on the Distribution and Abundance of Animals; University of Chicago Press: Chicago, CA, USA, 1986. [Google Scholar]
- Swets, J. Measuring the accuracy of diagnostic systems. Science 1988, 240, 1285–1293. [Google Scholar] [CrossRef] [Green Version]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions (MPB-49); Princeton University Press: Princeton, NJ, USA, 2011; Volume 56. [Google Scholar]
- Régnière, J.; St-Amant, R.; Duval, P. Predicting insect distributions under climate change from physiological responses: Spruce budworm as an example. Biol. Invasions 2012, 14, 1571–1586. [Google Scholar] [CrossRef]
- Mattson, W.J.; Niemelä, P. Invasion of North American Forests by European Phytophagous Insects. Bioscience 1996, 46, 741–753. [Google Scholar] [CrossRef] [Green Version]
- Pureswaran, D.S.; Roques, A.; Battisti, A. Forest Insects and Climate Change. Curr. For. Rep. 2018, 4, 35–50. [Google Scholar] [CrossRef] [Green Version]
- Volney, W.A.; Fleming, R.A. Climate change and impacts of boreal forest insects. Agric. Ecosyst. Environ. 2000, 82, 283–294. [Google Scholar] [CrossRef]
- Danks, H. Arctic Insects as Indicators of Environmental Change. Arctic 1992, 45, 159–166. [Google Scholar] [CrossRef] [Green Version]
- Williamsen, L.; Pigeon, G.; Mysterud, A.; Stien, A.; Forchhammer, M.; Loe, L.E. Keeping cool in the warming Arctic: Thermoregulatory behaviour by Svalbard reindeer (Rangifer tarandus platyrhynchus). Can. J. Zool. 2019, 97, 1177–1185. [Google Scholar] [CrossRef]
- Hu, G.; Xie, M.-C.; Lin, Z.-X.; Xin, D.-Y.; Huang, C.-Y.; Chen, W.; Zhang, X.-X.; Zhai, B.-P. Are Outbreaks of Nilaparvata lugens (Stål) Associated with Global Warming? Environ. Èntomol. 2010, 39, 1705–1714. [Google Scholar] [CrossRef]
- Ramesh, K.; Niranjana, G.; Kelageri, S.S. Chapter-5 Diversity and Survival of Insects in Arctic Environment. In Advances; AkiNik Publications: New Delhi, India, 2019; pp. 83–100. [Google Scholar]
Abbreviation | Bioclimatic Variables |
---|---|
Bio01 | Annual Mean Temperature |
Bio07 | Temperature Annual Range (Bio05-Bio06) |
Bio10 | Mean Temperature of Warmest Quarter |
Bio12 | Annual Precipitation |
Bio13 | Precipitation of Wettest Month |
Bio15 | Precipitation Seasonality (Coefficient of Variation) |
Date and RCP | Percentage of Different Areas (%) | |||
---|---|---|---|---|
Unsuitable Habitat Area | Low Habitat Suitability Area | Moderate Habitat Suitability Area | High Habitat Suitability Area | |
Current | 73.63 | 15.01 | 7.04 | 4.32 |
2050 RCP2.6 | 72.12 (−1.51) | 15.79 (+0.78) | 7.27 (+0.23) | 4.82 (+0.50) |
2050 RCP4.5 | 75.11 (+1.48) | 13.46 (−1.55) | 7.05 (+0.01) | 4.39 (+0.07) |
2050 RCP8.5 | 74.92 (+1.29) | 14.11 (−0.90) | 6.90 (−0.14) | 4.07 (−0.25) |
2070 RCP2.6 | 73.68 (+0.05) | 14.54 (−0.47) | 7.18 (+0.14) | 4.60 (+0.28) |
2070 RCP4.5 | 74.66 (+1.03) | 14.01 (−1.00) | 7.02 (−0.02) | 4.30 (−0.02) |
2070 RCP8.5 | 75.03 (+1.40) | 13.91 (−1.10) | 6.88 (−0.16) | 4.17 (−0.15) |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sun, X.; Xu, Q.; Luo, Y. A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio. Forests 2020, 11, 175. https://doi.org/10.3390/f11020175
Sun X, Xu Q, Luo Y. A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio. Forests. 2020; 11(2):175. https://doi.org/10.3390/f11020175
Chicago/Turabian StyleSun, Xueting, Qiang Xu, and Youqing Luo. 2020. "A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio" Forests 11, no. 2: 175. https://doi.org/10.3390/f11020175
APA StyleSun, X., Xu, Q., & Luo, Y. (2020). A Maximum Entropy Model Predicts the Potential Geographic Distribution of Sirex noctilio. Forests, 11(2), 175. https://doi.org/10.3390/f11020175